1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
/* Code sinking for trees
Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "timevar.h"
#include "fibheap.h"
#include "hashtab.h"
#include "tree-iterator.h"
#include "real.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "flags.h"
#include "bitmap.h"
#include "langhooks.h"
#include "cfgloop.h"
/* TODO:
1. Sinking store only using scalar promotion (IE without moving the RHS):
*q = p;
p = p + 1;
if (something)
*q = <not p>;
else
y = *q;
should become
sinktemp = p;
p = p + 1;
if (something)
*q = <not p>;
else
{
*q = sinktemp;
y = *q
}
Store copy propagation will take care of the store elimination above.
2. Sinking using Partial Dead Code Elimination. */
static struct
{
/* The number of statements sunk down the flowgraph by code sinking. */
int sunk;
} sink_stats;
/* Given a PHI, and one of its arguments (DEF), find the edge for
that argument and return it. If the argument occurs twice in the PHI node,
we return NULL. */
static basic_block
find_bb_for_arg (tree phi, tree def)
{
int i;
bool foundone = false;
basic_block result = NULL;
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
if (PHI_ARG_DEF (phi, i) == def)
{
if (foundone)
return NULL;
foundone = true;
result = PHI_ARG_EDGE (phi, i)->src;
}
return result;
}
/* When the first immediate use is in a statement, then return true if all
immediate uses in IMM are in the same statement.
We could also do the case where the first immediate use is in a phi node,
and all the other uses are in phis in the same basic block, but this
requires some expensive checking later (you have to make sure no def/vdef
in the statement occurs for multiple edges in the various phi nodes it's
used in, so that you only have one place you can sink it to. */
static bool
all_immediate_uses_same_place (tree stmt)
{
tree firstuse = NULL_TREE;
ssa_op_iter op_iter;
imm_use_iterator imm_iter;
use_operand_p use_p;
tree var;
FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
{
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
{
if (firstuse == NULL_TREE)
firstuse = USE_STMT (use_p);
else
if (firstuse != USE_STMT (use_p))
return false;
}
}
return true;
}
/* Some global stores don't necessarily have V_MAY_DEF's of global variables,
but we still must avoid moving them around. */
bool
is_hidden_global_store (tree stmt)
{
/* Check virtual definitions. If we get here, the only virtual
definitions we should see are those generated by assignment
statements. */
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
{
tree lhs;
gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
/* Note that we must not check the individual virtual operands
here. In particular, if this is an aliased store, we could
end up with something like the following (SSA notation
redacted for brevity):
foo (int *p, int i)
{
int x;
p_1 = (i_2 > 3) ? &x : p;
# x_4 = V_MAY_DEF <x_3>
*p_1 = 5;
return 2;
}
Notice that the store to '*p_1' should be preserved, if we
were to check the virtual definitions in that store, we would
not mark it needed. This is because 'x' is not a global
variable.
Therefore, we check the base address of the LHS. If the
address is a pointer, we check if its name tag or symbol tag is
a global variable. Otherwise, we check if the base variable
is a global. */
lhs = TREE_OPERAND (stmt, 0);
if (REFERENCE_CLASS_P (lhs))
lhs = get_base_address (lhs);
if (lhs == NULL_TREE)
{
/* If LHS is NULL, it means that we couldn't get the base
address of the reference. In which case, we should not
move this store. */
return true;
}
else if (DECL_P (lhs))
{
/* If the store is to a global symbol, we need to keep it. */
if (is_global_var (lhs))
return true;
}
else if (INDIRECT_REF_P (lhs))
{
tree ptr = TREE_OPERAND (lhs, 0);
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
tree nmt = (pi) ? pi->name_mem_tag : NULL_TREE;
tree smt = var_ann (SSA_NAME_VAR (ptr))->symbol_mem_tag;
/* If either the name tag or the symbol tag for PTR is a
global variable, then the store is necessary. */
if ((nmt && is_global_var (nmt))
|| (smt && is_global_var (smt)))
{
return true;
}
}
else
gcc_unreachable ();
}
return false;
}
/* Find the nearest common dominator of all of the immediate uses in IMM. */
static basic_block
nearest_common_dominator_of_uses (tree stmt)
{
bitmap blocks = BITMAP_ALLOC (NULL);
basic_block commondom;
unsigned int j;
bitmap_iterator bi;
ssa_op_iter op_iter;
imm_use_iterator imm_iter;
use_operand_p use_p;
tree var;
bitmap_clear (blocks);
FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
{
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
{
tree usestmt = USE_STMT (use_p);
basic_block useblock;
if (TREE_CODE (usestmt) == PHI_NODE)
{
int idx = PHI_ARG_INDEX_FROM_USE (use_p);
useblock = PHI_ARG_EDGE (usestmt, idx)->src;
}
else
{
useblock = bb_for_stmt (usestmt);
}
/* Short circuit. Nothing dominates the entry block. */
if (useblock == ENTRY_BLOCK_PTR)
{
BITMAP_FREE (blocks);
return NULL;
}
bitmap_set_bit (blocks, useblock->index);
}
}
commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks));
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
BASIC_BLOCK (j));
BITMAP_FREE (blocks);
return commondom;
}
/* Given a statement (STMT) and the basic block it is currently in (FROMBB),
determine the location to sink the statement to, if any.
Return the basic block to sink it to, or NULL if we should not sink
it. */
static tree
statement_sink_location (tree stmt, basic_block frombb)
{
tree use, def;
use_operand_p one_use = NULL_USE_OPERAND_P;
basic_block sinkbb;
use_operand_p use_p;
def_operand_p def_p;
ssa_op_iter iter;
stmt_ann_t ann;
tree rhs;
imm_use_iterator imm_iter;
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
{
FOR_EACH_IMM_USE_FAST (one_use, imm_iter, def)
{
break;
}
if (one_use != NULL_USE_OPERAND_P)
break;
}
/* Return if there are no immediate uses of this stmt. */
if (one_use == NULL_USE_OPERAND_P)
return NULL;
if (TREE_CODE (stmt) != MODIFY_EXPR)
return NULL;
rhs = TREE_OPERAND (stmt, 1);
/* There are a few classes of things we can't or don't move, some because we
don't have code to handle it, some because it's not profitable and some
because it's not legal.
We can't sink things that may be global stores, at least not without
calculating a lot more information, because we may cause it to no longer
be seen by an external routine that needs it depending on where it gets
moved to.
We don't want to sink loads from memory.
We can't sink statements that end basic blocks without splitting the
incoming edge for the sink location to place it there.
We can't sink statements that have volatile operands.
We don't want to sink dead code, so anything with 0 immediate uses is not
sunk.
*/
ann = stmt_ann (stmt);
if (stmt_ends_bb_p (stmt)
|| TREE_SIDE_EFFECTS (rhs)
|| TREE_CODE (rhs) == EXC_PTR_EXPR
|| TREE_CODE (rhs) == FILTER_EXPR
|| is_hidden_global_store (stmt)
|| ann->has_volatile_ops
|| !ZERO_SSA_OPERANDS (stmt, SSA_OP_VUSE))
return NULL;
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
{
tree def = DEF_FROM_PTR (def_p);
if (is_global_var (SSA_NAME_VAR (def))
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
return NULL;
}
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
{
tree use = USE_FROM_PTR (use_p);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
return NULL;
}
/* If all the immediate uses are not in the same place, find the nearest
common dominator of all the immediate uses. For PHI nodes, we have to
find the nearest common dominator of all of the predecessor blocks, since
that is where insertion would have to take place. */
if (!all_immediate_uses_same_place (stmt))
{
basic_block commondom = nearest_common_dominator_of_uses (stmt);
if (commondom == frombb)
return NULL;
/* Our common dominator has to be dominated by frombb in order to be a
trivially safe place to put this statement, since it has multiple
uses. */
if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
return NULL;
/* It doesn't make sense to move to a dominator that post-dominates
frombb, because it means we've just moved it into a path that always
executes if frombb executes, instead of reducing the number of
executions . */
if (dominated_by_p (CDI_POST_DOMINATORS, frombb, commondom))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not moving store, common dominator post-dominates from block.\n");
return NULL;
}
if (commondom == frombb || commondom->loop_depth > frombb->loop_depth)
return NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Common dominator of all uses is %d\n",
commondom->index);
}
return first_stmt (commondom);
}
use = USE_STMT (one_use);
if (TREE_CODE (use) != PHI_NODE)
{
sinkbb = bb_for_stmt (use);
if (sinkbb == frombb || sinkbb->loop_depth > frombb->loop_depth
|| sinkbb->loop_father != frombb->loop_father)
return NULL;
return use;
}
/* Note that at this point, all uses must be in the same statement, so it
doesn't matter which def op we choose, pick the first one. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
break;
sinkbb = find_bb_for_arg (use, def);
if (!sinkbb)
return NULL;
/* This will happen when you have
a_3 = PHI <a_13, a_26>
a_26 = V_MAY_DEF <a_3>
If the use is a phi, and is in the same bb as the def,
we can't sink it. */
if (bb_for_stmt (use) == frombb)
return NULL;
if (sinkbb == frombb || sinkbb->loop_depth > frombb->loop_depth
|| sinkbb->loop_father != frombb->loop_father)
return NULL;
return first_stmt (sinkbb);
}
/* Perform code sinking on BB */
static void
sink_code_in_bb (basic_block bb)
{
basic_block son;
block_stmt_iterator bsi;
edge_iterator ei;
edge e;
/* If this block doesn't dominate anything, there can't be any place to sink
the statements to. */
if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
goto earlyout;
/* We can't move things across abnormal edges, so don't try. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & EDGE_ABNORMAL)
goto earlyout;
for (bsi = bsi_last (bb); !bsi_end_p (bsi);)
{
tree stmt = bsi_stmt (bsi);
block_stmt_iterator tobsi;
tree sinkstmt;
sinkstmt = statement_sink_location (stmt, bb);
if (!sinkstmt)
{
if (!bsi_end_p (bsi))
bsi_prev (&bsi);
continue;
}
if (dump_file)
{
fprintf (dump_file, "Sinking ");
print_generic_expr (dump_file, stmt, TDF_VOPS);
fprintf (dump_file, " from bb %d to bb %d\n",
bb->index, bb_for_stmt (sinkstmt)->index);
}
tobsi = bsi_for_stmt (sinkstmt);
/* Find the first non-label. */
while (!bsi_end_p (tobsi)
&& TREE_CODE (bsi_stmt (tobsi)) == LABEL_EXPR)
bsi_next (&tobsi);
/* If this is the end of the basic block, we need to insert at the end
of the basic block. */
if (bsi_end_p (tobsi))
bsi_move_to_bb_end (&bsi, bb_for_stmt (sinkstmt));
else
bsi_move_before (&bsi, &tobsi);
sink_stats.sunk++;
if (!bsi_end_p (bsi))
bsi_prev (&bsi);
}
earlyout:
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
son;
son = next_dom_son (CDI_POST_DOMINATORS, son))
{
sink_code_in_bb (son);
}
}
/* Perform code sinking.
This moves code down the flowgraph when we know it would be
profitable to do so, or it wouldn't increase the number of
executions of the statement.
IE given
a_1 = b + c;
if (<something>)
{
}
else
{
foo (&b, &c);
a_5 = b + c;
}
a_6 = PHI (a_5, a_1);
USE a_6.
we'll transform this into:
if (<something>)
{
a_1 = b + c;
}
else
{
foo (&b, &c);
a_5 = b + c;
}
a_6 = PHI (a_5, a_1);
USE a_6.
Note that this reduces the number of computations of a = b + c to 1
when we take the else edge, instead of 2.
*/
static void
execute_sink_code (void)
{
struct loops *loops = loop_optimizer_init (LOOPS_NORMAL);
connect_infinite_loops_to_exit ();
memset (&sink_stats, 0, sizeof (sink_stats));
calculate_dominance_info (CDI_DOMINATORS | CDI_POST_DOMINATORS);
sink_code_in_bb (EXIT_BLOCK_PTR);
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, "Sunk statements:%d\n", sink_stats.sunk);
free_dominance_info (CDI_POST_DOMINATORS);
remove_fake_exit_edges ();
loop_optimizer_finalize (loops);
}
/* Gate and execute functions for PRE. */
static unsigned int
do_sink (void)
{
execute_sink_code ();
return 0;
}
static bool
gate_sink (void)
{
return flag_tree_sink != 0;
}
struct tree_opt_pass pass_sink_code =
{
"sink", /* name */
gate_sink, /* gate */
do_sink, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SINK, /* tv_id */
PROP_no_crit_edges | PROP_cfg
| PROP_ssa | PROP_alias, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa
| TODO_dump_func
| TODO_ggc_collect
| TODO_verify_ssa, /* todo_flags_finish */
0 /* letter */
};
|