1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
|
/* Perform simple optimizations to clean up the result of reload.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "obstack.h"
#include "insn-config.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "regs.h"
#include "basic-block.h"
#include "reload.h"
#include "recog.h"
#include "output.h"
#include "cselib.h"
#include "real.h"
#include "toplev.h"
#include "except.h"
#include "tree.h"
#include "timevar.h"
#include "tree-pass.h"
static int reload_cse_noop_set_p (rtx);
static void reload_cse_simplify (rtx, rtx);
static void reload_cse_regs_1 (rtx);
static int reload_cse_simplify_set (rtx, rtx);
static int reload_cse_simplify_operands (rtx, rtx);
static void reload_combine (void);
static void reload_combine_note_use (rtx *, rtx);
static void reload_combine_note_store (rtx, rtx, void *);
static void reload_cse_move2add (rtx);
static void move2add_note_store (rtx, rtx, void *);
/* Call cse / combine like post-reload optimization phases.
FIRST is the first instruction. */
void
reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
{
reload_cse_regs_1 (first);
reload_combine ();
reload_cse_move2add (first);
if (flag_expensive_optimizations)
reload_cse_regs_1 (first);
}
/* See whether a single set SET is a noop. */
static int
reload_cse_noop_set_p (rtx set)
{
if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
return 0;
return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
}
/* Try to simplify INSN. */
static void
reload_cse_simplify (rtx insn, rtx testreg)
{
rtx body = PATTERN (insn);
if (GET_CODE (body) == SET)
{
int count = 0;
/* Simplify even if we may think it is a no-op.
We may think a memory load of a value smaller than WORD_SIZE
is redundant because we haven't taken into account possible
implicit extension. reload_cse_simplify_set() will bring
this out, so it's safer to simplify before we delete. */
count += reload_cse_simplify_set (body, insn);
if (!count && reload_cse_noop_set_p (body))
{
rtx value = SET_DEST (body);
if (REG_P (value)
&& ! REG_FUNCTION_VALUE_P (value))
value = 0;
delete_insn_and_edges (insn);
return;
}
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn, testreg);
}
else if (GET_CODE (body) == PARALLEL)
{
int i;
int count = 0;
rtx value = NULL_RTX;
/* Registers mentioned in the clobber list for an asm cannot be reused
within the body of the asm. Invalidate those registers now so that
we don't try to substitute values for them. */
if (asm_noperands (body) >= 0)
{
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
cselib_invalidate_rtx (XEXP (part, 0));
}
}
/* If every action in a PARALLEL is a noop, we can delete
the entire PARALLEL. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == SET)
{
if (! reload_cse_noop_set_p (part))
break;
if (REG_P (SET_DEST (part))
&& REG_FUNCTION_VALUE_P (SET_DEST (part)))
{
if (value)
break;
value = SET_DEST (part);
}
}
else if (GET_CODE (part) != CLOBBER)
break;
}
if (i < 0)
{
delete_insn_and_edges (insn);
/* We're done with this insn. */
return;
}
/* It's not a no-op, but we can try to simplify it. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn, testreg);
}
}
/* Do a very simple CSE pass over the hard registers.
This function detects no-op moves where we happened to assign two
different pseudo-registers to the same hard register, and then
copied one to the other. Reload will generate a useless
instruction copying a register to itself.
This function also detects cases where we load a value from memory
into two different registers, and (if memory is more expensive than
registers) changes it to simply copy the first register into the
second register.
Another optimization is performed that scans the operands of each
instruction to see whether the value is already available in a
hard register. It then replaces the operand with the hard register
if possible, much like an optional reload would. */
static void
reload_cse_regs_1 (rtx first)
{
rtx insn;
rtx testreg = gen_rtx_REG (VOIDmode, -1);
cselib_init (true);
init_alias_analysis ();
for (insn = first; insn; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
reload_cse_simplify (insn, testreg);
cselib_process_insn (insn);
}
/* Clean up. */
end_alias_analysis ();
cselib_finish ();
}
/* Try to simplify a single SET instruction. SET is the set pattern.
INSN is the instruction it came from.
This function only handles one case: if we set a register to a value
which is not a register, we try to find that value in some other register
and change the set into a register copy. */
static int
reload_cse_simplify_set (rtx set, rtx insn)
{
int did_change = 0;
int dreg;
rtx src;
enum reg_class dclass;
int old_cost;
cselib_val *val;
struct elt_loc_list *l;
#ifdef LOAD_EXTEND_OP
enum rtx_code extend_op = UNKNOWN;
#endif
dreg = true_regnum (SET_DEST (set));
if (dreg < 0)
return 0;
src = SET_SRC (set);
if (side_effects_p (src) || true_regnum (src) >= 0)
return 0;
dclass = REGNO_REG_CLASS (dreg);
#ifdef LOAD_EXTEND_OP
/* When replacing a memory with a register, we need to honor assumptions
that combine made wrt the contents of sign bits. We'll do this by
generating an extend instruction instead of a reg->reg copy. Thus
the destination must be a register that we can widen. */
if (MEM_P (src)
&& GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
&& (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
&& !REG_P (SET_DEST (set)))
return 0;
#endif
val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
if (! val)
return 0;
/* If memory loads are cheaper than register copies, don't change them. */
if (MEM_P (src))
old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
else if (REG_P (src))
old_cost = REGISTER_MOVE_COST (GET_MODE (src),
REGNO_REG_CLASS (REGNO (src)), dclass);
else
old_cost = rtx_cost (src, SET);
for (l = val->locs; l; l = l->next)
{
rtx this_rtx = l->loc;
int this_cost;
if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
{
#ifdef LOAD_EXTEND_OP
if (extend_op != UNKNOWN)
{
HOST_WIDE_INT this_val;
/* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
constants, such as SYMBOL_REF, cannot be extended. */
if (GET_CODE (this_rtx) != CONST_INT)
continue;
this_val = INTVAL (this_rtx);
switch (extend_op)
{
case ZERO_EXTEND:
this_val &= GET_MODE_MASK (GET_MODE (src));
break;
case SIGN_EXTEND:
/* ??? In theory we're already extended. */
if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
break;
default:
gcc_unreachable ();
}
this_rtx = GEN_INT (this_val);
}
#endif
this_cost = rtx_cost (this_rtx, SET);
}
else if (REG_P (this_rtx))
{
#ifdef LOAD_EXTEND_OP
if (extend_op != UNKNOWN)
{
this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
this_cost = rtx_cost (this_rtx, SET);
}
else
#endif
this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
REGNO_REG_CLASS (REGNO (this_rtx)),
dclass);
}
else
continue;
/* If equal costs, prefer registers over anything else. That
tends to lead to smaller instructions on some machines. */
if (this_cost < old_cost
|| (this_cost == old_cost
&& REG_P (this_rtx)
&& !REG_P (SET_SRC (set))))
{
#ifdef LOAD_EXTEND_OP
if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
&& extend_op != UNKNOWN
#ifdef CANNOT_CHANGE_MODE_CLASS
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
word_mode,
REGNO_REG_CLASS (REGNO (SET_DEST (set))))
#endif
)
{
rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
validate_change (insn, &SET_DEST (set), wide_dest, 1);
}
#endif
validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
old_cost = this_cost, did_change = 1;
}
}
return did_change;
}
/* Try to replace operands in INSN with equivalent values that are already
in registers. This can be viewed as optional reloading.
For each non-register operand in the insn, see if any hard regs are
known to be equivalent to that operand. Record the alternatives which
can accept these hard registers. Among all alternatives, select the
ones which are better or equal to the one currently matching, where
"better" is in terms of '?' and '!' constraints. Among the remaining
alternatives, select the one which replaces most operands with
hard registers. */
static int
reload_cse_simplify_operands (rtx insn, rtx testreg)
{
int i, j;
/* For each operand, all registers that are equivalent to it. */
HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
/* Vector recording how bad an alternative is. */
int *alternative_reject;
/* Vector recording how many registers can be introduced by choosing
this alternative. */
int *alternative_nregs;
/* Array of vectors recording, for each operand and each alternative,
which hard register to substitute, or -1 if the operand should be
left as it is. */
int *op_alt_regno[MAX_RECOG_OPERANDS];
/* Array of alternatives, sorted in order of decreasing desirability. */
int *alternative_order;
extract_insn (insn);
if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
return 0;
/* Figure out which alternative currently matches. */
if (! constrain_operands (1))
fatal_insn_not_found (insn);
alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
/* For each operand, find out which regs are equivalent. */
for (i = 0; i < recog_data.n_operands; i++)
{
cselib_val *v;
struct elt_loc_list *l;
rtx op;
enum machine_mode mode;
CLEAR_HARD_REG_SET (equiv_regs[i]);
/* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
right, so avoid the problem here. Likewise if we have a constant
and the insn pattern doesn't tell us the mode we need. */
if (LABEL_P (recog_data.operand[i])
|| (CONSTANT_P (recog_data.operand[i])
&& recog_data.operand_mode[i] == VOIDmode))
continue;
op = recog_data.operand[i];
mode = GET_MODE (op);
#ifdef LOAD_EXTEND_OP
if (MEM_P (op)
&& GET_MODE_BITSIZE (mode) < BITS_PER_WORD
&& LOAD_EXTEND_OP (mode) != UNKNOWN)
{
rtx set = single_set (insn);
/* We might have multiple sets, some of which do implicit
extension. Punt on this for now. */
if (! set)
continue;
/* If the destination is also a MEM or a STRICT_LOW_PART, no
extension applies.
Also, if there is an explicit extension, we don't have to
worry about an implicit one. */
else if (MEM_P (SET_DEST (set))
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND
|| GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
; /* Continue ordinary processing. */
#ifdef CANNOT_CHANGE_MODE_CLASS
/* If the register cannot change mode to word_mode, it follows that
it cannot have been used in word_mode. */
else if (REG_P (SET_DEST (set))
&& CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
word_mode,
REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
; /* Continue ordinary processing. */
#endif
/* If this is a straight load, make the extension explicit. */
else if (REG_P (SET_DEST (set))
&& recog_data.n_operands == 2
&& SET_SRC (set) == op
&& SET_DEST (set) == recog_data.operand[1-i])
{
validate_change (insn, recog_data.operand_loc[i],
gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
word_mode, op),
1);
validate_change (insn, recog_data.operand_loc[1-i],
gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
1);
if (! apply_change_group ())
return 0;
return reload_cse_simplify_operands (insn, testreg);
}
else
/* ??? There might be arithmetic operations with memory that are
safe to optimize, but is it worth the trouble? */
continue;
}
#endif /* LOAD_EXTEND_OP */
v = cselib_lookup (op, recog_data.operand_mode[i], 0);
if (! v)
continue;
for (l = v->locs; l; l = l->next)
if (REG_P (l->loc))
SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
}
for (i = 0; i < recog_data.n_operands; i++)
{
enum machine_mode mode;
int regno;
const char *p;
op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
for (j = 0; j < recog_data.n_alternatives; j++)
op_alt_regno[i][j] = -1;
p = constraints[i] = recog_data.constraints[i];
mode = recog_data.operand_mode[i];
/* Add the reject values for each alternative given by the constraints
for this operand. */
j = 0;
while (*p != '\0')
{
char c = *p++;
if (c == ',')
j++;
else if (c == '?')
alternative_reject[j] += 3;
else if (c == '!')
alternative_reject[j] += 300;
}
/* We won't change operands which are already registers. We
also don't want to modify output operands. */
regno = true_regnum (recog_data.operand[i]);
if (regno >= 0
|| constraints[i][0] == '='
|| constraints[i][0] == '+')
continue;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
int class = (int) NO_REGS;
if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
continue;
REGNO (testreg) = regno;
PUT_MODE (testreg, mode);
/* We found a register equal to this operand. Now look for all
alternatives that can accept this register and have not been
assigned a register they can use yet. */
j = 0;
p = constraints[i];
for (;;)
{
char c = *p;
switch (c)
{
case '=': case '+': case '?':
case '#': case '&': case '!':
case '*': case '%':
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'm': case '<': case '>': case 'V': case 'o':
case 'E': case 'F': case 'G': case 'H':
case 's': case 'i': case 'n':
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P':
case 'p': case 'X':
/* These don't say anything we care about. */
break;
case 'g': case 'r':
class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
break;
default:
class
= (reg_class_subunion
[(int) class]
[(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
break;
case ',': case '\0':
/* See if REGNO fits this alternative, and set it up as the
replacement register if we don't have one for this
alternative yet and the operand being replaced is not
a cheap CONST_INT. */
if (op_alt_regno[i][j] == -1
&& reg_fits_class_p (testreg, class, 0, mode)
&& (GET_CODE (recog_data.operand[i]) != CONST_INT
|| (rtx_cost (recog_data.operand[i], SET)
> rtx_cost (testreg, SET))))
{
alternative_nregs[j]++;
op_alt_regno[i][j] = regno;
}
j++;
class = (int) NO_REGS;
break;
}
p += CONSTRAINT_LEN (c, p);
if (c == '\0')
break;
}
}
}
/* Record all alternatives which are better or equal to the currently
matching one in the alternative_order array. */
for (i = j = 0; i < recog_data.n_alternatives; i++)
if (alternative_reject[i] <= alternative_reject[which_alternative])
alternative_order[j++] = i;
recog_data.n_alternatives = j;
/* Sort it. Given a small number of alternatives, a dumb algorithm
won't hurt too much. */
for (i = 0; i < recog_data.n_alternatives - 1; i++)
{
int best = i;
int best_reject = alternative_reject[alternative_order[i]];
int best_nregs = alternative_nregs[alternative_order[i]];
int tmp;
for (j = i + 1; j < recog_data.n_alternatives; j++)
{
int this_reject = alternative_reject[alternative_order[j]];
int this_nregs = alternative_nregs[alternative_order[j]];
if (this_reject < best_reject
|| (this_reject == best_reject && this_nregs > best_nregs))
{
best = j;
best_reject = this_reject;
best_nregs = this_nregs;
}
}
tmp = alternative_order[best];
alternative_order[best] = alternative_order[i];
alternative_order[i] = tmp;
}
/* Substitute the operands as determined by op_alt_regno for the best
alternative. */
j = alternative_order[0];
for (i = 0; i < recog_data.n_operands; i++)
{
enum machine_mode mode = recog_data.operand_mode[i];
if (op_alt_regno[i][j] == -1)
continue;
validate_change (insn, recog_data.operand_loc[i],
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
}
for (i = recog_data.n_dups - 1; i >= 0; i--)
{
int op = recog_data.dup_num[i];
enum machine_mode mode = recog_data.operand_mode[op];
if (op_alt_regno[op][j] == -1)
continue;
validate_change (insn, recog_data.dup_loc[i],
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
}
return apply_change_group ();
}
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
addressing now.
This code might also be useful when reload gave up on reg+reg addressing
because of clashes between the return register and INDEX_REG_CLASS. */
/* The maximum number of uses of a register we can keep track of to
replace them with reg+reg addressing. */
#define RELOAD_COMBINE_MAX_USES 6
/* INSN is the insn where a register has ben used, and USEP points to the
location of the register within the rtl. */
struct reg_use { rtx insn, *usep; };
/* If the register is used in some unknown fashion, USE_INDEX is negative.
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
indicates where it becomes live again.
Otherwise, USE_INDEX is the index of the last encountered use of the
register (which is first among these we have seen since we scan backwards),
OFFSET contains the constant offset that is added to the register in
all encountered uses, and USE_RUID indicates the first encountered, i.e.
last, of these uses.
STORE_RUID is always meaningful if we only want to use a value in a
register in a different place: it denotes the next insn in the insn
stream (i.e. the last encountered) that sets or clobbers the register. */
static struct
{
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
int use_index;
rtx offset;
int store_ruid;
int use_ruid;
} reg_state[FIRST_PSEUDO_REGISTER];
/* Reverse linear uid. This is increased in reload_combine while scanning
the instructions from last to first. It is used to set last_label_ruid
and the store_ruid / use_ruid fields in reg_state. */
static int reload_combine_ruid;
#define LABEL_LIVE(LABEL) \
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
static void
reload_combine (void)
{
rtx insn, set;
int first_index_reg = -1;
int last_index_reg = 0;
int i;
basic_block bb;
unsigned int r;
int last_label_ruid;
int min_labelno, n_labels;
HARD_REG_SET ever_live_at_start, *label_live;
/* If reg+reg can be used in offsetable memory addresses, the main chunk of
reload has already used it where appropriate, so there is no use in
trying to generate it now. */
if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
return;
/* To avoid wasting too much time later searching for an index register,
determine the minimum and maximum index register numbers. */
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
{
if (first_index_reg == -1)
first_index_reg = r;
last_index_reg = r;
}
/* If no index register is available, we can quit now. */
if (first_index_reg == -1)
return;
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
information is a bit fuzzy immediately after reload, but it's
still good enough to determine which registers are live at a jump
destination. */
min_labelno = get_first_label_num ();
n_labels = max_label_num () - min_labelno;
label_live = XNEWVEC (HARD_REG_SET, n_labels);
CLEAR_HARD_REG_SET (ever_live_at_start);
FOR_EACH_BB_REVERSE (bb)
{
insn = BB_HEAD (bb);
if (LABEL_P (insn))
{
HARD_REG_SET live;
REG_SET_TO_HARD_REG_SET (live,
bb->il.rtl->global_live_at_start);
compute_use_by_pseudos (&live,
bb->il.rtl->global_live_at_start);
COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
IOR_HARD_REG_SET (ever_live_at_start, live);
}
}
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
last_label_ruid = reload_combine_ruid = 0;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
{
reg_state[r].store_ruid = reload_combine_ruid;
if (fixed_regs[r])
reg_state[r].use_index = -1;
else
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
}
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
{
rtx note;
/* We cannot do our optimization across labels. Invalidating all the use
information we have would be costly, so we just note where the label
is and then later disable any optimization that would cross it. */
if (LABEL_P (insn))
last_label_ruid = reload_combine_ruid;
else if (BARRIER_P (insn))
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (! fixed_regs[r])
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
if (! INSN_P (insn))
continue;
reload_combine_ruid++;
/* Look for (set (REGX) (CONST_INT))
(set (REGX) (PLUS (REGX) (REGY)))
...
... (MEM (REGX)) ...
and convert it to
(set (REGZ) (CONST_INT))
...
... (MEM (PLUS (REGZ) (REGY)))... .
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
and that we know all uses of REGX before it dies.
Also, explicitly check that REGX != REGY; our life information
does not yet show whether REGY changes in this insn. */
set = single_set (insn);
if (set != NULL_RTX
&& REG_P (SET_DEST (set))
&& (hard_regno_nregs[REGNO (SET_DEST (set))]
[GET_MODE (SET_DEST (set))]
== 1)
&& GET_CODE (SET_SRC (set)) == PLUS
&& REG_P (XEXP (SET_SRC (set), 1))
&& rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
&& !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
&& last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
{
rtx reg = SET_DEST (set);
rtx plus = SET_SRC (set);
rtx base = XEXP (plus, 1);
rtx prev = prev_nonnote_insn (insn);
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
unsigned int regno = REGNO (reg);
rtx const_reg = NULL_RTX;
rtx reg_sum = NULL_RTX;
/* Now, we need an index register.
We'll set index_reg to this index register, const_reg to the
register that is to be loaded with the constant
(denoted as REGZ in the substitution illustration above),
and reg_sum to the register-register that we want to use to
substitute uses of REG (typically in MEMs) with.
First check REG and BASE for being index registers;
we can use them even if they are not dead. */
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
REGNO (base)))
{
const_reg = reg;
reg_sum = plus;
}
else
{
/* Otherwise, look for a free index register. Since we have
checked above that neither REG nor BASE are index registers,
if we find anything at all, it will be different from these
two registers. */
for (i = first_index_reg; i <= last_index_reg; i++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
i)
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
&& hard_regno_nregs[i][GET_MODE (reg)] == 1)
{
rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
const_reg = index_reg;
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
break;
}
}
}
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
(REGY), i.e. BASE, is not clobbered before the last use we'll
create. */
if (prev_set != 0
&& GET_CODE (SET_SRC (prev_set)) == CONST_INT
&& rtx_equal_p (SET_DEST (prev_set), reg)
&& reg_state[regno].use_index >= 0
&& (reg_state[REGNO (base)].store_ruid
<= reg_state[regno].use_ruid)
&& reg_sum != 0)
{
int i;
/* Change destination register and, if necessary, the
constant value in PREV, the constant loading instruction. */
validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
if (reg_state[regno].offset != const0_rtx)
validate_change (prev,
&SET_SRC (prev_set),
GEN_INT (INTVAL (SET_SRC (prev_set))
+ INTVAL (reg_state[regno].offset)),
1);
/* Now for every use of REG that we have recorded, replace REG
with REG_SUM. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
validate_change (reg_state[regno].reg_use[i].insn,
reg_state[regno].reg_use[i].usep,
/* Each change must have its own
replacement. */
copy_rtx (reg_sum), 1);
if (apply_change_group ())
{
rtx *np;
/* Delete the reg-reg addition. */
delete_insn (insn);
if (reg_state[regno].offset != const0_rtx)
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
are now invalid. */
for (np = ®_NOTES (prev); *np;)
{
if (REG_NOTE_KIND (*np) == REG_EQUAL
|| REG_NOTE_KIND (*np) == REG_EQUIV)
*np = XEXP (*np, 1);
else
np = &XEXP (*np, 1);
}
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[REGNO (const_reg)].store_ruid
= reload_combine_ruid;
continue;
}
}
}
note_stores (PATTERN (insn), reload_combine_note_store, NULL);
if (CALL_P (insn))
{
rtx link;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (call_used_regs[r])
{
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[r].store_ruid = reload_combine_ruid;
}
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx usage_rtx = XEXP (XEXP (link, 0), 0);
if (REG_P (usage_rtx))
{
unsigned int i;
unsigned int start_reg = REGNO (usage_rtx);
unsigned int num_regs =
hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
unsigned int end_reg = start_reg + num_regs - 1;
for (i = start_reg; i <= end_reg; i++)
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
{
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[i].store_ruid = reload_combine_ruid;
}
else
reg_state[i].use_index = -1;
}
}
}
else if (JUMP_P (insn)
&& GET_CODE (PATTERN (insn)) != RETURN)
{
/* Non-spill registers might be used at the call destination in
some unknown fashion, so we have to mark the unknown use. */
HARD_REG_SET *live;
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
&& JUMP_LABEL (insn))
live = &LABEL_LIVE (JUMP_LABEL (insn));
else
live = &ever_live_at_start;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
if (TEST_HARD_REG_BIT (*live, i))
reg_state[i].use_index = -1;
}
reload_combine_note_use (&PATTERN (insn), insn);
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& REG_P (XEXP (note, 0)))
{
int regno = REGNO (XEXP (note, 0));
reg_state[regno].store_ruid = reload_combine_ruid;
reg_state[regno].use_index = -1;
}
}
}
free (label_live);
}
/* Check if DST is a register or a subreg of a register; if it is,
update reg_state[regno].store_ruid and reg_state[regno].use_index
accordingly. Called via note_stores from reload_combine. */
static void
reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
{
int regno = 0;
int i;
enum machine_mode mode = GET_MODE (dst);
if (GET_CODE (dst) == SUBREG)
{
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
GET_MODE (SUBREG_REG (dst)),
SUBREG_BYTE (dst),
GET_MODE (dst));
dst = SUBREG_REG (dst);
}
if (!REG_P (dst))
return;
regno += REGNO (dst);
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
careful with registers / register parts that are not full words.
Similarly for ZERO_EXTRACT. */
if (GET_CODE (set) != SET
|| GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
{
for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
{
reg_state[i].use_index = -1;
reg_state[i].store_ruid = reload_combine_ruid;
}
}
else
{
for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
{
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
}
}
/* XP points to a piece of rtl that has to be checked for any uses of
registers.
*XP is the pattern of INSN, or a part of it.
Called from reload_combine, and recursively by itself. */
static void
reload_combine_note_use (rtx *xp, rtx insn)
{
rtx x = *xp;
enum rtx_code code = x->code;
const char *fmt;
int i, j;
rtx offset = const0_rtx; /* For the REG case below. */
switch (code)
{
case SET:
if (REG_P (SET_DEST (x)))
{
reload_combine_note_use (&SET_SRC (x), insn);
return;
}
break;
case USE:
/* If this is the USE of a return value, we can't change it. */
if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
{
/* Mark the return register as used in an unknown fashion. */
rtx reg = XEXP (x, 0);
int regno = REGNO (reg);
int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
while (--nregs >= 0)
reg_state[regno + nregs].use_index = -1;
return;
}
break;
case CLOBBER:
if (REG_P (SET_DEST (x)))
{
/* No spurious CLOBBERs of pseudo registers may remain. */
gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
return;
}
break;
case PLUS:
/* We are interested in (plus (reg) (const_int)) . */
if (!REG_P (XEXP (x, 0))
|| GET_CODE (XEXP (x, 1)) != CONST_INT)
break;
offset = XEXP (x, 1);
x = XEXP (x, 0);
/* Fall through. */
case REG:
{
int regno = REGNO (x);
int use_index;
int nregs;
/* No spurious USEs of pseudo registers may remain. */
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
nregs = hard_regno_nregs[regno][GET_MODE (x)];
/* We can't substitute into multi-hard-reg uses. */
if (nregs > 1)
{
while (--nregs >= 0)
reg_state[regno + nregs].use_index = -1;
return;
}
/* If this register is already used in some unknown fashion, we
can't do anything.
If we decrement the index from zero to -1, we can't store more
uses, so this register becomes used in an unknown fashion. */
use_index = --reg_state[regno].use_index;
if (use_index < 0)
return;
if (use_index != RELOAD_COMBINE_MAX_USES - 1)
{
/* We have found another use for a register that is already
used later. Check if the offsets match; if not, mark the
register as used in an unknown fashion. */
if (! rtx_equal_p (offset, reg_state[regno].offset))
{
reg_state[regno].use_index = -1;
return;
}
}
else
{
/* This is the first use of this register we have seen since we
marked it as dead. */
reg_state[regno].offset = offset;
reg_state[regno].use_ruid = reload_combine_ruid;
}
reg_state[regno].reg_use[use_index].insn = insn;
reg_state[regno].reg_use[use_index].usep = xp;
return;
}
default:
break;
}
/* Recursively process the components of X. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
reload_combine_note_use (&XEXP (x, i), insn);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
reload_combine_note_use (&XVECEXP (x, i, j), insn);
}
}
}
/* See if we can reduce the cost of a constant by replacing a move
with an add. We track situations in which a register is set to a
constant or to a register plus a constant. */
/* We cannot do our optimization across labels. Invalidating all the
information about register contents we have would be costly, so we
use move2add_last_label_luid to note where the label is and then
later disable any optimization that would cross it.
reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
reg_set_luid[n] is greater than move2add_last_label_luid. */
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
/* If reg_base_reg[n] is negative, register n has been set to
reg_offset[n] in mode reg_mode[n] .
If reg_base_reg[n] is non-negative, register n has been set to the
sum of reg_offset[n] and the value of register reg_base_reg[n]
before reg_set_luid[n], calculated in mode reg_mode[n] . */
static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
/* move2add_luid is linearly increased while scanning the instructions
from first to last. It is used to set reg_set_luid in
reload_cse_move2add and move2add_note_store. */
static int move2add_luid;
/* move2add_last_label_luid is set whenever a label is found. Labels
invalidate all previously collected reg_offset data. */
static int move2add_last_label_luid;
/* ??? We don't know how zero / sign extension is handled, hence we
can't go from a narrower to a wider mode. */
#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
(GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
|| (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
GET_MODE_BITSIZE (INMODE))))
static void
reload_cse_move2add (rtx first)
{
int i;
rtx insn;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
reg_set_luid[i] = 0;
move2add_last_label_luid = 0;
move2add_luid = 2;
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
{
rtx pat, note;
if (LABEL_P (insn))
{
move2add_last_label_luid = move2add_luid;
/* We're going to increment move2add_luid twice after a
label, so that we can use move2add_last_label_luid + 1 as
the luid for constants. */
move2add_luid++;
continue;
}
if (! INSN_P (insn))
continue;
pat = PATTERN (insn);
/* For simplicity, we only perform this optimization on
straightforward SETs. */
if (GET_CODE (pat) == SET
&& REG_P (SET_DEST (pat)))
{
rtx reg = SET_DEST (pat);
int regno = REGNO (reg);
rtx src = SET_SRC (pat);
/* Check if we have valid information on the contents of this
register in the mode of REG. */
if (reg_set_luid[regno] > move2add_last_label_luid
&& MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
{
/* Try to transform (set (REGX) (CONST_INT A))
...
(set (REGX) (CONST_INT B))
to
(set (REGX) (CONST_INT A))
...
(set (REGX) (plus (REGX) (CONST_INT B-A)))
or
(set (REGX) (CONST_INT A))
...
(set (STRICT_LOW_PART (REGX)) (CONST_INT B))
*/
if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
{
rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
GET_MODE (reg));
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knows how to get rid of
no-op moves. */
if (new_src == const0_rtx)
{
/* If the constants are different, this is a
truncation, that, if turned into (set (reg)
(reg)), would be discarded. Maybe we should
try a truncMN pattern? */
if (INTVAL (src) == reg_offset [regno])
validate_change (insn, &SET_SRC (pat), reg, 0);
}
else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
&& have_add2_insn (reg, new_src))
{
rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
validate_change (insn, &SET_SRC (pat), tem, 0);
}
else if (GET_MODE (reg) != BImode)
{
enum machine_mode narrow_mode;
for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
narrow_mode != VOIDmode
&& narrow_mode != GET_MODE (reg);
narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
{
if (have_insn_for (STRICT_LOW_PART, narrow_mode)
&& ((reg_offset[regno]
& ~GET_MODE_MASK (narrow_mode))
== (INTVAL (src)
& ~GET_MODE_MASK (narrow_mode))))
{
rtx narrow_reg = gen_rtx_REG (narrow_mode,
REGNO (reg));
rtx narrow_src = gen_int_mode (INTVAL (src),
narrow_mode);
rtx new_set =
gen_rtx_SET (VOIDmode,
gen_rtx_STRICT_LOW_PART (VOIDmode,
narrow_reg),
narrow_src);
if (validate_change (insn, &PATTERN (insn),
new_set, 0))
break;
}
}
}
reg_set_luid[regno] = move2add_luid;
reg_mode[regno] = GET_MODE (reg);
reg_offset[regno] = INTVAL (src);
continue;
}
/* Try to transform (set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT B)))
to
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
else if (REG_P (src)
&& reg_set_luid[regno] == reg_set_luid[REGNO (src)]
&& reg_base_reg[regno] == reg_base_reg[REGNO (src)]
&& MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
reg_mode[REGNO (src)]))
{
rtx next = next_nonnote_insn (insn);
rtx set = NULL_RTX;
if (next)
set = single_set (next);
if (set
&& SET_DEST (set) == reg
&& GET_CODE (SET_SRC (set)) == PLUS
&& XEXP (SET_SRC (set), 0) == reg
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
{
rtx src3 = XEXP (SET_SRC (set), 1);
HOST_WIDE_INT added_offset = INTVAL (src3);
HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
HOST_WIDE_INT regno_offset = reg_offset[regno];
rtx new_src =
gen_int_mode (added_offset
+ base_offset
- regno_offset,
GET_MODE (reg));
int success = 0;
if (new_src == const0_rtx)
/* See above why we create (set (reg) (reg)) here. */
success
= validate_change (next, &SET_SRC (set), reg, 0);
else if ((rtx_cost (new_src, PLUS)
< COSTS_N_INSNS (1) + rtx_cost (src3, SET))
&& have_add2_insn (reg, new_src))
{
rtx newpat = gen_rtx_SET (VOIDmode,
reg,
gen_rtx_PLUS (GET_MODE (reg),
reg,
new_src));
success
= validate_change (next, &PATTERN (next),
newpat, 0);
}
if (success)
delete_insn (insn);
insn = next;
reg_mode[regno] = GET_MODE (reg);
reg_offset[regno] =
trunc_int_for_mode (added_offset + base_offset,
GET_MODE (reg));
continue;
}
}
}
}
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& REG_P (XEXP (note, 0)))
{
/* Reset the information about this register. */
int regno = REGNO (XEXP (note, 0));
if (regno < FIRST_PSEUDO_REGISTER)
reg_set_luid[regno] = 0;
}
}
note_stores (PATTERN (insn), move2add_note_store, NULL);
/* If INSN is a conditional branch, we try to extract an
implicit set out of it. */
if (any_condjump_p (insn))
{
rtx cnd = fis_get_condition (insn);
if (cnd != NULL_RTX
&& GET_CODE (cnd) == NE
&& REG_P (XEXP (cnd, 0))
&& !reg_set_p (XEXP (cnd, 0), insn)
/* The following two checks, which are also in
move2add_note_store, are intended to reduce the
number of calls to gen_rtx_SET to avoid memory
allocation if possible. */
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
&& hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
&& GET_CODE (XEXP (cnd, 1)) == CONST_INT)
{
rtx implicit_set =
gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
}
}
/* If this is a CALL_INSN, all call used registers are stored with
unknown values. */
if (CALL_P (insn))
{
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
{
if (call_used_regs[i])
/* Reset the information about this register. */
reg_set_luid[i] = 0;
}
}
}
}
/* SET is a SET or CLOBBER that sets DST.
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
Called from reload_cse_move2add via note_stores. */
static void
move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
{
unsigned int regno = 0;
unsigned int i;
enum machine_mode mode = GET_MODE (dst);
if (GET_CODE (dst) == SUBREG)
{
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
GET_MODE (SUBREG_REG (dst)),
SUBREG_BYTE (dst),
GET_MODE (dst));
dst = SUBREG_REG (dst);
}
/* Some targets do argument pushes without adding REG_INC notes. */
if (MEM_P (dst))
{
dst = XEXP (dst, 0);
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
return;
}
if (!REG_P (dst))
return;
regno += REGNO (dst);
if (SCALAR_INT_MODE_P (GET_MODE (dst))
&& hard_regno_nregs[regno][mode] == 1 && GET_CODE (set) == SET
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
{
rtx src = SET_SRC (set);
rtx base_reg;
HOST_WIDE_INT offset;
int base_regno;
/* This may be different from mode, if SET_DEST (set) is a
SUBREG. */
enum machine_mode dst_mode = GET_MODE (dst);
switch (GET_CODE (src))
{
case PLUS:
if (REG_P (XEXP (src, 0)))
{
base_reg = XEXP (src, 0);
if (GET_CODE (XEXP (src, 1)) == CONST_INT)
offset = INTVAL (XEXP (src, 1));
else if (REG_P (XEXP (src, 1))
&& (reg_set_luid[REGNO (XEXP (src, 1))]
> move2add_last_label_luid)
&& (MODES_OK_FOR_MOVE2ADD
(dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
{
if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
offset = reg_offset[REGNO (XEXP (src, 1))];
/* Maybe the first register is known to be a
constant. */
else if (reg_set_luid[REGNO (base_reg)]
> move2add_last_label_luid
&& (MODES_OK_FOR_MOVE2ADD
(dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
&& reg_base_reg[REGNO (base_reg)] < 0)
{
offset = reg_offset[REGNO (base_reg)];
base_reg = XEXP (src, 1);
}
else
goto invalidate;
}
else
goto invalidate;
break;
}
goto invalidate;
case REG:
base_reg = src;
offset = 0;
break;
case CONST_INT:
/* Start tracking the register as a constant. */
reg_base_reg[regno] = -1;
reg_offset[regno] = INTVAL (SET_SRC (set));
/* We assign the same luid to all registers set to constants. */
reg_set_luid[regno] = move2add_last_label_luid + 1;
reg_mode[regno] = mode;
return;
default:
invalidate:
/* Invalidate the contents of the register. */
reg_set_luid[regno] = 0;
return;
}
base_regno = REGNO (base_reg);
/* If information about the base register is not valid, set it
up as a new base register, pretending its value is known
starting from the current insn. */
if (reg_set_luid[base_regno] <= move2add_last_label_luid)
{
reg_base_reg[base_regno] = base_regno;
reg_offset[base_regno] = 0;
reg_set_luid[base_regno] = move2add_luid;
reg_mode[base_regno] = mode;
}
else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
reg_mode[base_regno]))
goto invalidate;
reg_mode[regno] = mode;
/* Copy base information from our base register. */
reg_set_luid[regno] = reg_set_luid[base_regno];
reg_base_reg[regno] = reg_base_reg[base_regno];
/* Compute the sum of the offsets or constants. */
reg_offset[regno] = trunc_int_for_mode (offset
+ reg_offset[base_regno],
dst_mode);
}
else
{
unsigned int endregno = regno + hard_regno_nregs[regno][mode];
for (i = regno; i < endregno; i++)
/* Reset the information about this register. */
reg_set_luid[i] = 0;
}
}
static bool
gate_handle_postreload (void)
{
return (optimize > 0);
}
static unsigned int
rest_of_handle_postreload (void)
{
/* Do a very simple CSE pass over just the hard registers. */
reload_cse_regs (get_insns ());
/* reload_cse_regs can eliminate potentially-trapping MEMs.
Remove any EH edges associated with them. */
if (flag_non_call_exceptions)
purge_all_dead_edges ();
return 0;
}
struct tree_opt_pass pass_postreload_cse =
{
"postreload", /* name */
gate_handle_postreload, /* gate */
rest_of_handle_postreload, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_RELOAD_CSE_REGS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
'o' /* letter */
};
|