1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
|
/* Control flow functions for trees.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "ggc.h"
#include "langhooks.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "toplev.h"
#include "except.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "hashtab.h"
#include "tree-ssa-propagate.h"
/* This file contains functions for building the Control Flow Graph (CFG)
for a function tree. */
/* Local declarations. */
/* Initial capacity for the basic block array. */
static const int initial_cfg_capacity = 20;
/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
which use a particular edge. The CASE_LABEL_EXPRs are chained together
via their TREE_CHAIN field, which we clear after we're done with the
hash table to prevent problems with duplication of SWITCH_EXPRs.
Access to this list of CASE_LABEL_EXPRs allows us to efficiently
update the case vector in response to edge redirections.
Right now this table is set up and torn down at key points in the
compilation process. It would be nice if we could make the table
more persistent. The key is getting notification of changes to
the CFG (particularly edge removal, creation and redirection). */
struct edge_to_cases_elt
{
/* The edge itself. Necessary for hashing and equality tests. */
edge e;
/* The case labels associated with this edge. We link these up via
their TREE_CHAIN field, then we wipe out the TREE_CHAIN fields
when we destroy the hash table. This prevents problems when copying
SWITCH_EXPRs. */
tree case_labels;
};
static htab_t edge_to_cases;
/* CFG statistics. */
struct cfg_stats_d
{
long num_merged_labels;
};
static struct cfg_stats_d cfg_stats;
/* Nonzero if we found a computed goto while building basic blocks. */
static bool found_computed_goto;
/* Basic blocks and flowgraphs. */
static basic_block create_bb (void *, void *, basic_block);
static void make_blocks (tree);
static void factor_computed_gotos (void);
/* Edges. */
static void make_edges (void);
static void make_cond_expr_edges (basic_block);
static void make_switch_expr_edges (basic_block);
static void make_goto_expr_edges (basic_block);
static edge tree_redirect_edge_and_branch (edge, basic_block);
static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
static unsigned int split_critical_edges (void);
/* Various helpers. */
static inline bool stmt_starts_bb_p (tree, tree);
static int tree_verify_flow_info (void);
static void tree_make_forwarder_block (edge);
static void tree_cfg2vcg (FILE *);
static inline void change_bb_for_stmt (tree t, basic_block bb);
/* Flowgraph optimization and cleanup. */
static void tree_merge_blocks (basic_block, basic_block);
static bool tree_can_merge_blocks_p (basic_block, basic_block);
static void remove_bb (basic_block);
static edge find_taken_edge_computed_goto (basic_block, tree);
static edge find_taken_edge_cond_expr (basic_block, tree);
static edge find_taken_edge_switch_expr (basic_block, tree);
static tree find_case_label_for_value (tree, tree);
void
init_empty_tree_cfg (void)
{
/* Initialize the basic block array. */
init_flow ();
profile_status = PROFILE_ABSENT;
n_basic_blocks = NUM_FIXED_BLOCKS;
last_basic_block = NUM_FIXED_BLOCKS;
basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
VEC_safe_grow (basic_block, gc, basic_block_info, initial_cfg_capacity);
memset (VEC_address (basic_block, basic_block_info), 0,
sizeof (basic_block) * initial_cfg_capacity);
/* Build a mapping of labels to their associated blocks. */
label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
VEC_safe_grow (basic_block, gc, label_to_block_map, initial_cfg_capacity);
memset (VEC_address (basic_block, label_to_block_map),
0, sizeof (basic_block) * initial_cfg_capacity);
SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
}
/*---------------------------------------------------------------------------
Create basic blocks
---------------------------------------------------------------------------*/
/* Entry point to the CFG builder for trees. TP points to the list of
statements to be added to the flowgraph. */
static void
build_tree_cfg (tree *tp)
{
/* Register specific tree functions. */
tree_register_cfg_hooks ();
memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
init_empty_tree_cfg ();
found_computed_goto = 0;
make_blocks (*tp);
/* Computed gotos are hell to deal with, especially if there are
lots of them with a large number of destinations. So we factor
them to a common computed goto location before we build the
edge list. After we convert back to normal form, we will un-factor
the computed gotos since factoring introduces an unwanted jump. */
if (found_computed_goto)
factor_computed_gotos ();
/* Make sure there is always at least one block, even if it's empty. */
if (n_basic_blocks == NUM_FIXED_BLOCKS)
create_empty_bb (ENTRY_BLOCK_PTR);
/* Adjust the size of the array. */
if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
{
size_t old_size = VEC_length (basic_block, basic_block_info);
basic_block *p;
VEC_safe_grow (basic_block, gc, basic_block_info, n_basic_blocks);
p = VEC_address (basic_block, basic_block_info);
memset (&p[old_size], 0,
sizeof (basic_block) * (n_basic_blocks - old_size));
}
/* To speed up statement iterator walks, we first purge dead labels. */
cleanup_dead_labels ();
/* Group case nodes to reduce the number of edges.
We do this after cleaning up dead labels because otherwise we miss
a lot of obvious case merging opportunities. */
group_case_labels ();
/* Create the edges of the flowgraph. */
make_edges ();
/* Debugging dumps. */
/* Write the flowgraph to a VCG file. */
{
int local_dump_flags;
FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
if (vcg_file)
{
tree_cfg2vcg (vcg_file);
dump_end (TDI_vcg, vcg_file);
}
}
#ifdef ENABLE_CHECKING
verify_stmts ();
#endif
/* Dump a textual representation of the flowgraph. */
if (dump_file)
dump_tree_cfg (dump_file, dump_flags);
}
static unsigned int
execute_build_cfg (void)
{
build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
return 0;
}
struct tree_opt_pass pass_build_cfg =
{
"cfg", /* name */
NULL, /* gate */
execute_build_cfg, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_CFG, /* tv_id */
PROP_gimple_leh, /* properties_required */
PROP_cfg, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_stmts, /* todo_flags_finish */
0 /* letter */
};
/* Search the CFG for any computed gotos. If found, factor them to a
common computed goto site. Also record the location of that site so
that we can un-factor the gotos after we have converted back to
normal form. */
static void
factor_computed_gotos (void)
{
basic_block bb;
tree factored_label_decl = NULL;
tree var = NULL;
tree factored_computed_goto_label = NULL;
tree factored_computed_goto = NULL;
/* We know there are one or more computed gotos in this function.
Examine the last statement in each basic block to see if the block
ends with a computed goto. */
FOR_EACH_BB (bb)
{
block_stmt_iterator bsi = bsi_last (bb);
tree last;
if (bsi_end_p (bsi))
continue;
last = bsi_stmt (bsi);
/* Ignore the computed goto we create when we factor the original
computed gotos. */
if (last == factored_computed_goto)
continue;
/* If the last statement is a computed goto, factor it. */
if (computed_goto_p (last))
{
tree assignment;
/* The first time we find a computed goto we need to create
the factored goto block and the variable each original
computed goto will use for their goto destination. */
if (! factored_computed_goto)
{
basic_block new_bb = create_empty_bb (bb);
block_stmt_iterator new_bsi = bsi_start (new_bb);
/* Create the destination of the factored goto. Each original
computed goto will put its desired destination into this
variable and jump to the label we create immediately
below. */
var = create_tmp_var (ptr_type_node, "gotovar");
/* Build a label for the new block which will contain the
factored computed goto. */
factored_label_decl = create_artificial_label ();
factored_computed_goto_label
= build1 (LABEL_EXPR, void_type_node, factored_label_decl);
bsi_insert_after (&new_bsi, factored_computed_goto_label,
BSI_NEW_STMT);
/* Build our new computed goto. */
factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
bsi_insert_after (&new_bsi, factored_computed_goto,
BSI_NEW_STMT);
}
/* Copy the original computed goto's destination into VAR. */
assignment = build2 (MODIFY_EXPR, ptr_type_node,
var, GOTO_DESTINATION (last));
bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
/* And re-vector the computed goto to the new destination. */
GOTO_DESTINATION (last) = factored_label_decl;
}
}
}
/* Build a flowgraph for the statement_list STMT_LIST. */
static void
make_blocks (tree stmt_list)
{
tree_stmt_iterator i = tsi_start (stmt_list);
tree stmt = NULL;
bool start_new_block = true;
bool first_stmt_of_list = true;
basic_block bb = ENTRY_BLOCK_PTR;
while (!tsi_end_p (i))
{
tree prev_stmt;
prev_stmt = stmt;
stmt = tsi_stmt (i);
/* If the statement starts a new basic block or if we have determined
in a previous pass that we need to create a new block for STMT, do
so now. */
if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
{
if (!first_stmt_of_list)
stmt_list = tsi_split_statement_list_before (&i);
bb = create_basic_block (stmt_list, NULL, bb);
start_new_block = false;
}
/* Now add STMT to BB and create the subgraphs for special statement
codes. */
set_bb_for_stmt (stmt, bb);
if (computed_goto_p (stmt))
found_computed_goto = true;
/* If STMT is a basic block terminator, set START_NEW_BLOCK for the
next iteration. */
if (stmt_ends_bb_p (stmt))
start_new_block = true;
tsi_next (&i);
first_stmt_of_list = false;
}
}
/* Create and return a new empty basic block after bb AFTER. */
static basic_block
create_bb (void *h, void *e, basic_block after)
{
basic_block bb;
gcc_assert (!e);
/* Create and initialize a new basic block. Since alloc_block uses
ggc_alloc_cleared to allocate a basic block, we do not have to
clear the newly allocated basic block here. */
bb = alloc_block ();
bb->index = last_basic_block;
bb->flags = BB_NEW;
bb->stmt_list = h ? (tree) h : alloc_stmt_list ();
/* Add the new block to the linked list of blocks. */
link_block (bb, after);
/* Grow the basic block array if needed. */
if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
{
size_t old_size = VEC_length (basic_block, basic_block_info);
size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
basic_block *p;
VEC_safe_grow (basic_block, gc, basic_block_info, new_size);
p = VEC_address (basic_block, basic_block_info);
memset (&p[old_size], 0, sizeof (basic_block) * (new_size - old_size));
}
/* Add the newly created block to the array. */
SET_BASIC_BLOCK (last_basic_block, bb);
n_basic_blocks++;
last_basic_block++;
return bb;
}
/*---------------------------------------------------------------------------
Edge creation
---------------------------------------------------------------------------*/
/* Fold COND_EXPR_COND of each COND_EXPR. */
void
fold_cond_expr_cond (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
tree stmt = last_stmt (bb);
if (stmt
&& TREE_CODE (stmt) == COND_EXPR)
{
tree cond;
bool zerop, onep;
fold_defer_overflow_warnings ();
cond = fold (COND_EXPR_COND (stmt));
zerop = integer_zerop (cond);
onep = integer_onep (cond);
fold_undefer_overflow_warnings (((zerop || onep)
&& !TREE_NO_WARNING (stmt)),
stmt,
WARN_STRICT_OVERFLOW_CONDITIONAL);
if (zerop)
COND_EXPR_COND (stmt) = boolean_false_node;
else if (onep)
COND_EXPR_COND (stmt) = boolean_true_node;
}
}
}
/* Join all the blocks in the flowgraph. */
static void
make_edges (void)
{
basic_block bb;
struct omp_region *cur_region = NULL;
/* Create an edge from entry to the first block with executable
statements in it. */
make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
/* Traverse the basic block array placing edges. */
FOR_EACH_BB (bb)
{
tree last = last_stmt (bb);
bool fallthru;
if (last)
{
enum tree_code code = TREE_CODE (last);
switch (code)
{
case GOTO_EXPR:
make_goto_expr_edges (bb);
fallthru = false;
break;
case RETURN_EXPR:
make_edge (bb, EXIT_BLOCK_PTR, 0);
fallthru = false;
break;
case COND_EXPR:
make_cond_expr_edges (bb);
fallthru = false;
break;
case SWITCH_EXPR:
make_switch_expr_edges (bb);
fallthru = false;
break;
case RESX_EXPR:
make_eh_edges (last);
fallthru = false;
break;
case CALL_EXPR:
/* If this function receives a nonlocal goto, then we need to
make edges from this call site to all the nonlocal goto
handlers. */
if (tree_can_make_abnormal_goto (last))
make_abnormal_goto_edges (bb, true);
/* If this statement has reachable exception handlers, then
create abnormal edges to them. */
make_eh_edges (last);
/* Some calls are known not to return. */
fallthru = !(call_expr_flags (last) & ECF_NORETURN);
break;
case MODIFY_EXPR:
if (is_ctrl_altering_stmt (last))
{
/* A MODIFY_EXPR may have a CALL_EXPR on its RHS and the
CALL_EXPR may have an abnormal edge. Search the RHS for
this case and create any required edges. */
if (tree_can_make_abnormal_goto (last))
make_abnormal_goto_edges (bb, true);
make_eh_edges (last);
}
fallthru = true;
break;
case OMP_PARALLEL:
case OMP_FOR:
case OMP_SINGLE:
case OMP_MASTER:
case OMP_ORDERED:
case OMP_CRITICAL:
case OMP_SECTION:
cur_region = new_omp_region (bb, code, cur_region);
fallthru = true;
break;
case OMP_SECTIONS:
cur_region = new_omp_region (bb, code, cur_region);
fallthru = false;
break;
case OMP_RETURN:
/* In the case of an OMP_SECTION, the edge will go somewhere
other than the next block. This will be created later. */
cur_region->exit = bb;
fallthru = cur_region->type != OMP_SECTION;
cur_region = cur_region->outer;
break;
case OMP_CONTINUE:
cur_region->cont = bb;
switch (cur_region->type)
{
case OMP_FOR:
/* ??? Technically there should be a some sort of loopback
edge here, but it goes to a block that doesn't exist yet,
and without it, updating the ssa form would be a real
bear. Fortunately, we don't yet do ssa before expanding
these nodes. */
break;
case OMP_SECTIONS:
/* Wire up the edges into and out of the nested sections. */
/* ??? Similarly wrt loopback. */
{
struct omp_region *i;
for (i = cur_region->inner; i ; i = i->next)
{
gcc_assert (i->type == OMP_SECTION);
make_edge (cur_region->entry, i->entry, 0);
make_edge (i->exit, bb, EDGE_FALLTHRU);
}
}
break;
default:
gcc_unreachable ();
}
fallthru = true;
break;
default:
gcc_assert (!stmt_ends_bb_p (last));
fallthru = true;
}
}
else
fallthru = true;
if (fallthru)
make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
}
if (root_omp_region)
free_omp_regions ();
/* Fold COND_EXPR_COND of each COND_EXPR. */
fold_cond_expr_cond ();
/* Clean up the graph and warn for unreachable code. */
cleanup_tree_cfg ();
}
/* Create the edges for a COND_EXPR starting at block BB.
At this point, both clauses must contain only simple gotos. */
static void
make_cond_expr_edges (basic_block bb)
{
tree entry = last_stmt (bb);
basic_block then_bb, else_bb;
tree then_label, else_label;
edge e;
gcc_assert (entry);
gcc_assert (TREE_CODE (entry) == COND_EXPR);
/* Entry basic blocks for each component. */
then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
then_bb = label_to_block (then_label);
else_bb = label_to_block (else_label);
e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
#ifdef USE_MAPPED_LOCATION
e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
#else
e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
#endif
e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
if (e)
{
#ifdef USE_MAPPED_LOCATION
e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
#else
e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
#endif
}
}
/* Hashing routine for EDGE_TO_CASES. */
static hashval_t
edge_to_cases_hash (const void *p)
{
edge e = ((struct edge_to_cases_elt *)p)->e;
/* Hash on the edge itself (which is a pointer). */
return htab_hash_pointer (e);
}
/* Equality routine for EDGE_TO_CASES, edges are unique, so testing
for equality is just a pointer comparison. */
static int
edge_to_cases_eq (const void *p1, const void *p2)
{
edge e1 = ((struct edge_to_cases_elt *)p1)->e;
edge e2 = ((struct edge_to_cases_elt *)p2)->e;
return e1 == e2;
}
/* Called for each element in the hash table (P) as we delete the
edge to cases hash table.
Clear all the TREE_CHAINs to prevent problems with copying of
SWITCH_EXPRs and structure sharing rules, then free the hash table
element. */
static void
edge_to_cases_cleanup (void *p)
{
struct edge_to_cases_elt *elt = (struct edge_to_cases_elt *) p;
tree t, next;
for (t = elt->case_labels; t; t = next)
{
next = TREE_CHAIN (t);
TREE_CHAIN (t) = NULL;
}
free (p);
}
/* Start recording information mapping edges to case labels. */
void
start_recording_case_labels (void)
{
gcc_assert (edge_to_cases == NULL);
edge_to_cases = htab_create (37,
edge_to_cases_hash,
edge_to_cases_eq,
edge_to_cases_cleanup);
}
/* Return nonzero if we are recording information for case labels. */
static bool
recording_case_labels_p (void)
{
return (edge_to_cases != NULL);
}
/* Stop recording information mapping edges to case labels and
remove any information we have recorded. */
void
end_recording_case_labels (void)
{
htab_delete (edge_to_cases);
edge_to_cases = NULL;
}
/* Record that CASE_LABEL (a CASE_LABEL_EXPR) references edge E. */
static void
record_switch_edge (edge e, tree case_label)
{
struct edge_to_cases_elt *elt;
void **slot;
/* Build a hash table element so we can see if E is already
in the table. */
elt = XNEW (struct edge_to_cases_elt);
elt->e = e;
elt->case_labels = case_label;
slot = htab_find_slot (edge_to_cases, elt, INSERT);
if (*slot == NULL)
{
/* E was not in the hash table. Install E into the hash table. */
*slot = (void *)elt;
}
else
{
/* E was already in the hash table. Free ELT as we do not need it
anymore. */
free (elt);
/* Get the entry stored in the hash table. */
elt = (struct edge_to_cases_elt *) *slot;
/* Add it to the chain of CASE_LABEL_EXPRs referencing E. */
TREE_CHAIN (case_label) = elt->case_labels;
elt->case_labels = case_label;
}
}
/* If we are inside a {start,end}_recording_cases block, then return
a chain of CASE_LABEL_EXPRs from T which reference E.
Otherwise return NULL. */
static tree
get_cases_for_edge (edge e, tree t)
{
struct edge_to_cases_elt elt, *elt_p;
void **slot;
size_t i, n;
tree vec;
/* If we are not recording cases, then we do not have CASE_LABEL_EXPR
chains available. Return NULL so the caller can detect this case. */
if (!recording_case_labels_p ())
return NULL;
restart:
elt.e = e;
elt.case_labels = NULL;
slot = htab_find_slot (edge_to_cases, &elt, NO_INSERT);
if (slot)
{
elt_p = (struct edge_to_cases_elt *)*slot;
return elt_p->case_labels;
}
/* If we did not find E in the hash table, then this must be the first
time we have been queried for information about E & T. Add all the
elements from T to the hash table then perform the query again. */
vec = SWITCH_LABELS (t);
n = TREE_VEC_LENGTH (vec);
for (i = 0; i < n; i++)
{
tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
basic_block label_bb = label_to_block (lab);
record_switch_edge (find_edge (e->src, label_bb), TREE_VEC_ELT (vec, i));
}
goto restart;
}
/* Create the edges for a SWITCH_EXPR starting at block BB.
At this point, the switch body has been lowered and the
SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
static void
make_switch_expr_edges (basic_block bb)
{
tree entry = last_stmt (bb);
size_t i, n;
tree vec;
vec = SWITCH_LABELS (entry);
n = TREE_VEC_LENGTH (vec);
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
basic_block label_bb = label_to_block (lab);
make_edge (bb, label_bb, 0);
}
}
/* Return the basic block holding label DEST. */
basic_block
label_to_block_fn (struct function *ifun, tree dest)
{
int uid = LABEL_DECL_UID (dest);
/* We would die hard when faced by an undefined label. Emit a label to
the very first basic block. This will hopefully make even the dataflow
and undefined variable warnings quite right. */
if ((errorcount || sorrycount) && uid < 0)
{
block_stmt_iterator bsi =
bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
tree stmt;
stmt = build1 (LABEL_EXPR, void_type_node, dest);
bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
uid = LABEL_DECL_UID (dest);
}
if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
<= (unsigned int) uid)
return NULL;
return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
}
/* Create edges for an abnormal goto statement at block BB. If FOR_CALL
is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
void
make_abnormal_goto_edges (basic_block bb, bool for_call)
{
basic_block target_bb;
block_stmt_iterator bsi;
FOR_EACH_BB (target_bb)
for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
tree target = bsi_stmt (bsi);
if (TREE_CODE (target) != LABEL_EXPR)
break;
target = LABEL_EXPR_LABEL (target);
/* Make an edge to every label block that has been marked as a
potential target for a computed goto or a non-local goto. */
if ((FORCED_LABEL (target) && !for_call)
|| (DECL_NONLOCAL (target) && for_call))
{
make_edge (bb, target_bb, EDGE_ABNORMAL);
break;
}
}
}
/* Create edges for a goto statement at block BB. */
static void
make_goto_expr_edges (basic_block bb)
{
block_stmt_iterator last = bsi_last (bb);
tree goto_t = bsi_stmt (last);
/* A simple GOTO creates normal edges. */
if (simple_goto_p (goto_t))
{
tree dest = GOTO_DESTINATION (goto_t);
edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
#ifdef USE_MAPPED_LOCATION
e->goto_locus = EXPR_LOCATION (goto_t);
#else
e->goto_locus = EXPR_LOCUS (goto_t);
#endif
bsi_remove (&last, true);
return;
}
/* A computed GOTO creates abnormal edges. */
make_abnormal_goto_edges (bb, false);
}
/*---------------------------------------------------------------------------
Flowgraph analysis
---------------------------------------------------------------------------*/
/* Cleanup useless labels in basic blocks. This is something we wish
to do early because it allows us to group case labels before creating
the edges for the CFG, and it speeds up block statement iterators in
all passes later on.
We only run this pass once, running it more than once is probably not
profitable. */
/* A map from basic block index to the leading label of that block. */
static tree *label_for_bb;
/* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
static void
update_eh_label (struct eh_region *region)
{
tree old_label = get_eh_region_tree_label (region);
if (old_label)
{
tree new_label;
basic_block bb = label_to_block (old_label);
/* ??? After optimizing, there may be EH regions with labels
that have already been removed from the function body, so
there is no basic block for them. */
if (! bb)
return;
new_label = label_for_bb[bb->index];
set_eh_region_tree_label (region, new_label);
}
}
/* Given LABEL return the first label in the same basic block. */
static tree
main_block_label (tree label)
{
basic_block bb = label_to_block (label);
/* label_to_block possibly inserted undefined label into the chain. */
if (!label_for_bb[bb->index])
label_for_bb[bb->index] = label;
return label_for_bb[bb->index];
}
/* Cleanup redundant labels. This is a three-step process:
1) Find the leading label for each block.
2) Redirect all references to labels to the leading labels.
3) Cleanup all useless labels. */
void
cleanup_dead_labels (void)
{
basic_block bb;
label_for_bb = XCNEWVEC (tree, last_basic_block);
/* Find a suitable label for each block. We use the first user-defined
label if there is one, or otherwise just the first label we see. */
FOR_EACH_BB (bb)
{
block_stmt_iterator i;
for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
{
tree label, stmt = bsi_stmt (i);
if (TREE_CODE (stmt) != LABEL_EXPR)
break;
label = LABEL_EXPR_LABEL (stmt);
/* If we have not yet seen a label for the current block,
remember this one and see if there are more labels. */
if (! label_for_bb[bb->index])
{
label_for_bb[bb->index] = label;
continue;
}
/* If we did see a label for the current block already, but it
is an artificially created label, replace it if the current
label is a user defined label. */
if (! DECL_ARTIFICIAL (label)
&& DECL_ARTIFICIAL (label_for_bb[bb->index]))
{
label_for_bb[bb->index] = label;
break;
}
}
}
/* Now redirect all jumps/branches to the selected label.
First do so for each block ending in a control statement. */
FOR_EACH_BB (bb)
{
tree stmt = last_stmt (bb);
if (!stmt)
continue;
switch (TREE_CODE (stmt))
{
case COND_EXPR:
{
tree true_branch, false_branch;
true_branch = COND_EXPR_THEN (stmt);
false_branch = COND_EXPR_ELSE (stmt);
GOTO_DESTINATION (true_branch)
= main_block_label (GOTO_DESTINATION (true_branch));
GOTO_DESTINATION (false_branch)
= main_block_label (GOTO_DESTINATION (false_branch));
break;
}
case SWITCH_EXPR:
{
size_t i;
tree vec = SWITCH_LABELS (stmt);
size_t n = TREE_VEC_LENGTH (vec);
/* Replace all destination labels. */
for (i = 0; i < n; ++i)
{
tree elt = TREE_VEC_ELT (vec, i);
tree label = main_block_label (CASE_LABEL (elt));
CASE_LABEL (elt) = label;
}
break;
}
/* We have to handle GOTO_EXPRs until they're removed, and we don't
remove them until after we've created the CFG edges. */
case GOTO_EXPR:
if (! computed_goto_p (stmt))
{
GOTO_DESTINATION (stmt)
= main_block_label (GOTO_DESTINATION (stmt));
break;
}
default:
break;
}
}
for_each_eh_region (update_eh_label);
/* Finally, purge dead labels. All user-defined labels and labels that
can be the target of non-local gotos and labels which have their
address taken are preserved. */
FOR_EACH_BB (bb)
{
block_stmt_iterator i;
tree label_for_this_bb = label_for_bb[bb->index];
if (! label_for_this_bb)
continue;
for (i = bsi_start (bb); !bsi_end_p (i); )
{
tree label, stmt = bsi_stmt (i);
if (TREE_CODE (stmt) != LABEL_EXPR)
break;
label = LABEL_EXPR_LABEL (stmt);
if (label == label_for_this_bb
|| ! DECL_ARTIFICIAL (label)
|| DECL_NONLOCAL (label)
|| FORCED_LABEL (label))
bsi_next (&i);
else
bsi_remove (&i, true);
}
}
free (label_for_bb);
}
/* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
and scan the sorted vector of cases. Combine the ones jumping to the
same label.
Eg. three separate entries 1: 2: 3: become one entry 1..3: */
void
group_case_labels (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
tree stmt = last_stmt (bb);
if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
{
tree labels = SWITCH_LABELS (stmt);
int old_size = TREE_VEC_LENGTH (labels);
int i, j, new_size = old_size;
tree default_case = TREE_VEC_ELT (labels, old_size - 1);
tree default_label;
/* The default label is always the last case in a switch
statement after gimplification. */
default_label = CASE_LABEL (default_case);
/* Look for possible opportunities to merge cases.
Ignore the last element of the label vector because it
must be the default case. */
i = 0;
while (i < old_size - 1)
{
tree base_case, base_label, base_high;
base_case = TREE_VEC_ELT (labels, i);
gcc_assert (base_case);
base_label = CASE_LABEL (base_case);
/* Discard cases that have the same destination as the
default case. */
if (base_label == default_label)
{
TREE_VEC_ELT (labels, i) = NULL_TREE;
i++;
new_size--;
continue;
}
base_high = CASE_HIGH (base_case) ?
CASE_HIGH (base_case) : CASE_LOW (base_case);
i++;
/* Try to merge case labels. Break out when we reach the end
of the label vector or when we cannot merge the next case
label with the current one. */
while (i < old_size - 1)
{
tree merge_case = TREE_VEC_ELT (labels, i);
tree merge_label = CASE_LABEL (merge_case);
tree t = int_const_binop (PLUS_EXPR, base_high,
integer_one_node, 1);
/* Merge the cases if they jump to the same place,
and their ranges are consecutive. */
if (merge_label == base_label
&& tree_int_cst_equal (CASE_LOW (merge_case), t))
{
base_high = CASE_HIGH (merge_case) ?
CASE_HIGH (merge_case) : CASE_LOW (merge_case);
CASE_HIGH (base_case) = base_high;
TREE_VEC_ELT (labels, i) = NULL_TREE;
new_size--;
i++;
}
else
break;
}
}
/* Compress the case labels in the label vector, and adjust the
length of the vector. */
for (i = 0, j = 0; i < new_size; i++)
{
while (! TREE_VEC_ELT (labels, j))
j++;
TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
}
TREE_VEC_LENGTH (labels) = new_size;
}
}
}
/* Checks whether we can merge block B into block A. */
static bool
tree_can_merge_blocks_p (basic_block a, basic_block b)
{
tree stmt;
block_stmt_iterator bsi;
tree phi;
if (!single_succ_p (a))
return false;
if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
return false;
if (single_succ (a) != b)
return false;
if (!single_pred_p (b))
return false;
if (b == EXIT_BLOCK_PTR)
return false;
/* If A ends by a statement causing exceptions or something similar, we
cannot merge the blocks. */
stmt = last_stmt (a);
if (stmt && stmt_ends_bb_p (stmt))
return false;
/* Do not allow a block with only a non-local label to be merged. */
if (stmt && TREE_CODE (stmt) == LABEL_EXPR
&& DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
return false;
/* It must be possible to eliminate all phi nodes in B. If ssa form
is not up-to-date, we cannot eliminate any phis. */
phi = phi_nodes (b);
if (phi)
{
if (need_ssa_update_p ())
return false;
for (; phi; phi = PHI_CHAIN (phi))
if (!is_gimple_reg (PHI_RESULT (phi))
&& !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
return false;
}
/* Do not remove user labels. */
for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) != LABEL_EXPR)
break;
if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
return false;
}
/* Protect the loop latches. */
if (current_loops
&& b->loop_father->latch == b)
return false;
return true;
}
/* Replaces all uses of NAME by VAL. */
void
replace_uses_by (tree name, tree val)
{
imm_use_iterator imm_iter;
use_operand_p use;
tree stmt;
edge e;
unsigned i;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
{
FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
{
replace_exp (use, val);
if (TREE_CODE (stmt) == PHI_NODE)
{
e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
if (e->flags & EDGE_ABNORMAL)
{
/* This can only occur for virtual operands, since
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
would prevent replacement. */
gcc_assert (!is_gimple_reg (name));
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
}
}
}
if (TREE_CODE (stmt) != PHI_NODE)
{
tree rhs;
fold_stmt_inplace (stmt);
rhs = get_rhs (stmt);
if (TREE_CODE (rhs) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (rhs);
maybe_clean_or_replace_eh_stmt (stmt, stmt);
mark_new_vars_to_rename (stmt);
}
}
gcc_assert (num_imm_uses (name) == 0);
/* Also update the trees stored in loop structures. */
if (current_loops)
{
struct loop *loop;
for (i = 0; i < current_loops->num; i++)
{
loop = current_loops->parray[i];
if (loop)
substitute_in_loop_info (loop, name, val);
}
}
}
/* Merge block B into block A. */
static void
tree_merge_blocks (basic_block a, basic_block b)
{
block_stmt_iterator bsi;
tree_stmt_iterator last;
tree phi;
if (dump_file)
fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
/* Remove all single-valued PHI nodes from block B of the form
V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
bsi = bsi_last (a);
for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
{
tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
tree copy;
bool may_replace_uses = may_propagate_copy (def, use);
/* In case we have loops to care about, do not propagate arguments of
loop closed ssa phi nodes. */
if (current_loops
&& is_gimple_reg (def)
&& TREE_CODE (use) == SSA_NAME
&& a->loop_father != b->loop_father)
may_replace_uses = false;
if (!may_replace_uses)
{
gcc_assert (is_gimple_reg (def));
/* Note that just emitting the copies is fine -- there is no problem
with ordering of phi nodes. This is because A is the single
predecessor of B, therefore results of the phi nodes cannot
appear as arguments of the phi nodes. */
copy = build2 (MODIFY_EXPR, void_type_node, def, use);
bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
SET_PHI_RESULT (phi, NULL_TREE);
SSA_NAME_DEF_STMT (def) = copy;
}
else
replace_uses_by (def, use);
remove_phi_node (phi, NULL);
}
/* Ensure that B follows A. */
move_block_after (b, a);
gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
/* Remove labels from B and set bb_for_stmt to A for other statements. */
for (bsi = bsi_start (b); !bsi_end_p (bsi);)
{
if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
{
tree label = bsi_stmt (bsi);
bsi_remove (&bsi, false);
/* Now that we can thread computed gotos, we might have
a situation where we have a forced label in block B
However, the label at the start of block B might still be
used in other ways (think about the runtime checking for
Fortran assigned gotos). So we can not just delete the
label. Instead we move the label to the start of block A. */
if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
{
block_stmt_iterator dest_bsi = bsi_start (a);
bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
}
}
else
{
change_bb_for_stmt (bsi_stmt (bsi), a);
bsi_next (&bsi);
}
}
/* Merge the chains. */
last = tsi_last (a->stmt_list);
tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
b->stmt_list = NULL;
}
/* Return the one of two successors of BB that is not reachable by a
reached by a complex edge, if there is one. Else, return BB. We use
this in optimizations that use post-dominators for their heuristics,
to catch the cases in C++ where function calls are involved. */
basic_block
single_noncomplex_succ (basic_block bb)
{
edge e0, e1;
if (EDGE_COUNT (bb->succs) != 2)
return bb;
e0 = EDGE_SUCC (bb, 0);
e1 = EDGE_SUCC (bb, 1);
if (e0->flags & EDGE_COMPLEX)
return e1->dest;
if (e1->flags & EDGE_COMPLEX)
return e0->dest;
return bb;
}
/* Walk the function tree removing unnecessary statements.
* Empty statement nodes are removed
* Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
* Unnecessary COND_EXPRs are removed
* Some unnecessary BIND_EXPRs are removed
Clearly more work could be done. The trick is doing the analysis
and removal fast enough to be a net improvement in compile times.
Note that when we remove a control structure such as a COND_EXPR
BIND_EXPR, or TRY block, we will need to repeat this optimization pass
to ensure we eliminate all the useless code. */
struct rus_data
{
tree *last_goto;
bool repeat;
bool may_throw;
bool may_branch;
bool has_label;
};
static void remove_useless_stmts_1 (tree *, struct rus_data *);
static bool
remove_useless_stmts_warn_notreached (tree stmt)
{
if (EXPR_HAS_LOCATION (stmt))
{
location_t loc = EXPR_LOCATION (stmt);
if (LOCATION_LINE (loc) > 0)
{
warning (0, "%Hwill never be executed", &loc);
return true;
}
}
switch (TREE_CODE (stmt))
{
case STATEMENT_LIST:
{
tree_stmt_iterator i;
for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
return true;
}
break;
case COND_EXPR:
if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
return true;
if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
return true;
if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
return true;
break;
case TRY_FINALLY_EXPR:
case TRY_CATCH_EXPR:
if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
return true;
if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
return true;
break;
case CATCH_EXPR:
return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
case EH_FILTER_EXPR:
return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
case BIND_EXPR:
return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
default:
/* Not a live container. */
break;
}
return false;
}
static void
remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
{
tree then_clause, else_clause, cond;
bool save_has_label, then_has_label, else_has_label;
save_has_label = data->has_label;
data->has_label = false;
data->last_goto = NULL;
remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
then_has_label = data->has_label;
data->has_label = false;
data->last_goto = NULL;
remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
else_has_label = data->has_label;
data->has_label = save_has_label | then_has_label | else_has_label;
then_clause = COND_EXPR_THEN (*stmt_p);
else_clause = COND_EXPR_ELSE (*stmt_p);
cond = fold (COND_EXPR_COND (*stmt_p));
/* If neither arm does anything at all, we can remove the whole IF. */
if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
{
*stmt_p = build_empty_stmt ();
data->repeat = true;
}
/* If there are no reachable statements in an arm, then we can
zap the entire conditional. */
else if (integer_nonzerop (cond) && !else_has_label)
{
if (warn_notreached)
remove_useless_stmts_warn_notreached (else_clause);
*stmt_p = then_clause;
data->repeat = true;
}
else if (integer_zerop (cond) && !then_has_label)
{
if (warn_notreached)
remove_useless_stmts_warn_notreached (then_clause);
*stmt_p = else_clause;
data->repeat = true;
}
/* Check a couple of simple things on then/else with single stmts. */
else
{
tree then_stmt = expr_only (then_clause);
tree else_stmt = expr_only (else_clause);
/* Notice branches to a common destination. */
if (then_stmt && else_stmt
&& TREE_CODE (then_stmt) == GOTO_EXPR
&& TREE_CODE (else_stmt) == GOTO_EXPR
&& (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
{
*stmt_p = then_stmt;
data->repeat = true;
}
/* If the THEN/ELSE clause merely assigns a value to a variable or
parameter which is already known to contain that value, then
remove the useless THEN/ELSE clause. */
else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
{
if (else_stmt
&& TREE_CODE (else_stmt) == MODIFY_EXPR
&& TREE_OPERAND (else_stmt, 0) == cond
&& integer_zerop (TREE_OPERAND (else_stmt, 1)))
COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
}
else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
&& (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
|| TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
&& TREE_CONSTANT (TREE_OPERAND (cond, 1)))
{
tree stmt = (TREE_CODE (cond) == EQ_EXPR
? then_stmt : else_stmt);
tree *location = (TREE_CODE (cond) == EQ_EXPR
? &COND_EXPR_THEN (*stmt_p)
: &COND_EXPR_ELSE (*stmt_p));
if (stmt
&& TREE_CODE (stmt) == MODIFY_EXPR
&& TREE_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
&& TREE_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
*location = alloc_stmt_list ();
}
}
/* Protect GOTOs in the arm of COND_EXPRs from being removed. They
would be re-introduced during lowering. */
data->last_goto = NULL;
}
static void
remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
{
bool save_may_branch, save_may_throw;
bool this_may_branch, this_may_throw;
/* Collect may_branch and may_throw information for the body only. */
save_may_branch = data->may_branch;
save_may_throw = data->may_throw;
data->may_branch = false;
data->may_throw = false;
data->last_goto = NULL;
remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
this_may_branch = data->may_branch;
this_may_throw = data->may_throw;
data->may_branch |= save_may_branch;
data->may_throw |= save_may_throw;
data->last_goto = NULL;
remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
/* If the body is empty, then we can emit the FINALLY block without
the enclosing TRY_FINALLY_EXPR. */
if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
{
*stmt_p = TREE_OPERAND (*stmt_p, 1);
data->repeat = true;
}
/* If the handler is empty, then we can emit the TRY block without
the enclosing TRY_FINALLY_EXPR. */
else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
{
*stmt_p = TREE_OPERAND (*stmt_p, 0);
data->repeat = true;
}
/* If the body neither throws, nor branches, then we can safely
string the TRY and FINALLY blocks together. */
else if (!this_may_branch && !this_may_throw)
{
tree stmt = *stmt_p;
*stmt_p = TREE_OPERAND (stmt, 0);
append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
data->repeat = true;
}
}
static void
remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
{
bool save_may_throw, this_may_throw;
tree_stmt_iterator i;
tree stmt;
/* Collect may_throw information for the body only. */
save_may_throw = data->may_throw;
data->may_throw = false;
data->last_goto = NULL;
remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
this_may_throw = data->may_throw;
data->may_throw = save_may_throw;
/* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
if (!this_may_throw)
{
if (warn_notreached)
remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
*stmt_p = TREE_OPERAND (*stmt_p, 0);
data->repeat = true;
return;
}
/* Process the catch clause specially. We may be able to tell that
no exceptions propagate past this point. */
this_may_throw = true;
i = tsi_start (TREE_OPERAND (*stmt_p, 1));
stmt = tsi_stmt (i);
data->last_goto = NULL;
switch (TREE_CODE (stmt))
{
case CATCH_EXPR:
for (; !tsi_end_p (i); tsi_next (&i))
{
stmt = tsi_stmt (i);
/* If we catch all exceptions, then the body does not
propagate exceptions past this point. */
if (CATCH_TYPES (stmt) == NULL)
this_may_throw = false;
data->last_goto = NULL;
remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
}
break;
case EH_FILTER_EXPR:
if (EH_FILTER_MUST_NOT_THROW (stmt))
this_may_throw = false;
else if (EH_FILTER_TYPES (stmt) == NULL)
this_may_throw = false;
remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
break;
default:
/* Otherwise this is a cleanup. */
remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
/* If the cleanup is empty, then we can emit the TRY block without
the enclosing TRY_CATCH_EXPR. */
if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
{
*stmt_p = TREE_OPERAND (*stmt_p, 0);
data->repeat = true;
}
break;
}
data->may_throw |= this_may_throw;
}
static void
remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
{
tree block;
/* First remove anything underneath the BIND_EXPR. */
remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
/* If the BIND_EXPR has no variables, then we can pull everything
up one level and remove the BIND_EXPR, unless this is the toplevel
BIND_EXPR for the current function or an inlined function.
When this situation occurs we will want to apply this
optimization again. */
block = BIND_EXPR_BLOCK (*stmt_p);
if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
&& *stmt_p != DECL_SAVED_TREE (current_function_decl)
&& (! block
|| ! BLOCK_ABSTRACT_ORIGIN (block)
|| (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
!= FUNCTION_DECL)))
{
*stmt_p = BIND_EXPR_BODY (*stmt_p);
data->repeat = true;
}
}
static void
remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
{
tree dest = GOTO_DESTINATION (*stmt_p);
data->may_branch = true;
data->last_goto = NULL;
/* Record the last goto expr, so that we can delete it if unnecessary. */
if (TREE_CODE (dest) == LABEL_DECL)
data->last_goto = stmt_p;
}
static void
remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
{
tree label = LABEL_EXPR_LABEL (*stmt_p);
data->has_label = true;
/* We do want to jump across non-local label receiver code. */
if (DECL_NONLOCAL (label))
data->last_goto = NULL;
else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
{
*data->last_goto = build_empty_stmt ();
data->repeat = true;
}
/* ??? Add something here to delete unused labels. */
}
/* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
decl. This allows us to eliminate redundant or useless
calls to "const" functions.
Gimplifier already does the same operation, but we may notice functions
being const and pure once their calls has been gimplified, so we need
to update the flag. */
static void
update_call_expr_flags (tree call)
{
tree decl = get_callee_fndecl (call);
if (!decl)
return;
if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
TREE_SIDE_EFFECTS (call) = 0;
if (TREE_NOTHROW (decl))
TREE_NOTHROW (call) = 1;
}
/* T is CALL_EXPR. Set current_function_calls_* flags. */
void
notice_special_calls (tree t)
{
int flags = call_expr_flags (t);
if (flags & ECF_MAY_BE_ALLOCA)
current_function_calls_alloca = true;
if (flags & ECF_RETURNS_TWICE)
current_function_calls_setjmp = true;
}
/* Clear flags set by notice_special_calls. Used by dead code removal
to update the flags. */
void
clear_special_calls (void)
{
current_function_calls_alloca = false;
current_function_calls_setjmp = false;
}
static void
remove_useless_stmts_1 (tree *tp, struct rus_data *data)
{
tree t = *tp, op;
switch (TREE_CODE (t))
{
case COND_EXPR:
remove_useless_stmts_cond (tp, data);
break;
case TRY_FINALLY_EXPR:
remove_useless_stmts_tf (tp, data);
break;
case TRY_CATCH_EXPR:
remove_useless_stmts_tc (tp, data);
break;
case BIND_EXPR:
remove_useless_stmts_bind (tp, data);
break;
case GOTO_EXPR:
remove_useless_stmts_goto (tp, data);
break;
case LABEL_EXPR:
remove_useless_stmts_label (tp, data);
break;
case RETURN_EXPR:
fold_stmt (tp);
data->last_goto = NULL;
data->may_branch = true;
break;
case CALL_EXPR:
fold_stmt (tp);
data->last_goto = NULL;
notice_special_calls (t);
update_call_expr_flags (t);
if (tree_could_throw_p (t))
data->may_throw = true;
break;
case MODIFY_EXPR:
data->last_goto = NULL;
fold_stmt (tp);
op = get_call_expr_in (t);
if (op)
{
update_call_expr_flags (op);
notice_special_calls (op);
}
if (tree_could_throw_p (t))
data->may_throw = true;
break;
case STATEMENT_LIST:
{
tree_stmt_iterator i = tsi_start (t);
while (!tsi_end_p (i))
{
t = tsi_stmt (i);
if (IS_EMPTY_STMT (t))
{
tsi_delink (&i);
continue;
}
remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
t = tsi_stmt (i);
if (TREE_CODE (t) == STATEMENT_LIST)
{
tsi_link_before (&i, t, TSI_SAME_STMT);
tsi_delink (&i);
}
else
tsi_next (&i);
}
}
break;
case ASM_EXPR:
fold_stmt (tp);
data->last_goto = NULL;
break;
default:
data->last_goto = NULL;
break;
}
}
static unsigned int
remove_useless_stmts (void)
{
struct rus_data data;
clear_special_calls ();
do
{
memset (&data, 0, sizeof (data));
remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
}
while (data.repeat);
return 0;
}
struct tree_opt_pass pass_remove_useless_stmts =
{
"useless", /* name */
NULL, /* gate */
remove_useless_stmts, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
PROP_gimple_any, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
static void
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
{
tree phi;
/* Since this block is no longer reachable, we can just delete all
of its PHI nodes. */
phi = phi_nodes (bb);
while (phi)
{
tree next = PHI_CHAIN (phi);
remove_phi_node (phi, NULL_TREE);
phi = next;
}
/* Remove edges to BB's successors. */
while (EDGE_COUNT (bb->succs) > 0)
remove_edge (EDGE_SUCC (bb, 0));
}
/* Remove statements of basic block BB. */
static void
remove_bb (basic_block bb)
{
block_stmt_iterator i;
#ifdef USE_MAPPED_LOCATION
source_location loc = UNKNOWN_LOCATION;
#else
source_locus loc = 0;
#endif
if (dump_file)
{
fprintf (dump_file, "Removing basic block %d\n", bb->index);
if (dump_flags & TDF_DETAILS)
{
dump_bb (bb, dump_file, 0);
fprintf (dump_file, "\n");
}
}
/* If we remove the header or the latch of a loop, mark the loop for
removal by setting its header and latch to NULL. */
if (current_loops)
{
struct loop *loop = bb->loop_father;
if (loop->latch == bb
|| loop->header == bb)
{
loop->latch = NULL;
loop->header = NULL;
/* Also clean up the information associated with the loop. Updating
it would waste time. More importantly, it may refer to ssa
names that were defined in other removed basic block -- these
ssa names are now removed and invalid. */
free_numbers_of_iterations_estimates_loop (loop);
}
}
/* Remove all the instructions in the block. */
for (i = bsi_start (bb); !bsi_end_p (i);)
{
tree stmt = bsi_stmt (i);
if (TREE_CODE (stmt) == LABEL_EXPR
&& (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
|| DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
{
basic_block new_bb;
block_stmt_iterator new_bsi;
/* A non-reachable non-local label may still be referenced.
But it no longer needs to carry the extra semantics of
non-locality. */
if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
{
DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
}
new_bb = bb->prev_bb;
new_bsi = bsi_start (new_bb);
bsi_remove (&i, false);
bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
}
else
{
/* Release SSA definitions if we are in SSA. Note that we
may be called when not in SSA. For example,
final_cleanup calls this function via
cleanup_tree_cfg. */
if (in_ssa_p)
release_defs (stmt);
bsi_remove (&i, true);
}
/* Don't warn for removed gotos. Gotos are often removed due to
jump threading, thus resulting in bogus warnings. Not great,
since this way we lose warnings for gotos in the original
program that are indeed unreachable. */
if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
{
#ifdef USE_MAPPED_LOCATION
if (EXPR_HAS_LOCATION (stmt))
loc = EXPR_LOCATION (stmt);
#else
source_locus t;
t = EXPR_LOCUS (stmt);
if (t && LOCATION_LINE (*t) > 0)
loc = t;
#endif
}
}
/* If requested, give a warning that the first statement in the
block is unreachable. We walk statements backwards in the
loop above, so the last statement we process is the first statement
in the block. */
#ifdef USE_MAPPED_LOCATION
if (loc > BUILTINS_LOCATION)
warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
#else
if (loc)
warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
#endif
remove_phi_nodes_and_edges_for_unreachable_block (bb);
}
/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
predicate VAL, return the edge that will be taken out of the block.
If VAL does not match a unique edge, NULL is returned. */
edge
find_taken_edge (basic_block bb, tree val)
{
tree stmt;
stmt = last_stmt (bb);
gcc_assert (stmt);
gcc_assert (is_ctrl_stmt (stmt));
gcc_assert (val);
if (! is_gimple_min_invariant (val))
return NULL;
if (TREE_CODE (stmt) == COND_EXPR)
return find_taken_edge_cond_expr (bb, val);
if (TREE_CODE (stmt) == SWITCH_EXPR)
return find_taken_edge_switch_expr (bb, val);
if (computed_goto_p (stmt))
{
/* Only optimize if the argument is a label, if the argument is
not a label then we can not construct a proper CFG.
It may be the case that we only need to allow the LABEL_REF to
appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
appear inside a LABEL_EXPR just to be safe. */
if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
&& TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
return NULL;
}
gcc_unreachable ();
}
/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
statement, determine which of the outgoing edges will be taken out of the
block. Return NULL if either edge may be taken. */
static edge
find_taken_edge_computed_goto (basic_block bb, tree val)
{
basic_block dest;
edge e = NULL;
dest = label_to_block (val);
if (dest)
{
e = find_edge (bb, dest);
gcc_assert (e != NULL);
}
return e;
}
/* Given a constant value VAL and the entry block BB to a COND_EXPR
statement, determine which of the two edges will be taken out of the
block. Return NULL if either edge may be taken. */
static edge
find_taken_edge_cond_expr (basic_block bb, tree val)
{
edge true_edge, false_edge;
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
gcc_assert (TREE_CODE (val) == INTEGER_CST);
return (zero_p (val) ? false_edge : true_edge);
}
/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
statement, determine which edge will be taken out of the block. Return
NULL if any edge may be taken. */
static edge
find_taken_edge_switch_expr (basic_block bb, tree val)
{
tree switch_expr, taken_case;
basic_block dest_bb;
edge e;
switch_expr = last_stmt (bb);
taken_case = find_case_label_for_value (switch_expr, val);
dest_bb = label_to_block (CASE_LABEL (taken_case));
e = find_edge (bb, dest_bb);
gcc_assert (e);
return e;
}
/* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
We can make optimal use here of the fact that the case labels are
sorted: We can do a binary search for a case matching VAL. */
static tree
find_case_label_for_value (tree switch_expr, tree val)
{
tree vec = SWITCH_LABELS (switch_expr);
size_t low, high, n = TREE_VEC_LENGTH (vec);
tree default_case = TREE_VEC_ELT (vec, n - 1);
for (low = -1, high = n - 1; high - low > 1; )
{
size_t i = (high + low) / 2;
tree t = TREE_VEC_ELT (vec, i);
int cmp;
/* Cache the result of comparing CASE_LOW and val. */
cmp = tree_int_cst_compare (CASE_LOW (t), val);
if (cmp > 0)
high = i;
else
low = i;
if (CASE_HIGH (t) == NULL)
{
/* A singe-valued case label. */
if (cmp == 0)
return t;
}
else
{
/* A case range. We can only handle integer ranges. */
if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
return t;
}
}
return default_case;
}
/*---------------------------------------------------------------------------
Debugging functions
---------------------------------------------------------------------------*/
/* Dump tree-specific information of block BB to file OUTF. */
void
tree_dump_bb (basic_block bb, FILE *outf, int indent)
{
dump_generic_bb (outf, bb, indent, TDF_VOPS);
}
/* Dump a basic block on stderr. */
void
debug_tree_bb (basic_block bb)
{
dump_bb (bb, stderr, 0);
}
/* Dump basic block with index N on stderr. */
basic_block
debug_tree_bb_n (int n)
{
debug_tree_bb (BASIC_BLOCK (n));
return BASIC_BLOCK (n);
}
/* Dump the CFG on stderr.
FLAGS are the same used by the tree dumping functions
(see TDF_* in tree-pass.h). */
void
debug_tree_cfg (int flags)
{
dump_tree_cfg (stderr, flags);
}
/* Dump the program showing basic block boundaries on the given FILE.
FLAGS are the same used by the tree dumping functions (see TDF_* in
tree.h). */
void
dump_tree_cfg (FILE *file, int flags)
{
if (flags & TDF_DETAILS)
{
const char *funcname
= lang_hooks.decl_printable_name (current_function_decl, 2);
fputc ('\n', file);
fprintf (file, ";; Function %s\n\n", funcname);
fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
n_basic_blocks, n_edges, last_basic_block);
brief_dump_cfg (file);
fprintf (file, "\n");
}
if (flags & TDF_STATS)
dump_cfg_stats (file);
dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
}
/* Dump CFG statistics on FILE. */
void
dump_cfg_stats (FILE *file)
{
static long max_num_merged_labels = 0;
unsigned long size, total = 0;
long num_edges;
basic_block bb;
const char * const fmt_str = "%-30s%-13s%12s\n";
const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
const char * const fmt_str_3 = "%-43s%11lu%c\n";
const char *funcname
= lang_hooks.decl_printable_name (current_function_decl, 2);
fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str, "", " Number of ", "Memory");
fprintf (file, fmt_str, "", " instances ", "used ");
fprintf (file, "---------------------------------------------------------\n");
size = n_basic_blocks * sizeof (struct basic_block_def);
total += size;
fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
SCALE (size), LABEL (size));
num_edges = 0;
FOR_EACH_BB (bb)
num_edges += EDGE_COUNT (bb->succs);
size = num_edges * sizeof (struct edge_def);
total += size;
fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
LABEL (total));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, "\n");
if (cfg_stats.num_merged_labels > max_num_merged_labels)
max_num_merged_labels = cfg_stats.num_merged_labels;
fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
cfg_stats.num_merged_labels, max_num_merged_labels);
fprintf (file, "\n");
}
/* Dump CFG statistics on stderr. Keep extern so that it's always
linked in the final executable. */
void
debug_cfg_stats (void)
{
dump_cfg_stats (stderr);
}
/* Dump the flowgraph to a .vcg FILE. */
static void
tree_cfg2vcg (FILE *file)
{
edge e;
edge_iterator ei;
basic_block bb;
const char *funcname
= lang_hooks.decl_printable_name (current_function_decl, 2);
/* Write the file header. */
fprintf (file, "graph: { title: \"%s\"\n", funcname);
fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
/* Write blocks and edges. */
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
{
fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
e->dest->index);
if (e->flags & EDGE_FAKE)
fprintf (file, " linestyle: dotted priority: 10");
else
fprintf (file, " linestyle: solid priority: 100");
fprintf (file, " }\n");
}
fputc ('\n', file);
FOR_EACH_BB (bb)
{
enum tree_code head_code, end_code;
const char *head_name, *end_name;
int head_line = 0;
int end_line = 0;
tree first = first_stmt (bb);
tree last = last_stmt (bb);
if (first)
{
head_code = TREE_CODE (first);
head_name = tree_code_name[head_code];
head_line = get_lineno (first);
}
else
head_name = "no-statement";
if (last)
{
end_code = TREE_CODE (last);
end_name = tree_code_name[end_code];
end_line = get_lineno (last);
}
else
end_name = "no-statement";
fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
bb->index, bb->index, head_name, head_line, end_name,
end_line);
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR)
fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
else
fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
if (e->flags & EDGE_FAKE)
fprintf (file, " priority: 10 linestyle: dotted");
else
fprintf (file, " priority: 100 linestyle: solid");
fprintf (file, " }\n");
}
if (bb->next_bb != EXIT_BLOCK_PTR)
fputc ('\n', file);
}
fputs ("}\n\n", file);
}
/*---------------------------------------------------------------------------
Miscellaneous helpers
---------------------------------------------------------------------------*/
/* Return true if T represents a stmt that always transfers control. */
bool
is_ctrl_stmt (tree t)
{
return (TREE_CODE (t) == COND_EXPR
|| TREE_CODE (t) == SWITCH_EXPR
|| TREE_CODE (t) == GOTO_EXPR
|| TREE_CODE (t) == RETURN_EXPR
|| TREE_CODE (t) == RESX_EXPR);
}
/* Return true if T is a statement that may alter the flow of control
(e.g., a call to a non-returning function). */
bool
is_ctrl_altering_stmt (tree t)
{
tree call;
gcc_assert (t);
call = get_call_expr_in (t);
if (call)
{
/* A non-pure/const CALL_EXPR alters flow control if the current
function has nonlocal labels. */
if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
return true;
/* A CALL_EXPR also alters control flow if it does not return. */
if (call_expr_flags (call) & ECF_NORETURN)
return true;
}
/* OpenMP directives alter control flow. */
if (OMP_DIRECTIVE_P (t))
return true;
/* If a statement can throw, it alters control flow. */
return tree_can_throw_internal (t);
}
/* Return true if T is a computed goto. */
bool
computed_goto_p (tree t)
{
return (TREE_CODE (t) == GOTO_EXPR
&& TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
}
/* Return true if T is a simple local goto. */
bool
simple_goto_p (tree t)
{
return (TREE_CODE (t) == GOTO_EXPR
&& TREE_CODE (GOTO_DESTINATION (t)) == LABEL_DECL);
}
/* Return true if T can make an abnormal transfer of control flow.
Transfers of control flow associated with EH are excluded. */
bool
tree_can_make_abnormal_goto (tree t)
{
if (computed_goto_p (t))
return true;
if (TREE_CODE (t) == MODIFY_EXPR)
t = TREE_OPERAND (t, 1);
if (TREE_CODE (t) == WITH_SIZE_EXPR)
t = TREE_OPERAND (t, 0);
if (TREE_CODE (t) == CALL_EXPR)
return TREE_SIDE_EFFECTS (t) && current_function_has_nonlocal_label;
return false;
}
/* Return true if T should start a new basic block. PREV_T is the
statement preceding T. It is used when T is a label or a case label.
Labels should only start a new basic block if their previous statement
wasn't a label. Otherwise, sequence of labels would generate
unnecessary basic blocks that only contain a single label. */
static inline bool
stmt_starts_bb_p (tree t, tree prev_t)
{
if (t == NULL_TREE)
return false;
/* LABEL_EXPRs start a new basic block only if the preceding
statement wasn't a label of the same type. This prevents the
creation of consecutive blocks that have nothing but a single
label. */
if (TREE_CODE (t) == LABEL_EXPR)
{
/* Nonlocal and computed GOTO targets always start a new block. */
if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
|| FORCED_LABEL (LABEL_EXPR_LABEL (t)))
return true;
if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
{
if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
return true;
cfg_stats.num_merged_labels++;
return false;
}
else
return true;
}
return false;
}
/* Return true if T should end a basic block. */
bool
stmt_ends_bb_p (tree t)
{
return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
}
/* Add gotos that used to be represented implicitly in the CFG. */
void
disband_implicit_edges (void)
{
basic_block bb;
block_stmt_iterator last;
edge e;
edge_iterator ei;
tree stmt, label;
FOR_EACH_BB (bb)
{
last = bsi_last (bb);
stmt = last_stmt (bb);
if (stmt && TREE_CODE (stmt) == COND_EXPR)
{
/* Remove superfluous gotos from COND_EXPR branches. Moved
from cfg_remove_useless_stmts here since it violates the
invariants for tree--cfg correspondence and thus fits better
here where we do it anyway. */
e = find_edge (bb, bb->next_bb);
if (e)
{
if (e->flags & EDGE_TRUE_VALUE)
COND_EXPR_THEN (stmt) = build_empty_stmt ();
else if (e->flags & EDGE_FALSE_VALUE)
COND_EXPR_ELSE (stmt) = build_empty_stmt ();
else
gcc_unreachable ();
e->flags |= EDGE_FALLTHRU;
}
continue;
}
if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
{
/* Remove the RETURN_EXPR if we may fall though to the exit
instead. */
gcc_assert (single_succ_p (bb));
gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
if (bb->next_bb == EXIT_BLOCK_PTR
&& !TREE_OPERAND (stmt, 0))
{
bsi_remove (&last, true);
single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
}
continue;
}
/* There can be no fallthru edge if the last statement is a control
one. */
if (stmt && is_ctrl_stmt (stmt))
continue;
/* Find a fallthru edge and emit the goto if necessary. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & EDGE_FALLTHRU)
break;
if (!e || e->dest == bb->next_bb)
continue;
gcc_assert (e->dest != EXIT_BLOCK_PTR);
label = tree_block_label (e->dest);
stmt = build1 (GOTO_EXPR, void_type_node, label);
#ifdef USE_MAPPED_LOCATION
SET_EXPR_LOCATION (stmt, e->goto_locus);
#else
SET_EXPR_LOCUS (stmt, e->goto_locus);
#endif
bsi_insert_after (&last, stmt, BSI_NEW_STMT);
e->flags &= ~EDGE_FALLTHRU;
}
}
/* Remove block annotations and other datastructures. */
void
delete_tree_cfg_annotations (void)
{
label_to_block_map = NULL;
}
/* Return the first statement in basic block BB. */
tree
first_stmt (basic_block bb)
{
block_stmt_iterator i = bsi_start (bb);
return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
}
/* Return the last statement in basic block BB. */
tree
last_stmt (basic_block bb)
{
block_stmt_iterator b = bsi_last (bb);
return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
}
/* Return a pointer to the last statement in block BB. */
tree *
last_stmt_ptr (basic_block bb)
{
block_stmt_iterator last = bsi_last (bb);
return !bsi_end_p (last) ? bsi_stmt_ptr (last) : NULL;
}
/* Return the last statement of an otherwise empty block. Return NULL
if the block is totally empty, or if it contains more than one
statement. */
tree
last_and_only_stmt (basic_block bb)
{
block_stmt_iterator i = bsi_last (bb);
tree last, prev;
if (bsi_end_p (i))
return NULL_TREE;
last = bsi_stmt (i);
bsi_prev (&i);
if (bsi_end_p (i))
return last;
/* Empty statements should no longer appear in the instruction stream.
Everything that might have appeared before should be deleted by
remove_useless_stmts, and the optimizers should just bsi_remove
instead of smashing with build_empty_stmt.
Thus the only thing that should appear here in a block containing
one executable statement is a label. */
prev = bsi_stmt (i);
if (TREE_CODE (prev) == LABEL_EXPR)
return last;
else
return NULL_TREE;
}
/* Mark BB as the basic block holding statement T. */
void
set_bb_for_stmt (tree t, basic_block bb)
{
if (TREE_CODE (t) == PHI_NODE)
PHI_BB (t) = bb;
else if (TREE_CODE (t) == STATEMENT_LIST)
{
tree_stmt_iterator i;
for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
set_bb_for_stmt (tsi_stmt (i), bb);
}
else
{
stmt_ann_t ann = get_stmt_ann (t);
ann->bb = bb;
/* If the statement is a label, add the label to block-to-labels map
so that we can speed up edge creation for GOTO_EXPRs. */
if (TREE_CODE (t) == LABEL_EXPR)
{
int uid;
t = LABEL_EXPR_LABEL (t);
uid = LABEL_DECL_UID (t);
if (uid == -1)
{
unsigned old_len = VEC_length (basic_block, label_to_block_map);
LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
if (old_len <= (unsigned) uid)
{
basic_block *addr;
unsigned new_len = 3 * uid / 2;
VEC_safe_grow (basic_block, gc, label_to_block_map,
new_len);
addr = VEC_address (basic_block, label_to_block_map);
memset (&addr[old_len],
0, sizeof (basic_block) * (new_len - old_len));
}
}
else
/* We're moving an existing label. Make sure that we've
removed it from the old block. */
gcc_assert (!bb
|| !VEC_index (basic_block, label_to_block_map, uid));
VEC_replace (basic_block, label_to_block_map, uid, bb);
}
}
}
/* Faster version of set_bb_for_stmt that assume that statement is being moved
from one basic block to another.
For BB splitting we can run into quadratic case, so performance is quite
important and knowing that the tables are big enough, change_bb_for_stmt
can inline as leaf function. */
static inline void
change_bb_for_stmt (tree t, basic_block bb)
{
get_stmt_ann (t)->bb = bb;
if (TREE_CODE (t) == LABEL_EXPR)
VEC_replace (basic_block, label_to_block_map,
LABEL_DECL_UID (LABEL_EXPR_LABEL (t)), bb);
}
/* Finds iterator for STMT. */
extern block_stmt_iterator
bsi_for_stmt (tree stmt)
{
block_stmt_iterator bsi;
for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
if (bsi_stmt (bsi) == stmt)
return bsi;
gcc_unreachable ();
}
/* Mark statement T as modified, and update it. */
static inline void
update_modified_stmts (tree t)
{
if (TREE_CODE (t) == STATEMENT_LIST)
{
tree_stmt_iterator i;
tree stmt;
for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
{
stmt = tsi_stmt (i);
update_stmt_if_modified (stmt);
}
}
else
update_stmt_if_modified (t);
}
/* Insert statement (or statement list) T before the statement
pointed-to by iterator I. M specifies how to update iterator I
after insertion (see enum bsi_iterator_update). */
void
bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
{
set_bb_for_stmt (t, i->bb);
update_modified_stmts (t);
tsi_link_before (&i->tsi, t, m);
}
/* Insert statement (or statement list) T after the statement
pointed-to by iterator I. M specifies how to update iterator I
after insertion (see enum bsi_iterator_update). */
void
bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
{
set_bb_for_stmt (t, i->bb);
update_modified_stmts (t);
tsi_link_after (&i->tsi, t, m);
}
/* Remove the statement pointed to by iterator I. The iterator is updated
to the next statement.
When REMOVE_EH_INFO is true we remove the statement pointed to by
iterator I from the EH tables. Otherwise we do not modify the EH
tables.
Generally, REMOVE_EH_INFO should be true when the statement is going to
be removed from the IL and not reinserted elsewhere. */
void
bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
{
tree t = bsi_stmt (*i);
set_bb_for_stmt (t, NULL);
delink_stmt_imm_use (t);
tsi_delink (&i->tsi);
mark_stmt_modified (t);
if (remove_eh_info)
remove_stmt_from_eh_region (t);
}
/* Move the statement at FROM so it comes right after the statement at TO. */
void
bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
{
tree stmt = bsi_stmt (*from);
bsi_remove (from, false);
bsi_insert_after (to, stmt, BSI_SAME_STMT);
}
/* Move the statement at FROM so it comes right before the statement at TO. */
void
bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
{
tree stmt = bsi_stmt (*from);
bsi_remove (from, false);
bsi_insert_before (to, stmt, BSI_SAME_STMT);
}
/* Move the statement at FROM to the end of basic block BB. */
void
bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
{
block_stmt_iterator last = bsi_last (bb);
/* Have to check bsi_end_p because it could be an empty block. */
if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
bsi_move_before (from, &last);
else
bsi_move_after (from, &last);
}
/* Replace the contents of the statement pointed to by iterator BSI
with STMT. If UPDATE_EH_INFO is true, the exception handling
information of the original statement is moved to the new statement. */
void
bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
{
int eh_region;
tree orig_stmt = bsi_stmt (*bsi);
SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
set_bb_for_stmt (stmt, bsi->bb);
/* Preserve EH region information from the original statement, if
requested by the caller. */
if (update_eh_info)
{
eh_region = lookup_stmt_eh_region (orig_stmt);
if (eh_region >= 0)
{
remove_stmt_from_eh_region (orig_stmt);
add_stmt_to_eh_region (stmt, eh_region);
}
}
delink_stmt_imm_use (orig_stmt);
*bsi_stmt_ptr (*bsi) = stmt;
mark_stmt_modified (stmt);
update_modified_stmts (stmt);
}
/* Insert the statement pointed-to by BSI into edge E. Every attempt
is made to place the statement in an existing basic block, but
sometimes that isn't possible. When it isn't possible, the edge is
split and the statement is added to the new block.
In all cases, the returned *BSI points to the correct location. The
return value is true if insertion should be done after the location,
or false if it should be done before the location. If new basic block
has to be created, it is stored in *NEW_BB. */
static bool
tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
basic_block *new_bb)
{
basic_block dest, src;
tree tmp;
dest = e->dest;
restart:
/* If the destination has one predecessor which has no PHI nodes,
insert there. Except for the exit block.
The requirement for no PHI nodes could be relaxed. Basically we
would have to examine the PHIs to prove that none of them used
the value set by the statement we want to insert on E. That
hardly seems worth the effort. */
if (single_pred_p (dest)
&& ! phi_nodes (dest)
&& dest != EXIT_BLOCK_PTR)
{
*bsi = bsi_start (dest);
if (bsi_end_p (*bsi))
return true;
/* Make sure we insert after any leading labels. */
tmp = bsi_stmt (*bsi);
while (TREE_CODE (tmp) == LABEL_EXPR)
{
bsi_next (bsi);
if (bsi_end_p (*bsi))
break;
tmp = bsi_stmt (*bsi);
}
if (bsi_end_p (*bsi))
{
*bsi = bsi_last (dest);
return true;
}
else
return false;
}
/* If the source has one successor, the edge is not abnormal and
the last statement does not end a basic block, insert there.
Except for the entry block. */
src = e->src;
if ((e->flags & EDGE_ABNORMAL) == 0
&& single_succ_p (src)
&& src != ENTRY_BLOCK_PTR)
{
*bsi = bsi_last (src);
if (bsi_end_p (*bsi))
return true;
tmp = bsi_stmt (*bsi);
if (!stmt_ends_bb_p (tmp))
return true;
/* Insert code just before returning the value. We may need to decompose
the return in the case it contains non-trivial operand. */
if (TREE_CODE (tmp) == RETURN_EXPR)
{
tree op = TREE_OPERAND (tmp, 0);
if (op && !is_gimple_val (op))
{
gcc_assert (TREE_CODE (op) == MODIFY_EXPR);
bsi_insert_before (bsi, op, BSI_NEW_STMT);
TREE_OPERAND (tmp, 0) = TREE_OPERAND (op, 0);
}
bsi_prev (bsi);
return true;
}
}
/* Otherwise, create a new basic block, and split this edge. */
dest = split_edge (e);
if (new_bb)
*new_bb = dest;
e = single_pred_edge (dest);
goto restart;
}
/* This routine will commit all pending edge insertions, creating any new
basic blocks which are necessary. */
void
bsi_commit_edge_inserts (void)
{
basic_block bb;
edge e;
edge_iterator ei;
bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
FOR_EACH_BB (bb)
FOR_EACH_EDGE (e, ei, bb->succs)
bsi_commit_one_edge_insert (e, NULL);
}
/* Commit insertions pending at edge E. If a new block is created, set NEW_BB
to this block, otherwise set it to NULL. */
void
bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
{
if (new_bb)
*new_bb = NULL;
if (PENDING_STMT (e))
{
block_stmt_iterator bsi;
tree stmt = PENDING_STMT (e);
PENDING_STMT (e) = NULL_TREE;
if (tree_find_edge_insert_loc (e, &bsi, new_bb))
bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
else
bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
}
}
/* Add STMT to the pending list of edge E. No actual insertion is
made until a call to bsi_commit_edge_inserts () is made. */
void
bsi_insert_on_edge (edge e, tree stmt)
{
append_to_statement_list (stmt, &PENDING_STMT (e));
}
/* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
block has to be created, it is returned. */
basic_block
bsi_insert_on_edge_immediate (edge e, tree stmt)
{
block_stmt_iterator bsi;
basic_block new_bb = NULL;
gcc_assert (!PENDING_STMT (e));
if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
else
bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
return new_bb;
}
/*---------------------------------------------------------------------------
Tree specific functions for CFG manipulation
---------------------------------------------------------------------------*/
/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
static void
reinstall_phi_args (edge new_edge, edge old_edge)
{
tree var, phi;
if (!PENDING_STMT (old_edge))
return;
for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
var && phi;
var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
{
tree result = TREE_PURPOSE (var);
tree arg = TREE_VALUE (var);
gcc_assert (result == PHI_RESULT (phi));
add_phi_arg (phi, arg, new_edge);
}
PENDING_STMT (old_edge) = NULL;
}
/* Returns the basic block after which the new basic block created
by splitting edge EDGE_IN should be placed. Tries to keep the new block
near its "logical" location. This is of most help to humans looking
at debugging dumps. */
static basic_block
split_edge_bb_loc (edge edge_in)
{
basic_block dest = edge_in->dest;
if (dest->prev_bb && find_edge (dest->prev_bb, dest))
return edge_in->src;
else
return dest->prev_bb;
}
/* Split a (typically critical) edge EDGE_IN. Return the new block.
Abort on abnormal edges. */
static basic_block
tree_split_edge (edge edge_in)
{
basic_block new_bb, after_bb, dest;
edge new_edge, e;
/* Abnormal edges cannot be split. */
gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
dest = edge_in->dest;
after_bb = split_edge_bb_loc (edge_in);
new_bb = create_empty_bb (after_bb);
new_bb->frequency = EDGE_FREQUENCY (edge_in);
new_bb->count = edge_in->count;
new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
new_edge->probability = REG_BR_PROB_BASE;
new_edge->count = edge_in->count;
e = redirect_edge_and_branch (edge_in, new_bb);
gcc_assert (e);
reinstall_phi_args (new_edge, e);
return new_bb;
}
/* Return true when BB has label LABEL in it. */
static bool
has_label_p (basic_block bb, tree label)
{
block_stmt_iterator bsi;
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
tree stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) != LABEL_EXPR)
return false;
if (LABEL_EXPR_LABEL (stmt) == label)
return true;
}
return false;
}
/* Callback for walk_tree, check that all elements with address taken are
properly noticed as such. The DATA is an int* that is 1 if TP was seen
inside a PHI node. */
static tree
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp, x;
bool in_phi = (data != NULL);
if (TYPE_P (t))
*walk_subtrees = 0;
/* Check operand N for being valid GIMPLE and give error MSG if not. */
#define CHECK_OP(N, MSG) \
do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
{ error (MSG); return TREE_OPERAND (t, N); }} while (0)
switch (TREE_CODE (t))
{
case SSA_NAME:
if (SSA_NAME_IN_FREE_LIST (t))
{
error ("SSA name in freelist but still referenced");
return *tp;
}
break;
case ASSERT_EXPR:
x = fold (ASSERT_EXPR_COND (t));
if (x == boolean_false_node)
{
error ("ASSERT_EXPR with an always-false condition");
return *tp;
}
break;
case MODIFY_EXPR:
x = TREE_OPERAND (t, 0);
if (TREE_CODE (x) == BIT_FIELD_REF
&& is_gimple_reg (TREE_OPERAND (x, 0)))
{
error ("GIMPLE register modified with BIT_FIELD_REF");
return t;
}
break;
case ADDR_EXPR:
{
bool old_invariant;
bool old_constant;
bool old_side_effects;
bool new_invariant;
bool new_constant;
bool new_side_effects;
/* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
dead PHIs that take the address of something. But if the PHI
result is dead, the fact that it takes the address of anything
is irrelevant. Because we can not tell from here if a PHI result
is dead, we just skip this check for PHIs altogether. This means
we may be missing "valid" checks, but what can you do?
This was PR19217. */
if (in_phi)
break;
old_invariant = TREE_INVARIANT (t);
old_constant = TREE_CONSTANT (t);
old_side_effects = TREE_SIDE_EFFECTS (t);
recompute_tree_invariant_for_addr_expr (t);
new_invariant = TREE_INVARIANT (t);
new_side_effects = TREE_SIDE_EFFECTS (t);
new_constant = TREE_CONSTANT (t);
if (old_invariant != new_invariant)
{
error ("invariant not recomputed when ADDR_EXPR changed");
return t;
}
if (old_constant != new_constant)
{
error ("constant not recomputed when ADDR_EXPR changed");
return t;
}
if (old_side_effects != new_side_effects)
{
error ("side effects not recomputed when ADDR_EXPR changed");
return t;
}
/* Skip any references (they will be checked when we recurse down the
tree) and ensure that any variable used as a prefix is marked
addressable. */
for (x = TREE_OPERAND (t, 0);
handled_component_p (x);
x = TREE_OPERAND (x, 0))
;
if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
return NULL;
if (!TREE_ADDRESSABLE (x))
{
error ("address taken, but ADDRESSABLE bit not set");
return x;
}
break;
}
case COND_EXPR:
x = COND_EXPR_COND (t);
if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
{
error ("non-boolean used in condition");
return x;
}
if (!is_gimple_condexpr (x))
{
error ("invalid conditional operand");
return x;
}
break;
case NOP_EXPR:
case CONVERT_EXPR:
case FIX_TRUNC_EXPR:
case FIX_CEIL_EXPR:
case FIX_FLOOR_EXPR:
case FIX_ROUND_EXPR:
case FLOAT_EXPR:
case NEGATE_EXPR:
case ABS_EXPR:
case BIT_NOT_EXPR:
case NON_LVALUE_EXPR:
case TRUTH_NOT_EXPR:
CHECK_OP (0, "invalid operand to unary operator");
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
case COMPONENT_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
case BIT_FIELD_REF:
case VIEW_CONVERT_EXPR:
/* We have a nest of references. Verify that each of the operands
that determine where to reference is either a constant or a variable,
verify that the base is valid, and then show we've already checked
the subtrees. */
while (handled_component_p (t))
{
if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
CHECK_OP (2, "invalid COMPONENT_REF offset operator");
else if (TREE_CODE (t) == ARRAY_REF
|| TREE_CODE (t) == ARRAY_RANGE_REF)
{
CHECK_OP (1, "invalid array index");
if (TREE_OPERAND (t, 2))
CHECK_OP (2, "invalid array lower bound");
if (TREE_OPERAND (t, 3))
CHECK_OP (3, "invalid array stride");
}
else if (TREE_CODE (t) == BIT_FIELD_REF)
{
CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
}
t = TREE_OPERAND (t, 0);
}
if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
{
error ("invalid reference prefix");
return t;
}
*walk_subtrees = 0;
break;
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
case LTGT_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case RDIV_EXPR:
case EXACT_DIV_EXPR:
case MIN_EXPR:
case MAX_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
CHECK_OP (0, "invalid operand to binary operator");
CHECK_OP (1, "invalid operand to binary operator");
break;
case CONSTRUCTOR:
if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
*walk_subtrees = 0;
break;
default:
break;
}
return NULL;
#undef CHECK_OP
}
/* Verify STMT, return true if STMT is not in GIMPLE form.
TODO: Implement type checking. */
static bool
verify_stmt (tree stmt, bool last_in_block)
{
tree addr;
if (OMP_DIRECTIVE_P (stmt))
{
/* OpenMP directives are validated by the FE and never operated
on by the optimizers. Furthermore, OMP_FOR may contain
non-gimple expressions when the main index variable has had
its address taken. This does not affect the loop itself
because the header of an OMP_FOR is merely used to determine
how to setup the parallel iteration. */
return false;
}
if (!is_gimple_stmt (stmt))
{
error ("is not a valid GIMPLE statement");
goto fail;
}
addr = walk_tree (&stmt, verify_expr, NULL, NULL);
if (addr)
{
debug_generic_stmt (addr);
return true;
}
/* If the statement is marked as part of an EH region, then it is
expected that the statement could throw. Verify that when we
have optimizations that simplify statements such that we prove
that they cannot throw, that we update other data structures
to match. */
if (lookup_stmt_eh_region (stmt) >= 0)
{
if (!tree_could_throw_p (stmt))
{
error ("statement marked for throw, but doesn%'t");
goto fail;
}
if (!last_in_block && tree_can_throw_internal (stmt))
{
error ("statement marked for throw in middle of block");
goto fail;
}
}
return false;
fail:
debug_generic_stmt (stmt);
return true;
}
/* Return true when the T can be shared. */
static bool
tree_node_can_be_shared (tree t)
{
if (IS_TYPE_OR_DECL_P (t)
|| is_gimple_min_invariant (t)
|| TREE_CODE (t) == SSA_NAME
|| t == error_mark_node
|| TREE_CODE (t) == IDENTIFIER_NODE)
return true;
if (TREE_CODE (t) == CASE_LABEL_EXPR)
return true;
while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
&& is_gimple_min_invariant (TREE_OPERAND (t, 1)))
|| TREE_CODE (t) == COMPONENT_REF
|| TREE_CODE (t) == REALPART_EXPR
|| TREE_CODE (t) == IMAGPART_EXPR)
t = TREE_OPERAND (t, 0);
if (DECL_P (t))
return true;
return false;
}
/* Called via walk_trees. Verify tree sharing. */
static tree
verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
{
htab_t htab = (htab_t) data;
void **slot;
if (tree_node_can_be_shared (*tp))
{
*walk_subtrees = false;
return NULL;
}
slot = htab_find_slot (htab, *tp, INSERT);
if (*slot)
return (tree) *slot;
*slot = *tp;
return NULL;
}
/* Verify the GIMPLE statement chain. */
void
verify_stmts (void)
{
basic_block bb;
block_stmt_iterator bsi;
bool err = false;
htab_t htab;
tree addr;
timevar_push (TV_TREE_STMT_VERIFY);
htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
FOR_EACH_BB (bb)
{
tree phi;
int i;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
int phi_num_args = PHI_NUM_ARGS (phi);
if (bb_for_stmt (phi) != bb)
{
error ("bb_for_stmt (phi) is set to a wrong basic block");
err |= true;
}
for (i = 0; i < phi_num_args; i++)
{
tree t = PHI_ARG_DEF (phi, i);
tree addr;
/* Addressable variables do have SSA_NAMEs but they
are not considered gimple values. */
if (TREE_CODE (t) != SSA_NAME
&& TREE_CODE (t) != FUNCTION_DECL
&& !is_gimple_val (t))
{
error ("PHI def is not a GIMPLE value");
debug_generic_stmt (phi);
debug_generic_stmt (t);
err |= true;
}
addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
if (addr)
{
debug_generic_stmt (addr);
err |= true;
}
addr = walk_tree (&t, verify_node_sharing, htab, NULL);
if (addr)
{
error ("incorrect sharing of tree nodes");
debug_generic_stmt (phi);
debug_generic_stmt (addr);
err |= true;
}
}
}
for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
{
tree stmt = bsi_stmt (bsi);
if (bb_for_stmt (stmt) != bb)
{
error ("bb_for_stmt (stmt) is set to a wrong basic block");
err |= true;
}
bsi_next (&bsi);
err |= verify_stmt (stmt, bsi_end_p (bsi));
addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
if (addr)
{
error ("incorrect sharing of tree nodes");
debug_generic_stmt (stmt);
debug_generic_stmt (addr);
err |= true;
}
}
}
if (err)
internal_error ("verify_stmts failed");
htab_delete (htab);
timevar_pop (TV_TREE_STMT_VERIFY);
}
/* Verifies that the flow information is OK. */
static int
tree_verify_flow_info (void)
{
int err = 0;
basic_block bb;
block_stmt_iterator bsi;
tree stmt;
edge e;
edge_iterator ei;
if (ENTRY_BLOCK_PTR->stmt_list)
{
error ("ENTRY_BLOCK has a statement list associated with it");
err = 1;
}
if (EXIT_BLOCK_PTR->stmt_list)
{
error ("EXIT_BLOCK has a statement list associated with it");
err = 1;
}
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
if (e->flags & EDGE_FALLTHRU)
{
error ("fallthru to exit from bb %d", e->src->index);
err = 1;
}
FOR_EACH_BB (bb)
{
bool found_ctrl_stmt = false;
stmt = NULL_TREE;
/* Skip labels on the start of basic block. */
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
tree prev_stmt = stmt;
stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) != LABEL_EXPR)
break;
if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
{
error ("nonlocal label ");
print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
fprintf (stderr, " is not first in a sequence of labels in bb %d",
bb->index);
err = 1;
}
if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
{
error ("label ");
print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
fprintf (stderr, " to block does not match in bb %d",
bb->index);
err = 1;
}
if (decl_function_context (LABEL_EXPR_LABEL (stmt))
!= current_function_decl)
{
error ("label ");
print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
fprintf (stderr, " has incorrect context in bb %d",
bb->index);
err = 1;
}
}
/* Verify that body of basic block BB is free of control flow. */
for (; !bsi_end_p (bsi); bsi_next (&bsi))
{
tree stmt = bsi_stmt (bsi);
if (found_ctrl_stmt)
{
error ("control flow in the middle of basic block %d",
bb->index);
err = 1;
}
if (stmt_ends_bb_p (stmt))
found_ctrl_stmt = true;
if (TREE_CODE (stmt) == LABEL_EXPR)
{
error ("label ");
print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
fprintf (stderr, " in the middle of basic block %d", bb->index);
err = 1;
}
}
bsi = bsi_last (bb);
if (bsi_end_p (bsi))
continue;
stmt = bsi_stmt (bsi);
err |= verify_eh_edges (stmt);
if (is_ctrl_stmt (stmt))
{
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & EDGE_FALLTHRU)
{
error ("fallthru edge after a control statement in bb %d",
bb->index);
err = 1;
}
}
if (TREE_CODE (stmt) != COND_EXPR)
{
/* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
after anything else but if statement. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
{
error ("true/false edge after a non-COND_EXPR in bb %d",
bb->index);
err = 1;
}
}
switch (TREE_CODE (stmt))
{
case COND_EXPR:
{
edge true_edge;
edge false_edge;
if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
|| TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
{
error ("structured COND_EXPR at the end of bb %d", bb->index);
err = 1;
}
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
if (!true_edge || !false_edge
|| !(true_edge->flags & EDGE_TRUE_VALUE)
|| !(false_edge->flags & EDGE_FALSE_VALUE)
|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|| EDGE_COUNT (bb->succs) >= 3)
{
error ("wrong outgoing edge flags at end of bb %d",
bb->index);
err = 1;
}
if (!has_label_p (true_edge->dest,
GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
{
error ("%<then%> label does not match edge at end of bb %d",
bb->index);
err = 1;
}
if (!has_label_p (false_edge->dest,
GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
{
error ("%<else%> label does not match edge at end of bb %d",
bb->index);
err = 1;
}
}
break;
case GOTO_EXPR:
if (simple_goto_p (stmt))
{
error ("explicit goto at end of bb %d", bb->index);
err = 1;
}
else
{
/* FIXME. We should double check that the labels in the
destination blocks have their address taken. */
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE))
|| !(e->flags & EDGE_ABNORMAL))
{
error ("wrong outgoing edge flags at end of bb %d",
bb->index);
err = 1;
}
}
break;
case RETURN_EXPR:
if (!single_succ_p (bb)
|| (single_succ_edge (bb)->flags
& (EDGE_FALLTHRU | EDGE_ABNORMAL
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
{
error ("wrong outgoing edge flags at end of bb %d", bb->index);
err = 1;
}
if (single_succ (bb) != EXIT_BLOCK_PTR)
{
error ("return edge does not point to exit in bb %d",
bb->index);
err = 1;
}
break;
case SWITCH_EXPR:
{
tree prev;
edge e;
size_t i, n;
tree vec;
vec = SWITCH_LABELS (stmt);
n = TREE_VEC_LENGTH (vec);
/* Mark all the destination basic blocks. */
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
basic_block label_bb = label_to_block (lab);
gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
label_bb->aux = (void *)1;
}
/* Verify that the case labels are sorted. */
prev = TREE_VEC_ELT (vec, 0);
for (i = 1; i < n - 1; ++i)
{
tree c = TREE_VEC_ELT (vec, i);
if (! CASE_LOW (c))
{
error ("found default case not at end of case vector");
err = 1;
continue;
}
if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
{
error ("case labels not sorted: ");
print_generic_expr (stderr, prev, 0);
fprintf (stderr," is greater than ");
print_generic_expr (stderr, c, 0);
fprintf (stderr," but comes before it.\n");
err = 1;
}
prev = c;
}
if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
{
error ("no default case found at end of case vector");
err = 1;
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!e->dest->aux)
{
error ("extra outgoing edge %d->%d",
bb->index, e->dest->index);
err = 1;
}
e->dest->aux = (void *)2;
if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
{
error ("wrong outgoing edge flags at end of bb %d",
bb->index);
err = 1;
}
}
/* Check that we have all of them. */
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
basic_block label_bb = label_to_block (lab);
if (label_bb->aux != (void *)2)
{
error ("missing edge %i->%i",
bb->index, label_bb->index);
err = 1;
}
}
FOR_EACH_EDGE (e, ei, bb->succs)
e->dest->aux = (void *)0;
}
default: ;
}
}
if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
verify_dominators (CDI_DOMINATORS);
return err;
}
/* Updates phi nodes after creating a forwarder block joined
by edge FALLTHRU. */
static void
tree_make_forwarder_block (edge fallthru)
{
edge e;
edge_iterator ei;
basic_block dummy, bb;
tree phi, new_phi, var;
dummy = fallthru->src;
bb = fallthru->dest;
if (single_pred_p (bb))
return;
/* If we redirected a branch we must create new phi nodes at the
start of BB. */
for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
{
var = PHI_RESULT (phi);
new_phi = create_phi_node (var, bb);
SSA_NAME_DEF_STMT (var) = new_phi;
SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
}
/* Ensure that the PHI node chain is in the same order. */
set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
/* Add the arguments we have stored on edges. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e == fallthru)
continue;
flush_pending_stmts (e);
}
}
/* Return a non-special label in the head of basic block BLOCK.
Create one if it doesn't exist. */
tree
tree_block_label (basic_block bb)
{
block_stmt_iterator i, s = bsi_start (bb);
bool first = true;
tree label, stmt;
for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
{
stmt = bsi_stmt (i);
if (TREE_CODE (stmt) != LABEL_EXPR)
break;
label = LABEL_EXPR_LABEL (stmt);
if (!DECL_NONLOCAL (label))
{
if (!first)
bsi_move_before (&i, &s);
return label;
}
}
label = create_artificial_label ();
stmt = build1 (LABEL_EXPR, void_type_node, label);
bsi_insert_before (&s, stmt, BSI_NEW_STMT);
return label;
}
/* Attempt to perform edge redirection by replacing a possibly complex
jump instruction by a goto or by removing the jump completely.
This can apply only if all edges now point to the same block. The
parameters and return values are equivalent to
redirect_edge_and_branch. */
static edge
tree_try_redirect_by_replacing_jump (edge e, basic_block target)
{
basic_block src = e->src;
block_stmt_iterator b;
tree stmt;
/* We can replace or remove a complex jump only when we have exactly
two edges. */
if (EDGE_COUNT (src->succs) != 2
/* Verify that all targets will be TARGET. Specifically, the
edge that is not E must also go to TARGET. */
|| EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
return NULL;
b = bsi_last (src);
if (bsi_end_p (b))
return NULL;
stmt = bsi_stmt (b);
if (TREE_CODE (stmt) == COND_EXPR
|| TREE_CODE (stmt) == SWITCH_EXPR)
{
bsi_remove (&b, true);
e = ssa_redirect_edge (e, target);
e->flags = EDGE_FALLTHRU;
return e;
}
return NULL;
}
/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
edge representing the redirected branch. */
static edge
tree_redirect_edge_and_branch (edge e, basic_block dest)
{
basic_block bb = e->src;
block_stmt_iterator bsi;
edge ret;
tree label, stmt;
if (e->flags & EDGE_ABNORMAL)
return NULL;
if (e->src != ENTRY_BLOCK_PTR
&& (ret = tree_try_redirect_by_replacing_jump (e, dest)))
return ret;
if (e->dest == dest)
return NULL;
label = tree_block_label (dest);
bsi = bsi_last (bb);
stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
{
case COND_EXPR:
stmt = (e->flags & EDGE_TRUE_VALUE
? COND_EXPR_THEN (stmt)
: COND_EXPR_ELSE (stmt));
GOTO_DESTINATION (stmt) = label;
break;
case GOTO_EXPR:
/* No non-abnormal edges should lead from a non-simple goto, and
simple ones should be represented implicitly. */
gcc_unreachable ();
case SWITCH_EXPR:
{
tree cases = get_cases_for_edge (e, stmt);
/* If we have a list of cases associated with E, then use it
as it's a lot faster than walking the entire case vector. */
if (cases)
{
edge e2 = find_edge (e->src, dest);
tree last, first;
first = cases;
while (cases)
{
last = cases;
CASE_LABEL (cases) = label;
cases = TREE_CHAIN (cases);
}
/* If there was already an edge in the CFG, then we need
to move all the cases associated with E to E2. */
if (e2)
{
tree cases2 = get_cases_for_edge (e2, stmt);
TREE_CHAIN (last) = TREE_CHAIN (cases2);
TREE_CHAIN (cases2) = first;
}
}
else
{
tree vec = SWITCH_LABELS (stmt);
size_t i, n = TREE_VEC_LENGTH (vec);
for (i = 0; i < n; i++)
{
tree elt = TREE_VEC_ELT (vec, i);
if (label_to_block (CASE_LABEL (elt)) == e->dest)
CASE_LABEL (elt) = label;
}
}
break;
}
case RETURN_EXPR:
bsi_remove (&bsi, true);
e->flags |= EDGE_FALLTHRU;
break;
default:
/* Otherwise it must be a fallthru edge, and we don't need to
do anything besides redirecting it. */
gcc_assert (e->flags & EDGE_FALLTHRU);
break;
}
/* Update/insert PHI nodes as necessary. */
/* Now update the edges in the CFG. */
e = ssa_redirect_edge (e, dest);
return e;
}
/* Simple wrapper, as we can always redirect fallthru edges. */
static basic_block
tree_redirect_edge_and_branch_force (edge e, basic_block dest)
{
e = tree_redirect_edge_and_branch (e, dest);
gcc_assert (e);
return NULL;
}
/* Splits basic block BB after statement STMT (but at least after the
labels). If STMT is NULL, BB is split just after the labels. */
static basic_block
tree_split_block (basic_block bb, void *stmt)
{
block_stmt_iterator bsi;
tree_stmt_iterator tsi_tgt;
tree act;
basic_block new_bb;
edge e;
edge_iterator ei;
new_bb = create_empty_bb (bb);
/* Redirect the outgoing edges. */
new_bb->succs = bb->succs;
bb->succs = NULL;
FOR_EACH_EDGE (e, ei, new_bb->succs)
e->src = new_bb;
if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
stmt = NULL;
/* Move everything from BSI to the new basic block. */
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
act = bsi_stmt (bsi);
if (TREE_CODE (act) == LABEL_EXPR)
continue;
if (!stmt)
break;
if (stmt == act)
{
bsi_next (&bsi);
break;
}
}
if (bsi_end_p (bsi))
return new_bb;
/* Split the statement list - avoid re-creating new containers as this
brings ugly quadratic memory consumption in the inliner.
(We are still quadratic since we need to update stmt BB pointers,
sadly.) */
new_bb->stmt_list = tsi_split_statement_list_before (&bsi.tsi);
for (tsi_tgt = tsi_start (new_bb->stmt_list);
!tsi_end_p (tsi_tgt); tsi_next (&tsi_tgt))
change_bb_for_stmt (tsi_stmt (tsi_tgt), new_bb);
return new_bb;
}
/* Moves basic block BB after block AFTER. */
static bool
tree_move_block_after (basic_block bb, basic_block after)
{
if (bb->prev_bb == after)
return true;
unlink_block (bb);
link_block (bb, after);
return true;
}
/* Return true if basic_block can be duplicated. */
static bool
tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
{
return true;
}
/* Create a duplicate of the basic block BB. NOTE: This does not
preserve SSA form. */
static basic_block
tree_duplicate_bb (basic_block bb)
{
basic_block new_bb;
block_stmt_iterator bsi, bsi_tgt;
tree phi;
new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
/* Copy the PHI nodes. We ignore PHI node arguments here because
the incoming edges have not been setup yet. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
}
/* Keep the chain of PHI nodes in the same order so that they can be
updated by ssa_redirect_edge. */
set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
bsi_tgt = bsi_start (new_bb);
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
def_operand_p def_p;
ssa_op_iter op_iter;
tree stmt, copy;
int region;
stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) == LABEL_EXPR)
continue;
/* Create a new copy of STMT and duplicate STMT's virtual
operands. */
copy = unshare_expr (stmt);
bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
copy_virtual_operands (copy, stmt);
region = lookup_stmt_eh_region (stmt);
if (region >= 0)
add_stmt_to_eh_region (copy, region);
/* Create new names for all the definitions created by COPY and
add replacement mappings for each new name. */
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
}
return new_bb;
}
/* Basic block BB_COPY was created by code duplication. Add phi node
arguments for edges going out of BB_COPY. The blocks that were
duplicated have BB_DUPLICATED set. */
void
add_phi_args_after_copy_bb (basic_block bb_copy)
{
basic_block bb, dest;
edge e, e_copy;
edge_iterator ei;
tree phi, phi_copy, phi_next, def;
bb = get_bb_original (bb_copy);
FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
{
if (!phi_nodes (e_copy->dest))
continue;
if (e_copy->dest->flags & BB_DUPLICATED)
dest = get_bb_original (e_copy->dest);
else
dest = e_copy->dest;
e = find_edge (bb, dest);
if (!e)
{
/* During loop unrolling the target of the latch edge is copied.
In this case we are not looking for edge to dest, but to
duplicated block whose original was dest. */
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->dest->flags & BB_DUPLICATED)
&& get_bb_original (e->dest) == dest)
break;
gcc_assert (e != NULL);
}
for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
phi;
phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
{
phi_next = PHI_CHAIN (phi);
def = PHI_ARG_DEF_FROM_EDGE (phi, e);
add_phi_arg (phi_copy, def, e_copy);
}
}
}
/* Blocks in REGION_COPY array of length N_REGION were created by
duplication of basic blocks. Add phi node arguments for edges
going from these blocks. */
void
add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
{
unsigned i;
for (i = 0; i < n_region; i++)
region_copy[i]->flags |= BB_DUPLICATED;
for (i = 0; i < n_region; i++)
add_phi_args_after_copy_bb (region_copy[i]);
for (i = 0; i < n_region; i++)
region_copy[i]->flags &= ~BB_DUPLICATED;
}
/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
important exit edge EXIT. By important we mean that no SSA name defined
inside region is live over the other exit edges of the region. All entry
edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
to the duplicate of the region. SSA form, dominance and loop information
is updated. The new basic blocks are stored to REGION_COPY in the same
order as they had in REGION, provided that REGION_COPY is not NULL.
The function returns false if it is unable to copy the region,
true otherwise. */
bool
tree_duplicate_sese_region (edge entry, edge exit,
basic_block *region, unsigned n_region,
basic_block *region_copy)
{
unsigned i, n_doms;
bool free_region_copy = false, copying_header = false;
struct loop *loop = entry->dest->loop_father;
edge exit_copy;
basic_block *doms;
edge redirected;
int total_freq = 0, entry_freq = 0;
gcov_type total_count = 0, entry_count = 0;
if (!can_copy_bbs_p (region, n_region))
return false;
/* Some sanity checking. Note that we do not check for all possible
missuses of the functions. I.e. if you ask to copy something weird,
it will work, but the state of structures probably will not be
correct. */
for (i = 0; i < n_region; i++)
{
/* We do not handle subloops, i.e. all the blocks must belong to the
same loop. */
if (region[i]->loop_father != loop)
return false;
if (region[i] != entry->dest
&& region[i] == loop->header)
return false;
}
loop->copy = loop;
/* In case the function is used for loop header copying (which is the primary
use), ensure that EXIT and its copy will be new latch and entry edges. */
if (loop->header == entry->dest)
{
copying_header = true;
loop->copy = loop->outer;
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
return false;
for (i = 0; i < n_region; i++)
if (region[i] != exit->src
&& dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
return false;
}
if (!region_copy)
{
region_copy = XNEWVEC (basic_block, n_region);
free_region_copy = true;
}
gcc_assert (!need_ssa_update_p ());
/* Record blocks outside the region that are dominated by something
inside. */
doms = XNEWVEC (basic_block, n_basic_blocks);
initialize_original_copy_tables ();
n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);
if (entry->dest->count)
{
total_count = entry->dest->count;
entry_count = entry->count;
/* Fix up corner cases, to avoid division by zero or creation of negative
frequencies. */
if (entry_count > total_count)
entry_count = total_count;
}
else
{
total_freq = entry->dest->frequency;
entry_freq = EDGE_FREQUENCY (entry);
/* Fix up corner cases, to avoid division by zero or creation of negative
frequencies. */
if (total_freq == 0)
total_freq = 1;
else if (entry_freq > total_freq)
entry_freq = total_freq;
}
copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
split_edge_bb_loc (entry));
if (total_count)
{
scale_bbs_frequencies_gcov_type (region, n_region,
total_count - entry_count,
total_count);
scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
total_count);
}
else
{
scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
total_freq);
scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
}
if (copying_header)
{
loop->header = exit->dest;
loop->latch = exit->src;
}
/* Redirect the entry and add the phi node arguments. */
redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
gcc_assert (redirected != NULL);
flush_pending_stmts (entry);
/* Concerning updating of dominators: We must recount dominators
for entry block and its copy. Anything that is outside of the
region, but was dominated by something inside needs recounting as
well. */
set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
doms[n_doms++] = get_bb_original (entry->dest);
iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
free (doms);
/* Add the other PHI node arguments. */
add_phi_args_after_copy (region_copy, n_region);
/* Update the SSA web. */
update_ssa (TODO_update_ssa);
if (free_region_copy)
free (region_copy);
free_original_copy_tables ();
return true;
}
/*
DEF_VEC_P(basic_block);
DEF_VEC_ALLOC_P(basic_block,heap);
*/
/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
adding blocks when the dominator traversal reaches EXIT. This
function silently assumes that ENTRY strictly dominates EXIT. */
static void
gather_blocks_in_sese_region (basic_block entry, basic_block exit,
VEC(basic_block,heap) **bbs_p)
{
basic_block son;
for (son = first_dom_son (CDI_DOMINATORS, entry);
son;
son = next_dom_son (CDI_DOMINATORS, son))
{
VEC_safe_push (basic_block, heap, *bbs_p, son);
if (son != exit)
gather_blocks_in_sese_region (son, exit, bbs_p);
}
}
struct move_stmt_d
{
tree block;
tree from_context;
tree to_context;
bitmap vars_to_remove;
htab_t new_label_map;
bool remap_decls_p;
};
/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
contained in *TP and change the DECL_CONTEXT of every local
variable referenced in *TP. */
static tree
move_stmt_r (tree *tp, int *walk_subtrees, void *data)
{
struct move_stmt_d *p = (struct move_stmt_d *) data;
tree t = *tp;
if (p->block && IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (t))))
TREE_BLOCK (t) = p->block;
if (OMP_DIRECTIVE_P (t)
&& TREE_CODE (t) != OMP_RETURN
&& TREE_CODE (t) != OMP_CONTINUE)
{
/* Do not remap variables inside OMP directives. Variables
referenced in clauses and directive header belong to the
parent function and should not be moved into the child
function. */
bool save_remap_decls_p = p->remap_decls_p;
p->remap_decls_p = false;
*walk_subtrees = 0;
walk_tree (&OMP_BODY (t), move_stmt_r, p, NULL);
p->remap_decls_p = save_remap_decls_p;
}
else if (DECL_P (t) && DECL_CONTEXT (t) == p->from_context)
{
if (TREE_CODE (t) == LABEL_DECL)
{
if (p->new_label_map)
{
struct tree_map in, *out;
in.from = t;
out = htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
if (out)
*tp = t = out->to;
}
DECL_CONTEXT (t) = p->to_context;
}
else if (p->remap_decls_p)
{
DECL_CONTEXT (t) = p->to_context;
if (TREE_CODE (t) == VAR_DECL)
{
struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
f->unexpanded_var_list
= tree_cons (0, t, f->unexpanded_var_list);
/* Mark T to be removed from the original function,
otherwise it will be given a DECL_RTL when the
original function is expanded. */
bitmap_set_bit (p->vars_to_remove, DECL_UID (t));
}
}
}
else if (TYPE_P (t))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Move basic block BB from function CFUN to function DEST_FN. The
block is moved out of the original linked list and placed after
block AFTER in the new list. Also, the block is removed from the
original array of blocks and placed in DEST_FN's array of blocks.
If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
updated to reflect the moved edges.
On exit, local variables that need to be removed from
CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE. */
static void
move_block_to_fn (struct function *dest_cfun, basic_block bb,
basic_block after, bool update_edge_count_p,
bitmap vars_to_remove, htab_t new_label_map, int eh_offset)
{
struct control_flow_graph *cfg;
edge_iterator ei;
edge e;
block_stmt_iterator si;
struct move_stmt_d d;
unsigned old_len, new_len;
basic_block *addr;
/* Link BB to the new linked list. */
move_block_after (bb, after);
/* Update the edge count in the corresponding flowgraphs. */
if (update_edge_count_p)
FOR_EACH_EDGE (e, ei, bb->succs)
{
cfun->cfg->x_n_edges--;
dest_cfun->cfg->x_n_edges++;
}
/* Remove BB from the original basic block array. */
VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
cfun->cfg->x_n_basic_blocks--;
/* Grow DEST_CFUN's basic block array if needed. */
cfg = dest_cfun->cfg;
cfg->x_n_basic_blocks++;
if (bb->index > cfg->x_last_basic_block)
cfg->x_last_basic_block = bb->index;
old_len = VEC_length (basic_block, cfg->x_basic_block_info);
if ((unsigned) cfg->x_last_basic_block >= old_len)
{
new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
VEC_safe_grow (basic_block, gc, cfg->x_basic_block_info, new_len);
addr = VEC_address (basic_block, cfg->x_basic_block_info);
memset (&addr[old_len], 0, sizeof (basic_block) * (new_len - old_len));
}
VEC_replace (basic_block, cfg->x_basic_block_info,
cfg->x_last_basic_block, bb);
/* The statements in BB need to be associated with a new TREE_BLOCK.
Labels need to be associated with a new label-to-block map. */
memset (&d, 0, sizeof (d));
d.vars_to_remove = vars_to_remove;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
int region;
d.from_context = cfun->decl;
d.to_context = dest_cfun->decl;
d.remap_decls_p = true;
d.new_label_map = new_label_map;
if (TREE_BLOCK (stmt))
d.block = DECL_INITIAL (dest_cfun->decl);
walk_tree (&stmt, move_stmt_r, &d, NULL);
if (TREE_CODE (stmt) == LABEL_EXPR)
{
tree label = LABEL_EXPR_LABEL (stmt);
int uid = LABEL_DECL_UID (label);
gcc_assert (uid > -1);
old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
if (old_len <= (unsigned) uid)
{
new_len = 3 * uid / 2;
VEC_safe_grow (basic_block, gc, cfg->x_label_to_block_map,
new_len);
addr = VEC_address (basic_block, cfg->x_label_to_block_map);
memset (&addr[old_len], 0,
sizeof (basic_block) * (new_len - old_len));
}
VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
if (uid >= dest_cfun->last_label_uid)
dest_cfun->last_label_uid = uid + 1;
}
else if (TREE_CODE (stmt) == RESX_EXPR && eh_offset != 0)
TREE_OPERAND (stmt, 0) =
build_int_cst (NULL_TREE,
TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0))
+ eh_offset);
region = lookup_stmt_eh_region (stmt);
if (region >= 0)
{
add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
remove_stmt_from_eh_region (stmt);
}
}
}
/* Examine the statements in BB (which is in SRC_CFUN); find and return
the outermost EH region. Use REGION as the incoming base EH region. */
static int
find_outermost_region_in_block (struct function *src_cfun,
basic_block bb, int region)
{
block_stmt_iterator si;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
int stmt_region;
if (TREE_CODE (stmt) == RESX_EXPR)
stmt_region = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
else
stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
if (stmt_region > 0)
{
if (region < 0)
region = stmt_region;
else if (stmt_region != region)
{
region = eh_region_outermost (src_cfun, stmt_region, region);
gcc_assert (region != -1);
}
}
}
return region;
}
static tree
new_label_mapper (tree decl, void *data)
{
htab_t hash = (htab_t) data;
struct tree_map *m;
void **slot;
gcc_assert (TREE_CODE (decl) == LABEL_DECL);
m = xmalloc (sizeof (struct tree_map));
m->hash = DECL_UID (decl);
m->from = decl;
m->to = create_artificial_label ();
LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
gcc_assert (*slot == NULL);
*slot = m;
return m->to;
}
/* Move a single-entry, single-exit region delimited by ENTRY_BB and
EXIT_BB to function DEST_CFUN. The whole region is replaced by a
single basic block in the original CFG and the new basic block is
returned. DEST_CFUN must not have a CFG yet.
Note that the region need not be a pure SESE region. Blocks inside
the region may contain calls to abort/exit. The only restriction
is that ENTRY_BB should be the only entry point and it must
dominate EXIT_BB.
All local variables referenced in the region are assumed to be in
the corresponding BLOCK_VARS and unexpanded variable lists
associated with DEST_CFUN. */
basic_block
move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
basic_block exit_bb)
{
VEC(basic_block,heap) *bbs;
basic_block after, bb, *entry_pred, *exit_succ;
struct function *saved_cfun;
int *entry_flag, *exit_flag, eh_offset;
unsigned i, num_entry_edges, num_exit_edges;
edge e;
edge_iterator ei;
bitmap vars_to_remove;
htab_t new_label_map;
saved_cfun = cfun;
/* Collect all the blocks in the region. Manually add ENTRY_BB
because it won't be added by dfs_enumerate_from. */
calculate_dominance_info (CDI_DOMINATORS);
/* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
region. */
gcc_assert (entry_bb != exit_bb
&& (!exit_bb
|| dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
bbs = NULL;
VEC_safe_push (basic_block, heap, bbs, entry_bb);
gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
/* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
the predecessor edges to ENTRY_BB and the successor edges to
EXIT_BB so that we can re-attach them to the new basic block that
will replace the region. */
num_entry_edges = EDGE_COUNT (entry_bb->preds);
entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
i = 0;
for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
{
entry_flag[i] = e->flags;
entry_pred[i++] = e->src;
remove_edge (e);
}
if (exit_bb)
{
num_exit_edges = EDGE_COUNT (exit_bb->succs);
exit_succ = (basic_block *) xcalloc (num_exit_edges,
sizeof (basic_block));
exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
i = 0;
for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
{
exit_flag[i] = e->flags;
exit_succ[i++] = e->dest;
remove_edge (e);
}
}
else
{
num_exit_edges = 0;
exit_succ = NULL;
exit_flag = NULL;
}
/* Switch context to the child function to initialize DEST_FN's CFG. */
gcc_assert (dest_cfun->cfg == NULL);
cfun = dest_cfun;
init_empty_tree_cfg ();
/* Initialize EH information for the new function. */
eh_offset = 0;
new_label_map = NULL;
if (saved_cfun->eh)
{
int region = -1;
for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
region = find_outermost_region_in_block (saved_cfun, bb, region);
init_eh_for_function ();
if (region != -1)
{
new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
new_label_map, region, 0);
}
}
cfun = saved_cfun;
/* Move blocks from BBS into DEST_CFUN. */
gcc_assert (VEC_length (basic_block, bbs) >= 2);
after = dest_cfun->cfg->x_entry_block_ptr;
vars_to_remove = BITMAP_ALLOC (NULL);
for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
{
/* No need to update edge counts on the last block. It has
already been updated earlier when we detached the region from
the original CFG. */
move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove,
new_label_map, eh_offset);
after = bb;
}
if (new_label_map)
htab_delete (new_label_map);
/* Remove the variables marked in VARS_TO_REMOVE from
CFUN->UNEXPANDED_VAR_LIST. Otherwise, they will be given a
DECL_RTL in the context of CFUN. */
if (!bitmap_empty_p (vars_to_remove))
{
tree *p;
for (p = &cfun->unexpanded_var_list; *p; )
{
tree var = TREE_VALUE (*p);
if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
{
*p = TREE_CHAIN (*p);
continue;
}
p = &TREE_CHAIN (*p);
}
}
BITMAP_FREE (vars_to_remove);
/* Rewire the entry and exit blocks. The successor to the entry
block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
the child function. Similarly, the predecessor of DEST_FN's
EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
various CFG manipulation function get to the right CFG.
FIXME, this is silly. The CFG ought to become a parameter to
these helpers. */
cfun = dest_cfun;
make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
if (exit_bb)
make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
cfun = saved_cfun;
/* Back in the original function, the SESE region has disappeared,
create a new basic block in its place. */
bb = create_empty_bb (entry_pred[0]);
for (i = 0; i < num_entry_edges; i++)
make_edge (entry_pred[i], bb, entry_flag[i]);
for (i = 0; i < num_exit_edges; i++)
make_edge (bb, exit_succ[i], exit_flag[i]);
if (exit_bb)
{
free (exit_flag);
free (exit_succ);
}
free (entry_flag);
free (entry_pred);
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
VEC_free (basic_block, heap, bbs);
return bb;
}
/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
void
dump_function_to_file (tree fn, FILE *file, int flags)
{
tree arg, vars, var;
bool ignore_topmost_bind = false, any_var = false;
basic_block bb;
tree chain;
struct function *saved_cfun;
fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
arg = DECL_ARGUMENTS (fn);
while (arg)
{
print_generic_expr (file, arg, dump_flags);
if (TREE_CHAIN (arg))
fprintf (file, ", ");
arg = TREE_CHAIN (arg);
}
fprintf (file, ")\n");
if (flags & TDF_DETAILS)
dump_eh_tree (file, DECL_STRUCT_FUNCTION (fn));
if (flags & TDF_RAW)
{
dump_node (fn, TDF_SLIM | flags, file);
return;
}
/* Switch CFUN to point to FN. */
saved_cfun = cfun;
cfun = DECL_STRUCT_FUNCTION (fn);
/* When GIMPLE is lowered, the variables are no longer available in
BIND_EXPRs, so display them separately. */
if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
{
ignore_topmost_bind = true;
fprintf (file, "{\n");
for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
{
var = TREE_VALUE (vars);
print_generic_decl (file, var, flags);
fprintf (file, "\n");
any_var = true;
}
}
if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
{
/* Make a CFG based dump. */
check_bb_profile (ENTRY_BLOCK_PTR, file);
if (!ignore_topmost_bind)
fprintf (file, "{\n");
if (any_var && n_basic_blocks)
fprintf (file, "\n");
FOR_EACH_BB (bb)
dump_generic_bb (file, bb, 2, flags);
fprintf (file, "}\n");
check_bb_profile (EXIT_BLOCK_PTR, file);
}
else
{
int indent;
/* Make a tree based dump. */
chain = DECL_SAVED_TREE (fn);
if (chain && TREE_CODE (chain) == BIND_EXPR)
{
if (ignore_topmost_bind)
{
chain = BIND_EXPR_BODY (chain);
indent = 2;
}
else
indent = 0;
}
else
{
if (!ignore_topmost_bind)
fprintf (file, "{\n");
indent = 2;
}
if (any_var)
fprintf (file, "\n");
print_generic_stmt_indented (file, chain, flags, indent);
if (ignore_topmost_bind)
fprintf (file, "}\n");
}
fprintf (file, "\n\n");
/* Restore CFUN. */
cfun = saved_cfun;
}
/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
void
debug_function (tree fn, int flags)
{
dump_function_to_file (fn, stderr, flags);
}
/* Pretty print of the loops intermediate representation. */
static void print_loop (FILE *, struct loop *, int);
static void print_pred_bbs (FILE *, basic_block bb);
static void print_succ_bbs (FILE *, basic_block bb);
/* Print on FILE the indexes for the predecessors of basic_block BB. */
static void
print_pred_bbs (FILE *file, basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
fprintf (file, "bb_%d ", e->src->index);
}
/* Print on FILE the indexes for the successors of basic_block BB. */
static void
print_succ_bbs (FILE *file, basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
fprintf (file, "bb_%d ", e->dest->index);
}
/* Pretty print LOOP on FILE, indented INDENT spaces. */
static void
print_loop (FILE *file, struct loop *loop, int indent)
{
char *s_indent;
basic_block bb;
if (loop == NULL)
return;
s_indent = (char *) alloca ((size_t) indent + 1);
memset ((void *) s_indent, ' ', (size_t) indent);
s_indent[indent] = '\0';
/* Print the loop's header. */
fprintf (file, "%sloop_%d\n", s_indent, loop->num);
/* Print the loop's body. */
fprintf (file, "%s{\n", s_indent);
FOR_EACH_BB (bb)
if (bb->loop_father == loop)
{
/* Print the basic_block's header. */
fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
print_pred_bbs (file, bb);
fprintf (file, "}, succs = {");
print_succ_bbs (file, bb);
fprintf (file, "})\n");
/* Print the basic_block's body. */
fprintf (file, "%s {\n", s_indent);
tree_dump_bb (bb, file, indent + 4);
fprintf (file, "%s }\n", s_indent);
}
print_loop (file, loop->inner, indent + 2);
fprintf (file, "%s}\n", s_indent);
print_loop (file, loop->next, indent);
}
/* Follow a CFG edge from the entry point of the program, and on entry
of a loop, pretty print the loop structure on FILE. */
void
print_loop_ir (FILE *file)
{
basic_block bb;
bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
if (bb && bb->loop_father)
print_loop (file, bb->loop_father, 0);
}
/* Debugging loops structure at tree level. */
void
debug_loop_ir (void)
{
print_loop_ir (stderr);
}
/* Return true if BB ends with a call, possibly followed by some
instructions that must stay with the call. Return false,
otherwise. */
static bool
tree_block_ends_with_call_p (basic_block bb)
{
block_stmt_iterator bsi = bsi_last (bb);
return get_call_expr_in (bsi_stmt (bsi)) != NULL;
}
/* Return true if BB ends with a conditional branch. Return false,
otherwise. */
static bool
tree_block_ends_with_condjump_p (basic_block bb)
{
tree stmt = last_stmt (bb);
return (stmt && TREE_CODE (stmt) == COND_EXPR);
}
/* Return true if we need to add fake edge to exit at statement T.
Helper function for tree_flow_call_edges_add. */
static bool
need_fake_edge_p (tree t)
{
tree call;
/* NORETURN and LONGJMP calls already have an edge to exit.
CONST and PURE calls do not need one.
We don't currently check for CONST and PURE here, although
it would be a good idea, because those attributes are
figured out from the RTL in mark_constant_function, and
the counter incrementation code from -fprofile-arcs
leads to different results from -fbranch-probabilities. */
call = get_call_expr_in (t);
if (call
&& !(call_expr_flags (call) & ECF_NORETURN))
return true;
if (TREE_CODE (t) == ASM_EXPR
&& (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
return true;
return false;
}
/* Add fake edges to the function exit for any non constant and non
noreturn calls, volatile inline assembly in the bitmap of blocks
specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
the number of blocks that were split.
The goal is to expose cases in which entering a basic block does
not imply that all subsequent instructions must be executed. */
static int
tree_flow_call_edges_add (sbitmap blocks)
{
int i;
int blocks_split = 0;
int last_bb = last_basic_block;
bool check_last_block = false;
if (n_basic_blocks == NUM_FIXED_BLOCKS)
return 0;
if (! blocks)
check_last_block = true;
else
check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
/* In the last basic block, before epilogue generation, there will be
a fallthru edge to EXIT. Special care is required if the last insn
of the last basic block is a call because make_edge folds duplicate
edges, which would result in the fallthru edge also being marked
fake, which would result in the fallthru edge being removed by
remove_fake_edges, which would result in an invalid CFG.
Moreover, we can't elide the outgoing fake edge, since the block
profiler needs to take this into account in order to solve the minimal
spanning tree in the case that the call doesn't return.
Handle this by adding a dummy instruction in a new last basic block. */
if (check_last_block)
{
basic_block bb = EXIT_BLOCK_PTR->prev_bb;
block_stmt_iterator bsi = bsi_last (bb);
tree t = NULL_TREE;
if (!bsi_end_p (bsi))
t = bsi_stmt (bsi);
if (t && need_fake_edge_p (t))
{
edge e;
e = find_edge (bb, EXIT_BLOCK_PTR);
if (e)
{
bsi_insert_on_edge (e, build_empty_stmt ());
bsi_commit_edge_inserts ();
}
}
}
/* Now add fake edges to the function exit for any non constant
calls since there is no way that we can determine if they will
return or not... */
for (i = 0; i < last_bb; i++)
{
basic_block bb = BASIC_BLOCK (i);
block_stmt_iterator bsi;
tree stmt, last_stmt;
if (!bb)
continue;
if (blocks && !TEST_BIT (blocks, i))
continue;
bsi = bsi_last (bb);
if (!bsi_end_p (bsi))
{
last_stmt = bsi_stmt (bsi);
do
{
stmt = bsi_stmt (bsi);
if (need_fake_edge_p (stmt))
{
edge e;
/* The handling above of the final block before the
epilogue should be enough to verify that there is
no edge to the exit block in CFG already.
Calling make_edge in such case would cause us to
mark that edge as fake and remove it later. */
#ifdef ENABLE_CHECKING
if (stmt == last_stmt)
{
e = find_edge (bb, EXIT_BLOCK_PTR);
gcc_assert (e == NULL);
}
#endif
/* Note that the following may create a new basic block
and renumber the existing basic blocks. */
if (stmt != last_stmt)
{
e = split_block (bb, stmt);
if (e)
blocks_split++;
}
make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
}
bsi_prev (&bsi);
}
while (!bsi_end_p (bsi));
}
}
if (blocks_split)
verify_flow_info ();
return blocks_split;
}
/* Purge dead abnormal call edges from basic block BB. */
bool
tree_purge_dead_abnormal_call_edges (basic_block bb)
{
bool changed = tree_purge_dead_eh_edges (bb);
if (current_function_has_nonlocal_label)
{
tree stmt = last_stmt (bb);
edge_iterator ei;
edge e;
if (!(stmt && tree_can_make_abnormal_goto (stmt)))
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
if (e->flags & EDGE_ABNORMAL)
{
remove_edge (e);
changed = true;
}
else
ei_next (&ei);
}
/* See tree_purge_dead_eh_edges below. */
if (changed)
free_dominance_info (CDI_DOMINATORS);
}
return changed;
}
/* Purge dead EH edges from basic block BB. */
bool
tree_purge_dead_eh_edges (basic_block bb)
{
bool changed = false;
edge e;
edge_iterator ei;
tree stmt = last_stmt (bb);
if (stmt && tree_can_throw_internal (stmt))
return false;
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
if (e->flags & EDGE_EH)
{
remove_edge (e);
changed = true;
}
else
ei_next (&ei);
}
/* Removal of dead EH edges might change dominators of not
just immediate successors. E.g. when bb1 is changed so that
it no longer can throw and bb1->bb3 and bb1->bb4 are dead
eh edges purged by this function in:
0
/ \
v v
1-->2
/ \ |
v v |
3-->4 |
\ v
--->5
|
-
idom(bb5) must be recomputed. For now just free the dominance
info. */
if (changed)
free_dominance_info (CDI_DOMINATORS);
return changed;
}
bool
tree_purge_all_dead_eh_edges (bitmap blocks)
{
bool changed = false;
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
{
changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
}
return changed;
}
/* This function is called whenever a new edge is created or
redirected. */
static void
tree_execute_on_growing_pred (edge e)
{
basic_block bb = e->dest;
if (phi_nodes (bb))
reserve_phi_args_for_new_edge (bb);
}
/* This function is called immediately before edge E is removed from
the edge vector E->dest->preds. */
static void
tree_execute_on_shrinking_pred (edge e)
{
if (phi_nodes (e->dest))
remove_phi_args (e);
}
/*---------------------------------------------------------------------------
Helper functions for Loop versioning
---------------------------------------------------------------------------*/
/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
of 'first'. Both of them are dominated by 'new_head' basic block. When
'new_head' was created by 'second's incoming edge it received phi arguments
on the edge by split_edge(). Later, additional edge 'e' was created to
connect 'new_head' and 'first'. Now this routine adds phi args on this
additional edge 'e' that new_head to second edge received as part of edge
splitting.
*/
static void
tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
basic_block new_head, edge e)
{
tree phi1, phi2;
edge e2 = find_edge (new_head, second);
/* Because NEW_HEAD has been created by splitting SECOND's incoming
edge, we should always have an edge from NEW_HEAD to SECOND. */
gcc_assert (e2 != NULL);
/* Browse all 'second' basic block phi nodes and add phi args to
edge 'e' for 'first' head. PHI args are always in correct order. */
for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
phi2 && phi1;
phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
{
tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
add_phi_arg (phi1, def, e);
}
}
/* Adds a if else statement to COND_BB with condition COND_EXPR.
SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
the destination of the ELSE part. */
static void
tree_lv_add_condition_to_bb (basic_block first_head, basic_block second_head,
basic_block cond_bb, void *cond_e)
{
block_stmt_iterator bsi;
tree goto1 = NULL_TREE;
tree goto2 = NULL_TREE;
tree new_cond_expr = NULL_TREE;
tree cond_expr = (tree) cond_e;
edge e0;
/* Build new conditional expr */
goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);
/* Add new cond in cond_bb. */
bsi = bsi_start (cond_bb);
bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
/* Adjust edges appropriately to connect new head with first head
as well as second head. */
e0 = single_succ_edge (cond_bb);
e0->flags &= ~EDGE_FALLTHRU;
e0->flags |= EDGE_FALSE_VALUE;
}
struct cfg_hooks tree_cfg_hooks = {
"tree",
tree_verify_flow_info,
tree_dump_bb, /* dump_bb */
create_bb, /* create_basic_block */
tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
remove_bb, /* delete_basic_block */
tree_split_block, /* split_block */
tree_move_block_after, /* move_block_after */
tree_can_merge_blocks_p, /* can_merge_blocks_p */
tree_merge_blocks, /* merge_blocks */
tree_predict_edge, /* predict_edge */
tree_predicted_by_p, /* predicted_by_p */
tree_can_duplicate_bb_p, /* can_duplicate_block_p */
tree_duplicate_bb, /* duplicate_block */
tree_split_edge, /* split_edge */
tree_make_forwarder_block, /* make_forward_block */
NULL, /* tidy_fallthru_edge */
tree_block_ends_with_call_p, /* block_ends_with_call_p */
tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
tree_flow_call_edges_add, /* flow_call_edges_add */
tree_execute_on_growing_pred, /* execute_on_growing_pred */
tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
extract_true_false_edges_from_block, /* extract_cond_bb_edges */
flush_pending_stmts /* flush_pending_stmts */
};
/* Split all critical edges. */
static unsigned int
split_critical_edges (void)
{
basic_block bb;
edge e;
edge_iterator ei;
/* split_edge can redirect edges out of SWITCH_EXPRs, which can get
expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
mappings around the calls to split_edge. */
start_recording_case_labels ();
FOR_ALL_BB (bb)
{
FOR_EACH_EDGE (e, ei, bb->succs)
if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
{
split_edge (e);
}
}
end_recording_case_labels ();
return 0;
}
struct tree_opt_pass pass_split_crit_edges =
{
"crited", /* name */
NULL, /* gate */
split_critical_edges, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SPLIT_EDGES, /* tv_id */
PROP_cfg, /* properties required */
PROP_no_crit_edges, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
/* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
a temporary, make sure and register it to be renamed if necessary,
and finally return the temporary. Put the statements to compute
EXP before the current statement in BSI. */
tree
gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
{
tree t, new_stmt, orig_stmt;
if (is_gimple_val (exp))
return exp;
t = make_rename_temp (type, NULL);
new_stmt = build2 (MODIFY_EXPR, type, t, exp);
orig_stmt = bsi_stmt (*bsi);
SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
if (in_ssa_p)
mark_new_vars_to_rename (new_stmt);
return t;
}
/* Build a ternary operation and gimplify it. Emit code before BSI.
Return the gimple_val holding the result. */
tree
gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
tree type, tree a, tree b, tree c)
{
tree ret;
ret = fold_build3 (code, type, a, b, c);
STRIP_NOPS (ret);
return gimplify_val (bsi, type, ret);
}
/* Build a binary operation and gimplify it. Emit code before BSI.
Return the gimple_val holding the result. */
tree
gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
tree type, tree a, tree b)
{
tree ret;
ret = fold_build2 (code, type, a, b);
STRIP_NOPS (ret);
return gimplify_val (bsi, type, ret);
}
/* Build a unary operation and gimplify it. Emit code before BSI.
Return the gimple_val holding the result. */
tree
gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
tree a)
{
tree ret;
ret = fold_build1 (code, type, a);
STRIP_NOPS (ret);
return gimplify_val (bsi, type, ret);
}
/* Emit return warnings. */
static unsigned int
execute_warn_function_return (void)
{
#ifdef USE_MAPPED_LOCATION
source_location location;
#else
location_t *locus;
#endif
tree last;
edge e;
edge_iterator ei;
/* If we have a path to EXIT, then we do return. */
if (TREE_THIS_VOLATILE (cfun->decl)
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
{
#ifdef USE_MAPPED_LOCATION
location = UNKNOWN_LOCATION;
#else
locus = NULL;
#endif
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
{
last = last_stmt (e->src);
if (TREE_CODE (last) == RETURN_EXPR
#ifdef USE_MAPPED_LOCATION
&& (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
#else
&& (locus = EXPR_LOCUS (last)) != NULL)
#endif
break;
}
#ifdef USE_MAPPED_LOCATION
if (location == UNKNOWN_LOCATION)
location = cfun->function_end_locus;
warning (0, "%H%<noreturn%> function does return", &location);
#else
if (!locus)
locus = &cfun->function_end_locus;
warning (0, "%H%<noreturn%> function does return", locus);
#endif
}
/* If we see "return;" in some basic block, then we do reach the end
without returning a value. */
else if (warn_return_type
&& !TREE_NO_WARNING (cfun->decl)
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
&& !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
{
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
{
tree last = last_stmt (e->src);
if (TREE_CODE (last) == RETURN_EXPR
&& TREE_OPERAND (last, 0) == NULL
&& !TREE_NO_WARNING (last))
{
#ifdef USE_MAPPED_LOCATION
location = EXPR_LOCATION (last);
if (location == UNKNOWN_LOCATION)
location = cfun->function_end_locus;
warning (0, "%Hcontrol reaches end of non-void function", &location);
#else
locus = EXPR_LOCUS (last);
if (!locus)
locus = &cfun->function_end_locus;
warning (0, "%Hcontrol reaches end of non-void function", locus);
#endif
TREE_NO_WARNING (cfun->decl) = 1;
break;
}
}
}
return 0;
}
/* Given a basic block B which ends with a conditional and has
precisely two successors, determine which of the edges is taken if
the conditional is true and which is taken if the conditional is
false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
void
extract_true_false_edges_from_block (basic_block b,
edge *true_edge,
edge *false_edge)
{
edge e = EDGE_SUCC (b, 0);
if (e->flags & EDGE_TRUE_VALUE)
{
*true_edge = e;
*false_edge = EDGE_SUCC (b, 1);
}
else
{
*false_edge = e;
*true_edge = EDGE_SUCC (b, 1);
}
}
struct tree_opt_pass pass_warn_function_return =
{
NULL, /* name */
NULL, /* gate */
execute_warn_function_return, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
0 /* letter */
};
/* Emit noreturn warnings. */
static unsigned int
execute_warn_function_noreturn (void)
{
if (warn_missing_noreturn
&& !TREE_THIS_VOLATILE (cfun->decl)
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
&& !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
"for attribute %<noreturn%>",
cfun->decl);
return 0;
}
struct tree_opt_pass pass_warn_function_noreturn =
{
NULL, /* name */
NULL, /* gate */
execute_warn_function_noreturn, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
0 /* letter */
};
|