1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
|
/* Decimal Number module for the decNumber C Library
Copyright (C) 2005 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* ------------------------------------------------------------------ */
/* This module comprises the routines for Standard Decimal Arithmetic */
/* as defined in the specification which may be found on the */
/* http://www2.hursley.ibm.com/decimal web pages. It implements both */
/* the full ('extended') arithmetic and the simpler ('subset') */
/* arithmetic. */
/* */
/* Usage notes: */
/* */
/* 1. This code is ANSI C89 except: */
/* */
/* a) Line comments (double forward slash) are used. (Most C */
/* compilers accept these. If yours does not, a simple script */
/* can be used to convert them to ANSI C comments.) */
/* */
/* b) Types from C99 stdint.h are used. If you do not have this */
/* header file, see the User's Guide section of the decNumber */
/* documentation; this lists the necessary definitions. */
/* */
/* c) If DECDPUN>4, non-ANSI 64-bit 'long long' types are used. */
/* To avoid these, set DECDPUN <= 4 (see documentation). */
/* */
/* 2. The decNumber format which this library uses is optimized for */
/* efficient processing of relatively short numbers; in particular */
/* it allows the use of fixed sized structures and minimizes copy */
/* and move operations. It does, however, support arbitrary */
/* precision (up to 999,999,999 digits) and arbitrary exponent */
/* range (Emax in the range 0 through 999,999,999 and Emin in the */
/* range -999,999,999 through 0). */
/* */
/* 3. Operands to operator functions are never modified unless they */
/* are also specified to be the result number (which is always */
/* permitted). Other than that case, operands may not overlap. */
/* */
/* 4. Error handling: the type of the error is ORed into the status */
/* flags in the current context (decContext structure). The */
/* SIGFPE signal is then raised if the corresponding trap-enabler */
/* flag in the decContext is set (is 1). */
/* */
/* It is the responsibility of the caller to clear the status */
/* flags as required. */
/* */
/* The result of any routine which returns a number will always */
/* be a valid number (which may be a special value, such as an */
/* Infinity or NaN). */
/* */
/* 5. The decNumber format is not an exchangeable concrete */
/* representation as it comprises fields which may be machine- */
/* dependent (big-endian or little-endian, for example). */
/* Canonical conversions to and from strings are provided; other */
/* conversions are available in separate modules. */
/* */
/* 6. Normally, input operands are assumed to be valid. Set DECCHECK */
/* to 1 for extended operand checking (including NULL operands). */
/* Results are undefined if a badly-formed structure (or a NULL */
/* NULL pointer to a structure) is provided, though with DECCHECK */
/* enabled the operator routines are protected against exceptions. */
/* (Except if the result pointer is NULL, which is unrecoverable.) */
/* */
/* However, the routines will never cause exceptions if they are */
/* given well-formed operands, even if the value of the operands */
/* is inappropriate for the operation and DECCHECK is not set. */
/* */
/* 7. Subset arithmetic is available only if DECSUBSET is set to 1. */
/* ------------------------------------------------------------------ */
/* Implementation notes for maintenance of this module: */
/* */
/* 1. Storage leak protection: Routines which use malloc are not */
/* permitted to use return for fastpath or error exits (i.e., */
/* they follow strict structured programming conventions). */
/* Instead they have a do{}while(0); construct surrounding the */
/* code which is protected -- break may be used from this. */
/* Other routines are allowed to use the return statement inline. */
/* */
/* Storage leak accounting can be enabled using DECALLOC. */
/* */
/* 2. All loops use the for(;;) construct. Any do construct is for */
/* protection as just described. */
/* */
/* 3. Setting status in the context must always be the very last */
/* action in a routine, as non-0 status may raise a trap and hence */
/* the call to set status may not return (if the handler uses long */
/* jump). Therefore all cleanup must be done first. In general, */
/* to achieve this we accumulate status and only finally apply it */
/* by calling decContextSetStatus (via decStatus). */
/* */
/* Routines which allocate storage cannot, therefore, use the */
/* 'top level' routines which could cause a non-returning */
/* transfer of control. The decXxxxOp routines are safe (do not */
/* call decStatus even if traps are set in the context) and should */
/* be used instead (they are also a little faster). */
/* */
/* 4. Exponent checking is minimized by allowing the exponent to */
/* grow outside its limits during calculations, provided that */
/* the decFinalize function is called later. Multiplication and */
/* division, and intermediate calculations in exponentiation, */
/* require more careful checks because of the risk of 31-bit */
/* overflow (the most negative valid exponent is -1999999997, for */
/* a 999999999-digit number with adjusted exponent of -999999999). */
/* */
/* 5. Rounding is deferred until finalization of results, with any */
/* 'off to the right' data being represented as a single digit */
/* residue (in the range -1 through 9). This avoids any double- */
/* rounding when more than one shortening takes place (for */
/* example, when a result is subnormal). */
/* */
/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
/* during many operations, so whole Units are handled and exact */
/* accounting of digits is not needed. The correct digits value */
/* is found by decGetDigits, which accounts for leading zeros. */
/* This must be called before any rounding if the number of digits */
/* is not known exactly. */
/* */
/* 7. We use the multiply-by-reciprocal 'trick' for partitioning */
/* numbers up to four digits, using appropriate constants. This */
/* is not useful for longer numbers because overflow of 32 bits */
/* would lead to 4 multiplies, which is almost as expensive as */
/* a divide (unless we assumed floating-point multiply available). */
/* */
/* 8. Unusual abbreviations possibly used in the commentary: */
/* lhs -- left hand side (operand, of an operation) */
/* lsd -- least significant digit (of coefficient) */
/* lsu -- least significant Unit (of coefficient) */
/* msd -- most significant digit (of coefficient) */
/* msu -- most significant Unit (of coefficient) */
/* rhs -- right hand side (operand, of an operation) */
/* +ve -- positive */
/* -ve -- negative */
/* ------------------------------------------------------------------ */
/* Some of glibc's string inlines cause warnings. Plus we'd rather
rely on (and therefore test) GCC's string builtins. */
#define __NO_STRING_INLINES
#include <stdlib.h> /* for malloc, free, etc. */
#include <stdio.h> /* for printf [if needed] */
#include <string.h> /* for strcpy */
#include <ctype.h> /* for lower */
#include "config.h"
#include "decNumber.h" /* base number library */
#include "decNumberLocal.h" /* decNumber local types, etc. */
/* Constants */
/* Public constant array: powers of ten (powers[n]==10**n) */
const uInt powers[] = { 1, 10, 100, 1000, 10000, 100000, 1000000,
10000000, 100000000, 1000000000
};
/* Local constants */
#define DIVIDE 0x80 /* Divide operators */
#define REMAINDER 0x40 /* .. */
#define DIVIDEINT 0x20 /* .. */
#define REMNEAR 0x10 /* .. */
#define COMPARE 0x01 /* Compare operators */
#define COMPMAX 0x02 /* .. */
#define COMPMIN 0x03 /* .. */
#define COMPNAN 0x04 /* .. [NaN processing] */
#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
static Unit one[] = { 1 }; /* Unit array of 1, used for incrementing */
/* Granularity-dependent code */
#if DECDPUN<=4
#define eInt Int /* extended integer */
#define ueInt uInt /* unsigned extended integer */
/* Constant multipliers for divide-by-power-of five using reciprocal */
/* multiply, after removing powers of 2 by shifting, and final shift */
/* of 17 [we only need up to **4] */
static const uInt multies[] = { 131073, 26215, 5243, 1049, 210 };
/* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
#else
/* For DECDPUN>4 we currently use non-ANSI 64-bit types. These could */
/* be replaced by subroutine calls later. */
#ifdef long
#undef long
#endif
typedef signed long long Long;
typedef unsigned long long uLong;
#define eInt Long /* extended integer */
#define ueInt uLong /* unsigned extended integer */
#endif
/* Local routines */
static decNumber *decAddOp (decNumber *, const decNumber *,
const decNumber *, decContext *,
uByte, uInt *);
static void decApplyRound (decNumber *, decContext *, Int, uInt *);
static Int decCompare (const decNumber * lhs, const decNumber * rhs);
static decNumber *decCompareOp (decNumber *, const decNumber *, const decNumber *,
decContext *, Flag, uInt *);
static void decCopyFit (decNumber *, const decNumber *, decContext *,
Int *, uInt *);
static decNumber *decDivideOp (decNumber *, const decNumber *, const decNumber *,
decContext *, Flag, uInt *);
static void decFinalize (decNumber *, decContext *, Int *, uInt *);
static Int decGetDigits (const Unit *, Int);
#if DECSUBSET
static Int decGetInt (const decNumber *, decContext *);
#else
static Int decGetInt (const decNumber *);
#endif
static decNumber *decMultiplyOp (decNumber *, const decNumber *,
const decNumber *, decContext *, uInt *);
static decNumber *decNaNs (decNumber *, const decNumber *, const decNumber *, uInt *);
static decNumber *decQuantizeOp (decNumber *, const decNumber *,
const decNumber *, decContext *, Flag, uInt *);
static void decSetCoeff (decNumber *, decContext *, const Unit *,
Int, Int *, uInt *);
static void decSetOverflow (decNumber *, decContext *, uInt *);
static void decSetSubnormal (decNumber *, decContext *, Int *, uInt *);
static Int decShiftToLeast (Unit *, Int, Int);
static Int decShiftToMost (Unit *, Int, Int);
static void decStatus (decNumber *, uInt, decContext *);
static Flag decStrEq (const char *, const char *);
static void decToString (const decNumber *, char[], Flag);
static decNumber *decTrim (decNumber *, Flag, Int *);
static Int decUnitAddSub (const Unit *, Int, const Unit *, Int, Int, Unit *, Int);
static Int decUnitCompare (const Unit *, Int, const Unit *, Int, Int);
#if !DECSUBSET
/* decFinish == decFinalize when no subset arithmetic needed */
#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
#else
static void decFinish (decNumber *, decContext *, Int *, uInt *);
static decNumber *decRoundOperand (const decNumber *, decContext *, uInt *);
#endif
/* Diagnostic macros, etc. */
#if DECALLOC
/* Handle malloc/free accounting. If enabled, our accountable routines */
/* are used; otherwise the code just goes straight to the system malloc */
/* and free routines. */
#define malloc(a) decMalloc(a)
#define free(a) decFree(a)
#define DECFENCE 0x5a /* corruption detector */
/* 'Our' malloc and free: */
static void *decMalloc (size_t);
static void decFree (void *);
uInt decAllocBytes = 0; /* count of bytes allocated */
/* Note that DECALLOC code only checks for storage buffer overflow. */
/* To check for memory leaks, the decAllocBytes variable should be */
/* checked to be 0 at appropriate times (e.g., after the test */
/* harness completes a set of tests). This checking may be unreliable */
/* if the testing is done in a multi-thread environment. */
#endif
#if DECCHECK
/* Optional operand checking routines. Enabling these means that */
/* decNumber and decContext operands to operator routines are checked */
/* for correctness. This roughly doubles the execution time of the */
/* fastest routines (and adds 600+ bytes), so should not normally be */
/* used in 'production'. */
#define DECUNUSED (void *)(0xffffffff)
static Flag decCheckOperands (decNumber *, const decNumber *,
const decNumber *, decContext *);
static Flag decCheckNumber (const decNumber *, decContext *);
#endif
#if DECTRACE || DECCHECK
/* Optional trace/debugging routines. */
void decNumberShow (const decNumber *); /* displays the components of a number */
static void decDumpAr (char, const Unit *, Int);
#endif
/* ================================================================== */
/* Conversions */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* to-scientific-string -- conversion to numeric string */
/* to-engineering-string -- conversion to numeric string */
/* */
/* decNumberToString(dn, string); */
/* decNumberToEngString(dn, string); */
/* */
/* dn is the decNumber to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least dn->digits+14 characters long */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
char *
decNumberToString (const decNumber * dn, char *string)
{
decToString (dn, string, 0);
return string;
}
char *
decNumberToEngString (const decNumber * dn, char *string)
{
decToString (dn, string, 1);
return string;
}
/* ------------------------------------------------------------------ */
/* to-number -- conversion from numeric string */
/* */
/* decNumberFromString -- convert string to decNumber */
/* dn -- the number structure to fill */
/* chars[] -- the string to convert ('\0' terminated) */
/* set -- the context used for processing any error, */
/* determining the maximum precision available */
/* (set.digits), determining the maximum and minimum */
/* exponent (set.emax and set.emin), determining if */
/* extended values are allowed, and checking the */
/* rounding mode if overflow occurs or rounding is */
/* needed. */
/* */
/* The length of the coefficient and the size of the exponent are */
/* checked by this routine, so the correct error (Underflow or */
/* Overflow) can be reported or rounding applied, as necessary. */
/* */
/* If bad syntax is detected, the result will be a quiet NaN. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberFromString (decNumber * dn, const char chars[], decContext * set)
{
Int exponent = 0; /* working exponent [assume 0] */
uByte bits = 0; /* working flags [assume +ve] */
Unit *res; /* where result will be built */
Unit resbuff[D2U (DECBUFFER + 1)]; /* local buffer in case need temporary */
Unit *allocres = NULL; /* -> allocated result, iff allocated */
Int need; /* units needed for result */
Int d = 0; /* count of digits found in decimal part */
const char *dotchar = NULL; /* where dot was found */
const char *cfirst; /* -> first character of decimal part */
const char *last = NULL; /* -> last digit of decimal part */
const char *firstexp; /* -> first significant exponent digit */
const char *c; /* work */
Unit *up; /* .. */
#if DECDPUN>1
Int i; /* .. */
#endif
Int residue = 0; /* rounding residue */
uInt status = 0; /* error code */
#if DECCHECK
if (decCheckOperands (DECUNUSED, DECUNUSED, DECUNUSED, set))
return decNumberZero (dn);
#endif
do
{ /* status & malloc protection */
c = chars; /* -> input character */
if (*c == '-')
{ /* handle leading '-' */
bits = DECNEG;
c++;
}
else if (*c == '+')
c++; /* step over leading '+' */
/* We're at the start of the number [we think] */
cfirst = c; /* save */
for (;; c++)
{
if (*c >= '0' && *c <= '9')
{ /* test for Arabic digit */
last = c;
d++; /* count of real digits */
continue; /* still in decimal part */
}
if (*c != '.')
break; /* done with decimal part */
/* dot: record, check, and ignore */
if (dotchar != NULL)
{ /* two dots */
last = NULL; /* indicate bad */
break;
} /* .. and go report */
dotchar = c; /* offset into decimal part */
} /* c */
if (last == NULL)
{ /* no decimal digits, or >1 . */
#if DECSUBSET
/* If subset then infinities and NaNs are not allowed */
if (!set->extended)
{
status = DEC_Conversion_syntax;
break; /* all done */
}
else
{
#endif
/* Infinities and NaNs are possible, here */
decNumberZero (dn); /* be optimistic */
if (decStrEq (c, "Infinity") || decStrEq (c, "Inf"))
{
dn->bits = bits | DECINF;
break; /* all done */
}
else
{ /* a NaN expected */
/* 2003.09.10 NaNs are now permitted to have a sign */
status = DEC_Conversion_syntax; /* assume the worst */
dn->bits = bits | DECNAN; /* assume simple NaN */
if (*c == 's' || *c == 'S')
{ /* looks like an` sNaN */
c++;
dn->bits = bits | DECSNAN;
}
if (*c != 'n' && *c != 'N')
break; /* check caseless "NaN" */
c++;
if (*c != 'a' && *c != 'A')
break; /* .. */
c++;
if (*c != 'n' && *c != 'N')
break; /* .. */
c++;
/* now nothing, or nnnn, expected */
/* -> start of integer and skip leading 0s [including plain 0] */
for (cfirst = c; *cfirst == '0';)
cfirst++;
if (*cfirst == '\0')
{ /* "NaN" or "sNaN", maybe with all 0s */
status = 0; /* it's good */
break; /* .. */
}
/* something other than 0s; setup last and d as usual [no dots] */
for (c = cfirst;; c++, d++)
{
if (*c < '0' || *c > '9')
break; /* test for Arabic digit */
last = c;
}
if (*c != '\0')
break; /* not all digits */
if (d > set->digits)
break; /* too many digits */
/* good; drop through and convert the integer */
status = 0;
bits = dn->bits; /* for copy-back */
} /* NaN expected */
#if DECSUBSET
}
#endif
} /* last==NULL */
if (*c != '\0')
{ /* more there; exponent expected... */
Flag nege = 0; /* 1=negative exponent */
if (*c != 'e' && *c != 'E')
{
status = DEC_Conversion_syntax;
break;
}
/* Found 'e' or 'E' -- now process explicit exponent */
/* 1998.07.11: sign no longer required */
c++; /* to (expected) sign */
if (*c == '-')
{
nege = 1;
c++;
}
else if (*c == '+')
c++;
if (*c == '\0')
{
status = DEC_Conversion_syntax;
break;
}
for (; *c == '0' && *(c + 1) != '\0';)
c++; /* strip insignificant zeros */
firstexp = c; /* save exponent digit place */
for (;; c++)
{
if (*c < '0' || *c > '9')
break; /* not a digit */
exponent = X10 (exponent) + (Int) * c - (Int) '0';
} /* c */
/* if we didn't end on '\0' must not be a digit */
if (*c != '\0')
{
status = DEC_Conversion_syntax;
break;
}
/* (this next test must be after the syntax check) */
/* if it was too long the exponent may have wrapped, so check */
/* carefully and set it to a certain overflow if wrap possible */
if (c >= firstexp + 9 + 1)
{
if (c > firstexp + 9 + 1 || *firstexp > '1')
exponent = DECNUMMAXE * 2;
/* [up to 1999999999 is OK, for example 1E-1000000998] */
}
if (nege)
exponent = -exponent; /* was negative */
} /* had exponent */
/* Here when all inspected; syntax is good */
/* Handle decimal point... */
if (dotchar != NULL && dotchar < last) /* embedded . found, so */
exponent = exponent - (last - dotchar); /* .. adjust exponent */
/* [we can now ignore the .] */
/* strip leading zeros/dot (leave final if all 0's) */
for (c = cfirst; c < last; c++)
{
if (*c == '0')
d--; /* 0 stripped */
else if (*c != '.')
break;
cfirst++; /* step past leader */
} /* c */
#if DECSUBSET
/* We can now make a rapid exit for zeros if !extended */
if (*cfirst == '0' && !set->extended)
{
decNumberZero (dn); /* clean result */
break; /* [could be return] */
}
#endif
/* OK, the digits string is good. Copy to the decNumber, or to
a temporary decNumber if rounding is needed */
if (d <= set->digits)
res = dn->lsu; /* fits into given decNumber */
else
{ /* rounding needed */
need = D2U (d); /* units needed */
res = resbuff; /* assume use local buffer */
if (need * sizeof (Unit) > sizeof (resbuff))
{ /* too big for local */
allocres = (Unit *) malloc (need * sizeof (Unit));
if (allocres == NULL)
{
status |= DEC_Insufficient_storage;
break;
}
res = allocres;
}
}
/* res now -> number lsu, buffer, or allocated storage for Unit array */
/* Place the coefficient into the selected Unit array */
#if DECDPUN>1
i = d % DECDPUN; /* digits in top unit */
if (i == 0)
i = DECDPUN;
up = res + D2U (d) - 1; /* -> msu */
*up = 0;
for (c = cfirst;; c++)
{ /* along the digits */
if (*c == '.')
{ /* ignore . [don't decrement i] */
if (c != last)
continue;
break;
}
*up = (Unit) (X10 (*up) + (Int) * c - (Int) '0');
i--;
if (i > 0)
continue; /* more for this unit */
if (up == res)
break; /* just filled the last unit */
i = DECDPUN;
up--;
*up = 0;
} /* c */
#else
/* DECDPUN==1 */
up = res; /* -> lsu */
for (c = last; c >= cfirst; c--)
{ /* over each character, from least */
if (*c == '.')
continue; /* ignore . [don't step b] */
*up = (Unit) ((Int) * c - (Int) '0');
up++;
} /* c */
#endif
dn->bits = bits;
dn->exponent = exponent;
dn->digits = d;
/* if not in number (too long) shorten into the number */
if (d > set->digits)
decSetCoeff (dn, set, res, d, &residue, &status);
/* Finally check for overflow or subnormal and round as needed */
decFinalize (dn, set, &residue, &status);
/* decNumberShow(dn); */
}
while (0); /* [for break] */
if (allocres != NULL)
free (allocres); /* drop any storage we used */
if (status != 0)
decStatus (dn, status, set);
return dn;
}
/* ================================================================== */
/* Operators */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* decNumberAbs -- absolute value operator */
/* */
/* This computes C = abs(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This has the same effect as decNumberPlus unless A is negative, */
/* in which case it has the same effect as decNumberMinus. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberAbs (decNumber * res, const decNumber * rhs, decContext * set)
{
decNumber dzero; /* for 0 */
uInt status = 0; /* accumulator */
#if DECCHECK
if (decCheckOperands (res, DECUNUSED, rhs, set))
return res;
#endif
decNumberZero (&dzero); /* set 0 */
dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
decAddOp (res, &dzero, rhs, set, (uByte) (rhs->bits & DECNEG), &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberAdd -- add two Numbers */
/* */
/* This computes C = A + B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This just calls the routine shared with Subtract */
decNumber *
decNumberAdd (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decAddOp (res, lhs, rhs, set, 0, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberCompare -- compare two Numbers */
/* */
/* This computes C = A ? B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for one digit. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberCompare (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decCompareOp (res, lhs, rhs, set, COMPARE, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberDivide -- divide one number by another */
/* */
/* This computes C = A / B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberDivide (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decDivideOp (res, lhs, rhs, set, DIVIDE, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberDivideInteger -- divide and return integer quotient */
/* */
/* This computes C = A # B, where # is the integer divide operator */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberDivideInteger (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decDivideOp (res, lhs, rhs, set, DIVIDEINT, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberMax -- compare two Numbers and return the maximum */
/* */
/* This computes C = A ? B, returning the maximum or A if equal */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberMax (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decCompareOp (res, lhs, rhs, set, COMPMAX, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberMin -- compare two Numbers and return the minimum */
/* */
/* This computes C = A ? B, returning the minimum or A if equal */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberMin (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decCompareOp (res, lhs, rhs, set, COMPMIN, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberMinus -- prefix minus operator */
/* */
/* This computes C = 0 - A */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* We simply use AddOp for the subtract, which will do the necessary. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberMinus (decNumber * res, const decNumber * rhs, decContext * set)
{
decNumber dzero;
uInt status = 0; /* accumulator */
#if DECCHECK
if (decCheckOperands (res, DECUNUSED, rhs, set))
return res;
#endif
decNumberZero (&dzero); /* make 0 */
dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
decAddOp (res, &dzero, rhs, set, DECNEG, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberPlus -- prefix plus operator */
/* */
/* This computes C = 0 + A */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* We simply use AddOp; Add will take fast path after preparing A. */
/* Performance is a concern here, as this routine is often used to */
/* check operands and apply rounding and overflow/underflow testing. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberPlus (decNumber * res, const decNumber * rhs, decContext * set)
{
decNumber dzero;
uInt status = 0; /* accumulator */
#if DECCHECK
if (decCheckOperands (res, DECUNUSED, rhs, set))
return res;
#endif
decNumberZero (&dzero); /* make 0 */
dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
decAddOp (res, &dzero, rhs, set, 0, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberMultiply -- multiply two Numbers */
/* */
/* This computes C = A x B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberMultiply (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decMultiplyOp (res, lhs, rhs, set, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberNormalize -- remove trailing zeros */
/* */
/* This computes C = 0 + A, and normalizes the result */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberNormalize (decNumber * res, const decNumber * rhs, decContext * set)
{
decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
uInt status = 0; /* as usual */
Int residue = 0; /* as usual */
Int dropped; /* work */
#if DECCHECK
if (decCheckOperands (res, DECUNUSED, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits > set->digits)
{
allocrhs = decRoundOperand (rhs, set, &status);
if (allocrhs == NULL)
break;
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* specials copy through, except NaNs need care */
if (decNumberIsNaN (rhs))
{
decNaNs (res, rhs, NULL, &status);
break;
}
/* reduce result to the requested length and copy to result */
decCopyFit (res, rhs, set, &residue, &status); /* copy & round */
decFinish (res, set, &residue, &status); /* cleanup/set flags */
decTrim (res, 1, &dropped); /* normalize in place */
}
while (0); /* end protected */
if (allocrhs != NULL)
free (allocrhs); /* .. */
if (status != 0)
decStatus (res, status, set); /* then report status */
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberPower -- raise a number to an integer power */
/* */
/* This computes C = A ** B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* Specification restriction: abs(n) must be <=999999999 */
/* ------------------------------------------------------------------ */
decNumber *
decNumberPower (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs = NULL; /* .., rhs */
decNumber *allocdac = NULL; /* -> allocated acc buffer, iff used */
const decNumber *inrhs = rhs; /* save original rhs */
Int reqdigits = set->digits; /* requested DIGITS */
Int n; /* RHS in binary */
Int i; /* work */
#if DECSUBSET
Int dropped; /* .. */
#endif
uInt needbytes; /* buffer size needed */
Flag seenbit; /* seen a bit while powering */
Int residue = 0; /* rounding residue */
uInt status = 0; /* accumulator */
uByte bits = 0; /* result sign if errors */
decContext workset; /* working context */
decNumber dnOne; /* work value 1... */
/* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
uByte dacbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
/* same again for possible 1/lhs calculation */
uByte lhsbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
decNumber *dac = (decNumber *) dacbuff; /* -> result accumulator */
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits > reqdigits)
{
alloclhs = decRoundOperand (lhs, set, &status);
if (alloclhs == NULL)
break;
lhs = alloclhs;
}
/* rounding won't affect the result, but we might signal lostDigits */
/* as well as the error for non-integer [x**y would need this too] */
if (rhs->digits > reqdigits)
{
allocrhs = decRoundOperand (rhs, set, &status);
if (allocrhs == NULL)
break;
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* handle rhs Infinity */
if (decNumberIsInfinite (rhs))
{
status |= DEC_Invalid_operation; /* bad */
break;
}
/* handle NaNs */
if ((lhs->bits | rhs->bits) & (DECNAN | DECSNAN))
{
decNaNs (res, lhs, rhs, &status);
break;
}
/* Original rhs must be an integer that fits and is in range */
#if DECSUBSET
n = decGetInt (inrhs, set);
#else
n = decGetInt (inrhs);
#endif
if (n == BADINT || n > 999999999 || n < -999999999)
{
status |= DEC_Invalid_operation;
break;
}
if (n < 0)
{ /* negative */
n = -n; /* use the absolute value */
}
if (decNumberIsNegative (lhs) /* -x .. */
&& (n & 0x00000001))
bits = DECNEG; /* .. to an odd power */
/* handle LHS infinity */
if (decNumberIsInfinite (lhs))
{ /* [NaNs already handled] */
uByte rbits = rhs->bits; /* save */
decNumberZero (res);
if (n == 0)
*res->lsu = 1; /* [-]Inf**0 => 1 */
else
{
if (!(rbits & DECNEG))
bits |= DECINF; /* was not a **-n */
/* [otherwise will be 0 or -0] */
res->bits = bits;
}
break;
}
/* clone the context */
workset = *set; /* copy all fields */
/* calculate the working DIGITS */
workset.digits = reqdigits + (inrhs->digits + inrhs->exponent) + 1;
/* it's an error if this is more than we can handle */
if (workset.digits > DECNUMMAXP)
{
status |= DEC_Invalid_operation;
break;
}
/* workset.digits is the count of digits for the accumulator we need */
/* if accumulator is too long for local storage, then allocate */
needbytes =
sizeof (decNumber) + (D2U (workset.digits) - 1) * sizeof (Unit);
/* [needbytes also used below if 1/lhs needed] */
if (needbytes > sizeof (dacbuff))
{
allocdac = (decNumber *) malloc (needbytes);
if (allocdac == NULL)
{ /* hopeless -- abandon */
status |= DEC_Insufficient_storage;
break;
}
dac = allocdac; /* use the allocated space */
}
decNumberZero (dac); /* acc=1 */
*dac->lsu = 1; /* .. */
if (n == 0)
{ /* x**0 is usually 1 */
/* 0**0 is bad unless subset, when it becomes 1 */
if (ISZERO (lhs)
#if DECSUBSET
&& set->extended
#endif
)
status |= DEC_Invalid_operation;
else
decNumberCopy (res, dac); /* copy the 1 */
break;
}
/* if a negative power we'll need the constant 1, and if not subset */
/* we'll invert the lhs now rather than inverting the result later */
if (decNumberIsNegative (rhs))
{ /* was a **-n [hence digits>0] */
decNumber * newlhs;
decNumberCopy (&dnOne, dac); /* dnOne=1; [needed now or later] */
#if DECSUBSET
if (set->extended)
{ /* need to calculate 1/lhs */
#endif
/* divide lhs into 1, putting result in dac [dac=1/dac] */
decDivideOp (dac, &dnOne, lhs, &workset, DIVIDE, &status);
if (alloclhs != NULL)
{
free (alloclhs); /* done with intermediate */
alloclhs = NULL; /* indicate freed */
}
/* now locate or allocate space for the inverted lhs */
if (needbytes > sizeof (lhsbuff))
{
alloclhs = (decNumber *) malloc (needbytes);
if (alloclhs == NULL)
{ /* hopeless -- abandon */
status |= DEC_Insufficient_storage;
break;
}
newlhs = alloclhs; /* use the allocated space */
}
else
newlhs = (decNumber *) lhsbuff; /* use stack storage */
/* [lhs now points to buffer or allocated storage] */
decNumberCopy (newlhs, dac); /* copy the 1/lhs */
decNumberCopy (dac, &dnOne); /* restore acc=1 */
lhs = newlhs;
#if DECSUBSET
}
#endif
}
/* Raise-to-the-power loop... */
seenbit = 0; /* set once we've seen a 1-bit */
for (i = 1;; i++)
{ /* for each bit [top bit ignored] */
/* abandon if we have had overflow or terminal underflow */
if (status & (DEC_Overflow | DEC_Underflow))
{ /* interesting? */
if (status & DEC_Overflow || ISZERO (dac))
break;
}
/* [the following two lines revealed an optimizer bug in a C++ */
/* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
n = n << 1; /* move next bit to testable position */
if (n < 0)
{ /* top bit is set */
seenbit = 1; /* OK, we're off */
decMultiplyOp (dac, dac, lhs, &workset, &status); /* dac=dac*x */
}
if (i == 31)
break; /* that was the last bit */
if (!seenbit)
continue; /* we don't have to square 1 */
decMultiplyOp (dac, dac, dac, &workset, &status); /* dac=dac*dac [square] */
} /*i *//* 32 bits */
/* complete internal overflow or underflow processing */
if (status & (DEC_Overflow | DEC_Subnormal))
{
#if DECSUBSET
/* If subset, and power was negative, reverse the kind of -erflow */
/* [1/x not yet done] */
if (!set->extended && decNumberIsNegative (rhs))
{
if (status & DEC_Overflow)
status ^= DEC_Overflow | DEC_Underflow | DEC_Subnormal;
else
{ /* trickier -- Underflow may or may not be set */
status &= ~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
status |= DEC_Overflow;
}
}
#endif
dac->bits = (dac->bits & ~DECNEG) | bits; /* force correct sign */
/* round subnormals [to set.digits rather than workset.digits] */
/* or set overflow result similarly as required */
decFinalize (dac, set, &residue, &status);
decNumberCopy (res, dac); /* copy to result (is now OK length) */
break;
}
#if DECSUBSET
if (!set->extended && /* subset math */
decNumberIsNegative (rhs))
{ /* was a **-n [hence digits>0] */
/* so divide result into 1 [dac=1/dac] */
decDivideOp (dac, &dnOne, dac, &workset, DIVIDE, &status);
}
#endif
/* reduce result to the requested length and copy to result */
decCopyFit (res, dac, set, &residue, &status);
decFinish (res, set, &residue, &status); /* final cleanup */
#if DECSUBSET
if (!set->extended)
decTrim (res, 0, &dropped); /* trailing zeros */
#endif
}
while (0); /* end protected */
if (allocdac != NULL)
free (allocdac); /* drop any storage we used */
if (allocrhs != NULL)
free (allocrhs); /* .. */
if (alloclhs != NULL)
free (alloclhs); /* .. */
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberQuantize -- force exponent to requested value */
/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has exponent of B. The numerical value of C will equal A, */
/* except for the effects of any rounding that occurred. */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the number with exponent to match */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* Unless there is an error or the result is infinite, the exponent */
/* after the operation is guaranteed to be equal to that of B. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberQuantize (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decQuantizeOp (res, lhs, rhs, set, 1, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberRescale -- force exponent to requested value */
/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has the value B. The numerical value of C will equal A, */
/* except for the effects of any rounding that occurred. */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the requested exponent */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* Unless there is an error or the result is infinite, the exponent */
/* after the operation is guaranteed to be equal to B. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberRescale (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decQuantizeOp (res, lhs, rhs, set, 0, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberRemainder -- divide and return remainder */
/* */
/* This computes C = A % B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberRemainder (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decDivideOp (res, lhs, rhs, set, REMAINDER, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberRemainderNear -- divide and return remainder from nearest */
/* */
/* This computes C = A % B, where % is the IEEE remainder operator */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberRemainderNear (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decDivideOp (res, lhs, rhs, set, REMNEAR, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberSameQuantum -- test for equal exponents */
/* */
/* res is the result number, which will contain either 0 or 1 */
/* lhs is a number to test */
/* rhs is the second (usually a pattern) */
/* */
/* No errors are possible and no context is needed. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberSameQuantum (decNumber * res, const decNumber * lhs, const decNumber * rhs)
{
uByte merged; /* merged flags */
Unit ret = 0; /* return value */
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, DECUNUSED))
return res;
#endif
merged = (lhs->bits | rhs->bits) & DECSPECIAL;
if (merged)
{
if (decNumberIsNaN (lhs) && decNumberIsNaN (rhs))
ret = 1;
else if (decNumberIsInfinite (lhs) && decNumberIsInfinite (rhs))
ret = 1;
/* [anything else with a special gives 0] */
}
else if (lhs->exponent == rhs->exponent)
ret = 1;
decNumberZero (res); /* OK to overwrite an operand */
*res->lsu = ret;
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberSquareRoot -- square root operator */
/* */
/* This computes C = squareroot(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This uses the following varying-precision algorithm in: */
/* */
/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
/* pp229-237, ACM, September 1985. */
/* */
/* % [Reformatted original Numerical Turing source code follows.] */
/* function sqrt(x : real) : real */
/* % sqrt(x) returns the properly rounded approximation to the square */
/* % root of x, in the precision of the calling environment, or it */
/* % fails if x < 0. */
/* % t e hull and a abrham, august, 1984 */
/* if x <= 0 then */
/* if x < 0 then */
/* assert false */
/* else */
/* result 0 */
/* end if */
/* end if */
/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
/* var e := getexp(x) % exponent part of x */
/* var approx : real */
/* if e mod 2 = 0 then */
/* approx := .259 + .819 * f % approx to root of f */
/* else */
/* f := f/l0 % adjustments */
/* e := e + 1 % for odd */
/* approx := .0819 + 2.59 * f % exponent */
/* end if */
/* */
/* var p:= 3 */
/* const maxp := currentprecision + 2 */
/* loop */
/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
/* precision p */
/* approx := .5 * (approx + f/approx) */
/* exit when p = maxp */
/* end loop */
/* */
/* % approx is now within 1 ulp of the properly rounded square root */
/* % of f; to ensure proper rounding, compare squares of (approx - */
/* % l/2 ulp) and (approx + l/2 ulp) with f. */
/* p := currentprecision */
/* begin */
/* precision p + 2 */
/* const approxsubhalf := approx - setexp(.5, -p) */
/* if mulru(approxsubhalf, approxsubhalf) > f then */
/* approx := approx - setexp(.l, -p + 1) */
/* else */
/* const approxaddhalf := approx + setexp(.5, -p) */
/* if mulrd(approxaddhalf, approxaddhalf) < f then */
/* approx := approx + setexp(.l, -p + 1) */
/* end if */
/* end if */
/* end */
/* result setexp(approx, e div 2) % fix exponent */
/* end sqrt */
/* ------------------------------------------------------------------ */
decNumber *
decNumberSquareRoot (decNumber * res, const decNumber * rhs, decContext * set)
{
decContext workset, approxset; /* work contexts */
decNumber dzero; /* used for constant zero */
Int maxp = set->digits + 2; /* largest working precision */
Int residue = 0; /* rounding residue */
uInt status = 0, ignore = 0; /* status accumulators */
Int exp; /* working exponent */
Int ideal; /* ideal (preferred) exponent */
uInt needbytes; /* work */
Int dropped; /* .. */
decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
/* buffer for f [needs +1 in case DECBUFFER 0] */
uByte buff[sizeof (decNumber) + (D2U (DECBUFFER + 1) - 1) * sizeof (Unit)];
/* buffer for a [needs +2 to match maxp] */
uByte bufa[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
/* buffer for temporary, b [must be same size as a] */
uByte bufb[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
decNumber *allocbuff = NULL; /* -> allocated buff, iff allocated */
decNumber *allocbufa = NULL; /* -> allocated bufa, iff allocated */
decNumber *allocbufb = NULL; /* -> allocated bufb, iff allocated */
decNumber *f = (decNumber *) buff; /* reduced fraction */
decNumber *a = (decNumber *) bufa; /* approximation to result */
decNumber *b = (decNumber *) bufb; /* intermediate result */
/* buffer for temporary variable, up to 3 digits */
uByte buft[sizeof (decNumber) + (D2U (3) - 1) * sizeof (Unit)];
decNumber *t = (decNumber *) buft; /* up-to-3-digit constant or work */
#if DECCHECK
if (decCheckOperands (res, DECUNUSED, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits > set->digits)
{
allocrhs = decRoundOperand (rhs, set, &status);
if (allocrhs == NULL)
break;
/* [Note: 'f' allocation below could reuse this buffer if */
/* used, but as this is rare we keep them separate for clarity.] */
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* handle infinities and NaNs */
if (rhs->bits & DECSPECIAL)
{
if (decNumberIsInfinite (rhs))
{ /* an infinity */
if (decNumberIsNegative (rhs))
status |= DEC_Invalid_operation;
else
decNumberCopy (res, rhs); /* +Infinity */
}
else
decNaNs (res, rhs, NULL, &status); /* a NaN */
break;
}
/* calculate the ideal (preferred) exponent [floor(exp/2)] */
/* [We would like to write: ideal=rhs->exponent>>1, but this */
/* generates a compiler warning. Generated code is the same.] */
ideal = (rhs->exponent & ~1) / 2; /* target */
/* handle zeros */
if (ISZERO (rhs))
{
decNumberCopy (res, rhs); /* could be 0 or -0 */
res->exponent = ideal; /* use the ideal [safe] */
break;
}
/* any other -x is an oops */
if (decNumberIsNegative (rhs))
{
status |= DEC_Invalid_operation;
break;
}
/* we need space for three working variables */
/* f -- the same precision as the RHS, reduced to 0.01->0.99... */
/* a -- Hull's approx -- precision, when assigned, is */
/* currentprecision (we allow +2 for use as temporary) */
/* b -- intermediate temporary result */
/* if any is too long for local storage, then allocate */
needbytes =
sizeof (decNumber) + (D2U (rhs->digits) - 1) * sizeof (Unit);
if (needbytes > sizeof (buff))
{
allocbuff = (decNumber *) malloc (needbytes);
if (allocbuff == NULL)
{ /* hopeless -- abandon */
status |= DEC_Insufficient_storage;
break;
}
f = allocbuff; /* use the allocated space */
}
/* a and b both need to be able to hold a maxp-length number */
needbytes = sizeof (decNumber) + (D2U (maxp) - 1) * sizeof (Unit);
if (needbytes > sizeof (bufa))
{ /* [same applies to b] */
allocbufa = (decNumber *) malloc (needbytes);
allocbufb = (decNumber *) malloc (needbytes);
if (allocbufa == NULL || allocbufb == NULL)
{ /* hopeless */
status |= DEC_Insufficient_storage;
break;
}
a = allocbufa; /* use the allocated space */
b = allocbufb; /* .. */
}
/* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
decNumberCopy (f, rhs);
exp = f->exponent + f->digits; /* adjusted to Hull rules */
f->exponent = -(f->digits); /* to range */
/* set up working contexts (the second is used for Numerical */
/* Turing assignment) */
decContextDefault (&workset, DEC_INIT_DECIMAL64);
decContextDefault (&approxset, DEC_INIT_DECIMAL64);
approxset.digits = set->digits; /* approx's length */
/* [Until further notice, no error is possible and status bits */
/* (Rounded, etc.) should be ignored, not accumulated.] */
/* Calculate initial approximation, and allow for odd exponent */
workset.digits = set->digits; /* p for initial calculation */
t->bits = 0;
t->digits = 3;
a->bits = 0;
a->digits = 3;
if ((exp & 1) == 0)
{ /* even exponent */
/* Set t=0.259, a=0.819 */
t->exponent = -3;
a->exponent = -3;
#if DECDPUN>=3
t->lsu[0] = 259;
a->lsu[0] = 819;
#elif DECDPUN==2
t->lsu[0] = 59;
t->lsu[1] = 2;
a->lsu[0] = 19;
a->lsu[1] = 8;
#else
t->lsu[0] = 9;
t->lsu[1] = 5;
t->lsu[2] = 2;
a->lsu[0] = 9;
a->lsu[1] = 1;
a->lsu[2] = 8;
#endif
}
else
{ /* odd exponent */
/* Set t=0.0819, a=2.59 */
f->exponent--; /* f=f/10 */
exp++; /* e=e+1 */
t->exponent = -4;
a->exponent = -2;
#if DECDPUN>=3
t->lsu[0] = 819;
a->lsu[0] = 259;
#elif DECDPUN==2
t->lsu[0] = 19;
t->lsu[1] = 8;
a->lsu[0] = 59;
a->lsu[1] = 2;
#else
t->lsu[0] = 9;
t->lsu[1] = 1;
t->lsu[2] = 8;
a->lsu[0] = 9;
a->lsu[1] = 5;
a->lsu[2] = 2;
#endif
}
decMultiplyOp (a, a, f, &workset, &ignore); /* a=a*f */
decAddOp (a, a, t, &workset, 0, &ignore); /* ..+t */
/* [a is now the initial approximation for sqrt(f), calculated with */
/* currentprecision, which is also a's precision.] */
/* the main calculation loop */
decNumberZero (&dzero); /* make 0 */
decNumberZero (t); /* set t = 0.5 */
t->lsu[0] = 5; /* .. */
t->exponent = -1; /* .. */
workset.digits = 3; /* initial p */
for (;;)
{
/* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
workset.digits = workset.digits * 2 - 2;
if (workset.digits > maxp)
workset.digits = maxp;
/* a = 0.5 * (a + f/a) */
/* [calculated at p then rounded to currentprecision] */
decDivideOp (b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
decAddOp (b, b, a, &workset, 0, &ignore); /* b=b+a */
decMultiplyOp (a, b, t, &workset, &ignore); /* a=b*0.5 */
/* assign to approx [round to length] */
decAddOp (a, &dzero, a, &approxset, 0, &ignore);
if (workset.digits == maxp)
break; /* just did final */
} /* loop */
/* a is now at currentprecision and within 1 ulp of the properly */
/* rounded square root of f; to ensure proper rounding, compare */
/* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
/* Here workset.digits=maxp and t=0.5 */
workset.digits--; /* maxp-1 is OK now */
t->exponent = -set->digits - 1; /* make 0.5 ulp */
decNumberCopy (b, a);
decAddOp (b, b, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
workset.round = DEC_ROUND_UP;
decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulru(b, b) */
decCompareOp (b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
if (decNumberIsNegative (b))
{ /* f < b [i.e., b > f] */
/* this is the more common adjustment, though both are rare */
t->exponent++; /* make 1.0 ulp */
t->lsu[0] = 1; /* .. */
decAddOp (a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
/* assign to approx [round to length] */
decAddOp (a, &dzero, a, &approxset, 0, &ignore);
}
else
{
decNumberCopy (b, a);
decAddOp (b, b, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
workset.round = DEC_ROUND_DOWN;
decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
decCompareOp (b, b, f, &workset, COMPARE, &ignore); /* b ? f */
if (decNumberIsNegative (b))
{ /* b < f */
t->exponent++; /* make 1.0 ulp */
t->lsu[0] = 1; /* .. */
decAddOp (a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
/* assign to approx [round to length] */
decAddOp (a, &dzero, a, &approxset, 0, &ignore);
}
}
/* [no errors are possible in the above, and rounding/inexact during */
/* estimation are irrelevant, so status was not accumulated] */
/* Here, 0.1 <= a < 1 [Hull] */
a->exponent += exp / 2; /* set correct exponent */
/* Process Subnormals */
decFinalize (a, set, &residue, &status);
/* count dropable zeros [after any subnormal rounding] */
decNumberCopy (b, a);
decTrim (b, 1, &dropped); /* [drops trailing zeros] */
/* Finally set Inexact and Rounded. The answer can only be exact if */
/* it is short enough so that squaring it could fit in set->digits, */
/* so this is the only (relatively rare) time we have to check */
/* carefully */
if (b->digits * 2 - 1 > set->digits)
{ /* cannot fit */
status |= DEC_Inexact | DEC_Rounded;
}
else
{ /* could be exact/unrounded */
uInt mstatus = 0; /* local status */
decMultiplyOp (b, b, b, &workset, &mstatus); /* try the multiply */
if (mstatus != 0)
{ /* result won't fit */
status |= DEC_Inexact | DEC_Rounded;
}
else
{ /* plausible */
decCompareOp (t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
if (!ISZERO (t))
{
status |= DEC_Inexact | DEC_Rounded;
}
else
{ /* is Exact */
/* here, dropped is the count of trailing zeros in 'a' */
/* use closest exponent to ideal... */
Int todrop = ideal - a->exponent; /* most we can drop */
if (todrop < 0)
{ /* ideally would add 0s */
status |= DEC_Rounded;
}
else
{ /* unrounded */
if (dropped < todrop)
todrop = dropped; /* clamp to those available */
if (todrop > 0)
{ /* OK, some to drop */
decShiftToLeast (a->lsu, D2U (a->digits), todrop);
a->exponent += todrop; /* maintain numerical value */
a->digits -= todrop; /* new length */
}
}
}
}
}
decNumberCopy (res, a); /* assume this is the result */
}
while (0); /* end protected */
if (allocbuff != NULL)
free (allocbuff); /* drop any storage we used */
if (allocbufa != NULL)
free (allocbufa); /* .. */
if (allocbufb != NULL)
free (allocbufb); /* .. */
if (allocrhs != NULL)
free (allocrhs); /* .. */
if (status != 0)
decStatus (res, status, set); /* then report status */
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberSubtract -- subtract two Numbers */
/* */
/* This computes C = A - B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberSubtract (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
uInt status = 0; /* accumulator */
decAddOp (res, lhs, rhs, set, DECNEG, &status);
if (status != 0)
decStatus (res, status, set);
return res;
}
/* ------------------------------------------------------------------ */
/* decNumberToIntegralValue -- round-to-integral-value */
/* */
/* res is the result */
/* rhs is input number */
/* set is the context */
/* */
/* res must have space for any value of rhs. */
/* */
/* This implements the IEEE special operator and therefore treats */
/* special values as valid, and also never sets Inexact. For finite */
/* numbers it returns rescale(rhs, 0) if rhs->exponent is <0. */
/* Otherwise the result is rhs (so no error is possible). */
/* */
/* The context is used for rounding mode and status after sNaN, but */
/* the digits setting is ignored. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberToIntegralValue (decNumber * res, const decNumber * rhs, decContext * set)
{
decNumber dn;
decContext workset; /* working context */
#if DECCHECK
if (decCheckOperands (res, DECUNUSED, rhs, set))
return res;
#endif
/* handle infinities and NaNs */
if (rhs->bits & DECSPECIAL)
{
uInt status = 0;
if (decNumberIsInfinite (rhs))
decNumberCopy (res, rhs); /* an Infinity */
else
decNaNs (res, rhs, NULL, &status); /* a NaN */
if (status != 0)
decStatus (res, status, set);
return res;
}
/* we have a finite number; no error possible */
if (rhs->exponent >= 0)
return decNumberCopy (res, rhs);
/* that was easy, but if negative exponent we have work to do... */
workset = *set; /* clone rounding, etc. */
workset.digits = rhs->digits; /* no length rounding */
workset.traps = 0; /* no traps */
decNumberZero (&dn); /* make a number with exponent 0 */
return decNumberQuantize (res, rhs, &dn, &workset);
}
/* ================================================================== */
/* Utility routines */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* decNumberCopy -- copy a number */
/* */
/* dest is the target decNumber */
/* src is the source decNumber */
/* returns dest */
/* */
/* (dest==src is allowed and is a no-op) */
/* All fields are updated as required. This is a utility operation, */
/* so special values are unchanged and no error is possible. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberCopy (decNumber * dest, const decNumber * src)
{
#if DECCHECK
if (src == NULL)
return decNumberZero (dest);
#endif
if (dest == src)
return dest; /* no copy required */
/* We use explicit assignments here as structure assignment can copy */
/* more than just the lsu (for small DECDPUN). This would not affect */
/* the value of the results, but would disturb test harness spill */
/* checking. */
dest->bits = src->bits;
dest->exponent = src->exponent;
dest->digits = src->digits;
dest->lsu[0] = src->lsu[0];
if (src->digits > DECDPUN)
{ /* more Units to come */
Unit *d; /* work */
const Unit *s, *smsup; /* work */
/* memcpy for the remaining Units would be safe as they cannot */
/* overlap. However, this explicit loop is faster in short cases. */
d = dest->lsu + 1; /* -> first destination */
smsup = src->lsu + D2U (src->digits); /* -> source msu+1 */
for (s = src->lsu + 1; s < smsup; s++, d++)
*d = *s;
}
return dest;
}
/* ------------------------------------------------------------------ */
/* decNumberTrim -- remove insignificant zeros */
/* */
/* dn is the number to trim */
/* returns dn */
/* */
/* All fields are updated as required. This is a utility operation, */
/* so special values are unchanged and no error is possible. */
/* ------------------------------------------------------------------ */
decNumber *
decNumberTrim (decNumber * dn)
{
Int dropped; /* work */
return decTrim (dn, 0, &dropped);
}
/* ------------------------------------------------------------------ */
/* decNumberVersion -- return the name and version of this module */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
const char *
decNumberVersion (void)
{
return DECVERSION;
}
/* ------------------------------------------------------------------ */
/* decNumberZero -- set a number to 0 */
/* */
/* dn is the number to set, with space for one digit */
/* returns dn */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
/* Memset is not used as it is much slower in some environments. */
decNumber *
decNumberZero (decNumber * dn)
{
#if DECCHECK
if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
return dn;
#endif
dn->bits = 0;
dn->exponent = 0;
dn->digits = 1;
dn->lsu[0] = 0;
return dn;
}
/* ================================================================== */
/* Local routines */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* decToString -- lay out a number into a string */
/* */
/* dn is the number to lay out */
/* string is where to lay out the number */
/* eng is 1 if Engineering, 0 if Scientific */
/* */
/* str must be at least dn->digits+14 characters long */
/* No error is possible. */
/* */
/* Note that this routine can generate a -0 or 0.000. These are */
/* never generated in subset to-number or arithmetic, but can occur */
/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
/* ------------------------------------------------------------------ */
/* If DECCHECK is enabled the string "?" is returned if a number is */
/* invalid. */
/* TODIGIT -- macro to remove the leading digit from the unsigned */
/* integer u at column cut (counting from the right, LSD=0) and place */
/* it as an ASCII character into the character pointed to by c. Note */
/* that cut must be <= 9, and the maximum value for u is 2,000,000,000 */
/* (as is needed for negative exponents of subnormals). The unsigned */
/* integer pow is used as a temporary variable. */
#define TODIGIT(u, cut, c) { \
*(c)='0'; \
pow=powers[cut]*2; \
if ((u)>pow) { \
pow*=4; \
if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
pow/=2; \
if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
pow/=2; \
} \
if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
pow/=2; \
if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
}
static void
decToString (const decNumber * dn, char *string, Flag eng)
{
Int exp = dn->exponent; /* local copy */
Int e; /* E-part value */
Int pre; /* digits before the '.' */
Int cut; /* for counting digits in a Unit */
char *c = string; /* work [output pointer] */
const Unit *up = dn->lsu + D2U (dn->digits) - 1; /* -> msu [input pointer] */
uInt u, pow; /* work */
#if DECCHECK
if (decCheckOperands (DECUNUSED, dn, DECUNUSED, DECUNUSED))
{
strcpy (string, "?");
return;
}
#endif
if (decNumberIsNegative (dn))
{ /* Negatives get a minus (except */
*c = '-'; /* NaNs, which remove the '-' below) */
c++;
}
if (dn->bits & DECSPECIAL)
{ /* Is a special value */
if (decNumberIsInfinite (dn))
{
strcpy (c, "Infinity");
return;
}
/* a NaN */
if (dn->bits & DECSNAN)
{ /* signalling NaN */
*c = 's';
c++;
}
strcpy (c, "NaN");
c += 3; /* step past */
/* if not a clean non-zero coefficient, that's all we have in a */
/* NaN string */
if (exp != 0 || (*dn->lsu == 0 && dn->digits == 1))
return;
/* [drop through to add integer] */
}
/* calculate how many digits in msu, and hence first cut */
cut = dn->digits % DECDPUN;
if (cut == 0)
cut = DECDPUN; /* msu is full */
cut--; /* power of ten for digit */
if (exp == 0)
{ /* simple integer [common fastpath, */
/* used for NaNs, too] */
for (; up >= dn->lsu; up--)
{ /* each Unit from msu */
u = *up; /* contains DECDPUN digits to lay out */
for (; cut >= 0; c++, cut--)
TODIGIT (u, cut, c);
cut = DECDPUN - 1; /* next Unit has all digits */
}
*c = '\0'; /* terminate the string */
return;
}
/* non-0 exponent -- assume plain form */
pre = dn->digits + exp; /* digits before '.' */
e = 0; /* no E */
if ((exp > 0) || (pre < -5))
{ /* need exponential form */
e = exp + dn->digits - 1; /* calculate E value */
pre = 1; /* assume one digit before '.' */
if (eng && (e != 0))
{ /* may need to adjust */
Int adj; /* adjustment */
/* The C remainder operator is undefined for negative numbers, so */
/* we must use positive remainder calculation here */
if (e < 0)
{
adj = (-e) % 3;
if (adj != 0)
adj = 3 - adj;
}
else
{ /* e>0 */
adj = e % 3;
}
e = e - adj;
/* if we are dealing with zero we will use exponent which is a */
/* multiple of three, as expected, but there will only be the */
/* one zero before the E, still. Otherwise note the padding. */
if (!ISZERO (dn))
pre += adj;
else
{ /* is zero */
if (adj != 0)
{ /* 0.00Esnn needed */
e = e + 3;
pre = -(2 - adj);
}
} /* zero */
} /* eng */
}
/* lay out the digits of the coefficient, adding 0s and . as needed */
u = *up;
if (pre > 0)
{ /* xxx.xxx or xx00 (engineering) form */
for (; pre > 0; pre--, c++, cut--)
{
if (cut < 0)
{ /* need new Unit */
if (up == dn->lsu)
break; /* out of input digits (pre>digits) */
up--;
cut = DECDPUN - 1;
u = *up;
}
TODIGIT (u, cut, c);
}
if (up > dn->lsu || (up == dn->lsu && cut >= 0))
{ /* more to come, after '.' */
*c = '.';
c++;
for (;; c++, cut--)
{
if (cut < 0)
{ /* need new Unit */
if (up == dn->lsu)
break; /* out of input digits */
up--;
cut = DECDPUN - 1;
u = *up;
}
TODIGIT (u, cut, c);
}
}
else
for (; pre > 0; pre--, c++)
*c = '0'; /* 0 padding (for engineering) needed */
}
else
{ /* 0.xxx or 0.000xxx form */
*c = '0';
c++;
*c = '.';
c++;
for (; pre < 0; pre++, c++)
*c = '0'; /* add any 0's after '.' */
for (;; c++, cut--)
{
if (cut < 0)
{ /* need new Unit */
if (up == dn->lsu)
break; /* out of input digits */
up--;
cut = DECDPUN - 1;
u = *up;
}
TODIGIT (u, cut, c);
}
}
/* Finally add the E-part, if needed. It will never be 0, has a
base maximum and minimum of +999999999 through -999999999, but
could range down to -1999999998 for subnormal numbers */
if (e != 0)
{
Flag had = 0; /* 1=had non-zero */
*c = 'E';
c++;
*c = '+';
c++; /* assume positive */
u = e; /* .. */
if (e < 0)
{
*(c - 1) = '-'; /* oops, need - */
u = -e; /* uInt, please */
}
/* layout the exponent (_itoa is not ANSI C) */
for (cut = 9; cut >= 0; cut--)
{
TODIGIT (u, cut, c);
if (*c == '0' && !had)
continue; /* skip leading zeros */
had = 1; /* had non-0 */
c++; /* step for next */
} /* cut */
}
*c = '\0'; /* terminate the string (all paths) */
return;
}
/* ------------------------------------------------------------------ */
/* decAddOp -- add/subtract operation */
/* */
/* This computes C = A + B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* negate is DECNEG if rhs should be negated, or 0 otherwise */
/* status accumulates status for the caller */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* If possible, we calculate the coefficient directly into C. */
/* However, if: */
/* -- we need a digits+1 calculation because numbers are unaligned */
/* and span more than set->digits digits */
/* -- a carry to digits+1 digits looks possible */
/* -- C is the same as A or B, and the result would destructively */
/* overlap the A or B coefficient */
/* then we must calculate into a temporary buffer. In this latter */
/* case we use the local (stack) buffer if possible, and only if too */
/* long for that do we resort to malloc. */
/* */
/* Misalignment is handled as follows: */
/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
/* BPad: Apply the padding by a combination of shifting (whole */
/* units) and multiplication (part units). */
/* */
/* Addition, especially x=x+1, is speed-critical, so we take pains */
/* to make returning as fast as possible, by flagging any allocation. */
/* ------------------------------------------------------------------ */
static decNumber *
decAddOp (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set, uByte negate, uInt * status)
{
decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs = NULL; /* .., rhs */
Int rhsshift; /* working shift (in Units) */
Int maxdigits; /* longest logical length */
Int mult; /* multiplier */
Int residue; /* rounding accumulator */
uByte bits; /* result bits */
Flag diffsign; /* non-0 if arguments have different sign */
Unit *acc; /* accumulator for result */
Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer [+1 is for possible */
/* final carry digit or DECBUFFER=0] */
Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
Flag alloced = 0; /* set non-0 if any allocations */
Int reqdigits = set->digits; /* local copy; requested DIGITS */
uByte merged; /* merged flags */
Int padding; /* work */
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits > reqdigits)
{
alloclhs = decRoundOperand (lhs, set, status);
if (alloclhs == NULL)
break;
lhs = alloclhs;
alloced = 1;
}
if (rhs->digits > reqdigits)
{
allocrhs = decRoundOperand (rhs, set, status);
if (allocrhs == NULL)
break;
rhs = allocrhs;
alloced = 1;
}
}
#endif
/* [following code does not require input rounding] */
/* note whether signs differ */
diffsign = (Flag) ((lhs->bits ^ rhs->bits ^ negate) & DECNEG);
/* handle infinities and NaNs */
merged = (lhs->bits | rhs->bits) & DECSPECIAL;
if (merged)
{ /* a special bit set */
if (merged & (DECSNAN | DECNAN)) /* a NaN */
decNaNs (res, lhs, rhs, status);
else
{ /* one or two infinities */
if (decNumberIsInfinite (lhs))
{ /* LHS is infinity */
/* two infinities with different signs is invalid */
if (decNumberIsInfinite (rhs) && diffsign)
{
*status |= DEC_Invalid_operation;
break;
}
bits = lhs->bits & DECNEG; /* get sign from LHS */
}
else
bits = (rhs->bits ^ negate) & DECNEG; /* RHS must be Infinity */
bits |= DECINF;
decNumberZero (res);
res->bits = bits; /* set +/- infinity */
} /* an infinity */
break;
}
/* Quick exit for add 0s; return the non-0, modified as need be */
if (ISZERO (lhs))
{
Int adjust; /* work */
Int lexp = lhs->exponent; /* save in case LHS==RES */
bits = lhs->bits; /* .. */
residue = 0; /* clear accumulator */
decCopyFit (res, rhs, set, &residue, status); /* copy (as needed) */
res->bits ^= negate; /* flip if rhs was negated */
#if DECSUBSET
if (set->extended)
{ /* exponents on zeros count */
#endif
/* exponent will be the lower of the two */
adjust = lexp - res->exponent; /* adjustment needed [if -ve] */
if (ISZERO (res))
{ /* both 0: special IEEE 854 rules */
if (adjust < 0)
res->exponent = lexp; /* set exponent */
/* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
if (diffsign)
{
if (set->round != DEC_ROUND_FLOOR)
res->bits = 0;
else
res->bits = DECNEG; /* preserve 0 sign */
}
}
else
{ /* non-0 res */
if (adjust < 0)
{ /* 0-padding needed */
if ((res->digits - adjust) > set->digits)
{
adjust = res->digits - set->digits; /* to fit exactly */
*status |= DEC_Rounded; /* [but exact] */
}
res->digits =
decShiftToMost (res->lsu, res->digits, -adjust);
res->exponent += adjust; /* set the exponent. */
}
} /* non-0 res */
#if DECSUBSET
} /* extended */
#endif
decFinish (res, set, &residue, status); /* clean and finalize */
break;
}
if (ISZERO (rhs))
{ /* [lhs is non-zero] */
Int adjust; /* work */
Int rexp = rhs->exponent; /* save in case RHS==RES */
bits = rhs->bits; /* be clean */
residue = 0; /* clear accumulator */
decCopyFit (res, lhs, set, &residue, status); /* copy (as needed) */
#if DECSUBSET
if (set->extended)
{ /* exponents on zeros count */
#endif
/* exponent will be the lower of the two */
/* [0-0 case handled above] */
adjust = rexp - res->exponent; /* adjustment needed [if -ve] */
if (adjust < 0)
{ /* 0-padding needed */
if ((res->digits - adjust) > set->digits)
{
adjust = res->digits - set->digits; /* to fit exactly */
*status |= DEC_Rounded; /* [but exact] */
}
res->digits =
decShiftToMost (res->lsu, res->digits, -adjust);
res->exponent += adjust; /* set the exponent. */
}
#if DECSUBSET
} /* extended */
#endif
decFinish (res, set, &residue, status); /* clean and finalize */
break;
}
/* [both fastpath and mainpath code below assume these cases */
/* (notably 0-0) have already been handled] */
/* calculate the padding needed to align the operands */
padding = rhs->exponent - lhs->exponent;
/* Fastpath cases where the numbers are aligned and normal, the RHS */
/* is all in one unit, no operand rounding is needed, and no carry, */
/* lengthening, or borrow is needed */
if (rhs->digits <= DECDPUN && padding == 0 && rhs->exponent >= set->emin /* [some normals drop through] */
&& rhs->digits <= reqdigits && lhs->digits <= reqdigits)
{
Int partial = *lhs->lsu;
if (!diffsign)
{ /* adding */
Int maxv = DECDPUNMAX; /* highest no-overflow */
if (lhs->digits < DECDPUN)
maxv = powers[lhs->digits] - 1;
partial += *rhs->lsu;
if (partial <= maxv)
{ /* no carry */
if (res != lhs)
decNumberCopy (res, lhs); /* not in place */
*res->lsu = (Unit) partial; /* [copy could have overwritten RHS] */
break;
}
/* else drop out for careful add */
}
else
{ /* signs differ */
partial -= *rhs->lsu;
if (partial > 0)
{ /* no borrow needed, and non-0 result */
if (res != lhs)
decNumberCopy (res, lhs); /* not in place */
*res->lsu = (Unit) partial;
/* this could have reduced digits [but result>0] */
res->digits = decGetDigits (res->lsu, D2U (res->digits));
break;
}
/* else drop out for careful subtract */
}
}
/* Now align (pad) the lhs or rhs so we can add or subtract them, as
necessary. If one number is much larger than the other (that is,
if in plain form there is a least one digit between the lowest
digit or one and the highest of the other) we need to pad with up
to DIGITS-1 trailing zeros, and then apply rounding (as exotic
rounding modes may be affected by the residue).
*/
rhsshift = 0; /* rhs shift to left (padding) in Units */
bits = lhs->bits; /* assume sign is that of LHS */
mult = 1; /* likely multiplier */
/* if padding==0 the operands are aligned; no padding needed */
if (padding != 0)
{
/* some padding needed */
/* We always pad the RHS, as we can then effect any required */
/* padding by a combination of shifts and a multiply */
Flag swapped = 0;
if (padding < 0)
{ /* LHS needs the padding */
const decNumber *t;
padding = -padding; /* will be +ve */
bits = (uByte) (rhs->bits ^ negate); /* assumed sign is now that of RHS */
t = lhs;
lhs = rhs;
rhs = t;
swapped = 1;
}
/* If, after pad, rhs would be longer than lhs by digits+1 or */
/* more then lhs cannot affect the answer, except as a residue, */
/* so we only need to pad up to a length of DIGITS+1. */
if (rhs->digits + padding > lhs->digits + reqdigits + 1)
{
/* The RHS is sufficient */
/* for residue we use the relative sign indication... */
Int shift = reqdigits - rhs->digits; /* left shift needed */
residue = 1; /* residue for rounding */
if (diffsign)
residue = -residue; /* signs differ */
/* copy, shortening if necessary */
decCopyFit (res, rhs, set, &residue, status);
/* if it was already shorter, then need to pad with zeros */
if (shift > 0)
{
res->digits = decShiftToMost (res->lsu, res->digits, shift);
res->exponent -= shift; /* adjust the exponent. */
}
/* flip the result sign if unswapped and rhs was negated */
if (!swapped)
res->bits ^= negate;
decFinish (res, set, &residue, status); /* done */
break;
}
/* LHS digits may affect result */
rhsshift = D2U (padding + 1) - 1; /* this much by Unit shift .. */
mult = powers[padding - (rhsshift * DECDPUN)]; /* .. this by multiplication */
} /* padding needed */
if (diffsign)
mult = -mult; /* signs differ */
/* determine the longer operand */
maxdigits = rhs->digits + padding; /* virtual length of RHS */
if (lhs->digits > maxdigits)
maxdigits = lhs->digits;
/* Decide on the result buffer to use; if possible place directly */
/* into result. */
acc = res->lsu; /* assume build direct */
/* If destructive overlap, or the number is too long, or a carry or */
/* borrow to DIGITS+1 might be possible we must use a buffer. */
/* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
if ((maxdigits >= reqdigits) /* is, or could be, too large */
|| (res == rhs && rhsshift > 0))
{ /* destructive overlap */
/* buffer needed; choose it */
/* we'll need units for maxdigits digits, +1 Unit for carry or borrow */
Int need = D2U (maxdigits) + 1;
acc = accbuff; /* assume use local buffer */
if (need * sizeof (Unit) > sizeof (accbuff))
{
allocacc = (Unit *) malloc (need * sizeof (Unit));
if (allocacc == NULL)
{ /* hopeless -- abandon */
*status |= DEC_Insufficient_storage;
break;
}
acc = allocacc;
alloced = 1;
}
}
res->bits = (uByte) (bits & DECNEG); /* it's now safe to overwrite.. */
res->exponent = lhs->exponent; /* .. operands (even if aliased) */
#if DECTRACE
decDumpAr ('A', lhs->lsu, D2U (lhs->digits));
decDumpAr ('B', rhs->lsu, D2U (rhs->digits));
printf (" :h: %d %d\n", rhsshift, mult);
#endif
/* add [A+B*m] or subtract [A+B*(-m)] */
res->digits = decUnitAddSub (lhs->lsu, D2U (lhs->digits), rhs->lsu, D2U (rhs->digits), rhsshift, acc, mult) * DECDPUN; /* [units -> digits] */
if (res->digits < 0)
{ /* we borrowed */
res->digits = -res->digits;
res->bits ^= DECNEG; /* flip the sign */
}
#if DECTRACE
decDumpAr ('+', acc, D2U (res->digits));
#endif
/* If we used a buffer we need to copy back, possibly shortening */
/* (If we didn't use buffer it must have fit, so can't need rounding */
/* and residue must be 0.) */
residue = 0; /* clear accumulator */
if (acc != res->lsu)
{
#if DECSUBSET
if (set->extended)
{ /* round from first significant digit */
#endif
/* remove leading zeros that we added due to rounding up to */
/* integral Units -- before the test for rounding. */
if (res->digits > reqdigits)
res->digits = decGetDigits (acc, D2U (res->digits));
decSetCoeff (res, set, acc, res->digits, &residue, status);
#if DECSUBSET
}
else
{ /* subset arithmetic rounds from original significant digit */
/* We may have an underestimate. This only occurs when both */
/* numbers fit in DECDPUN digits and we are padding with a */
/* negative multiple (-10, -100...) and the top digit(s) become */
/* 0. (This only matters if we are using X3.274 rules where the */
/* leading zero could be included in the rounding.) */
if (res->digits < maxdigits)
{
*(acc + D2U (res->digits)) = 0; /* ensure leading 0 is there */
res->digits = maxdigits;
}
else
{
/* remove leading zeros that we added due to rounding up to */
/* integral Units (but only those in excess of the original */
/* maxdigits length, unless extended) before test for rounding. */
if (res->digits > reqdigits)
{
res->digits = decGetDigits (acc, D2U (res->digits));
if (res->digits < maxdigits)
res->digits = maxdigits;
}
}
decSetCoeff (res, set, acc, res->digits, &residue, status);
/* Now apply rounding if needed before removing leading zeros. */
/* This is safe because subnormals are not a possibility */
if (residue != 0)
{
decApplyRound (res, set, residue, status);
residue = 0; /* we did what we had to do */
}
} /* subset */
#endif
} /* used buffer */
/* strip leading zeros [these were left on in case of subset subtract] */
res->digits = decGetDigits (res->lsu, D2U (res->digits));
/* apply checks and rounding */
decFinish (res, set, &residue, status);
/* "When the sum of two operands with opposite signs is exactly */
/* zero, the sign of that sum shall be '+' in all rounding modes */
/* except round toward -Infinity, in which mode that sign shall be */
/* '-'." [Subset zeros also never have '-', set by decFinish.] */
if (ISZERO (res) && diffsign
#if DECSUBSET
&& set->extended
#endif
&& (*status & DEC_Inexact) == 0)
{
if (set->round == DEC_ROUND_FLOOR)
res->bits |= DECNEG; /* sign - */
else
res->bits &= ~DECNEG; /* sign + */
}
}
while (0); /* end protected */
if (alloced)
{
if (allocacc != NULL)
free (allocacc); /* drop any storage we used */
if (allocrhs != NULL)
free (allocrhs); /* .. */
if (alloclhs != NULL)
free (alloclhs); /* .. */
}
return res;
}
/* ------------------------------------------------------------------ */
/* decDivideOp -- division operation */
/* */
/* This routine performs the calculations for all four division */
/* operators (divide, divideInteger, remainder, remainderNear). */
/* */
/* C=A op B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
/* status is the usual accumulator */
/* */
/* C must have space for set->digits digits. */
/* */
/* ------------------------------------------------------------------ */
/* The underlying algorithm of this routine is the same as in the */
/* 1981 S/370 implementation, that is, non-restoring long division */
/* with bi-unit (rather than bi-digit) estimation for each unit */
/* multiplier. In this pseudocode overview, complications for the */
/* Remainder operators and division residues for exact rounding are */
/* omitted for clarity. */
/* */
/* Prepare operands and handle special values */
/* Test for x/0 and then 0/x */
/* Exp =Exp1 - Exp2 */
/* Exp =Exp +len(var1) -len(var2) */
/* Sign=Sign1 * Sign2 */
/* Pad accumulator (Var1) to double-length with 0's (pad1) */
/* Pad Var2 to same length as Var1 */
/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
/* have=0 */
/* Do until (have=digits+1 OR residue=0) */
/* if exp<0 then if integer divide/residue then leave */
/* this_unit=0 */
/* Do forever */
/* compare numbers */
/* if <0 then leave inner_loop */
/* if =0 then (* quick exit without subtract *) do */
/* this_unit=this_unit+1; output this_unit */
/* leave outer_loop; end */
/* Compare lengths of numbers (mantissae): */
/* If same then tops2=msu2pair -- {units 1&2 of var2} */
/* else tops2=msu2plus -- {0, unit 1 of var2} */
/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
/* mult=tops1/tops2 -- Good and safe guess at divisor */
/* if mult=0 then mult=1 */
/* this_unit=this_unit+mult */
/* subtract */
/* end inner_loop */
/* if have\=0 | this_unit\=0 then do */
/* output this_unit */
/* have=have+1; end */
/* var2=var2/10 */
/* exp=exp-1 */
/* end outer_loop */
/* exp=exp+1 -- set the proper exponent */
/* if have=0 then generate answer=0 */
/* Return (Result is defined by Var1) */
/* */
/* ------------------------------------------------------------------ */
/* We need two working buffers during the long division; one (digits+ */
/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
/* long subtractions. These are acc and var1 respectively. */
/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
/* ------------------------------------------------------------------ */
static decNumber *
decDivideOp (decNumber * res,
const decNumber * lhs, const decNumber * rhs,
decContext * set, Flag op, uInt * status)
{
decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs = NULL; /* .., rhs */
Unit accbuff[D2U (DECBUFFER + DECDPUN)]; /* local buffer */
Unit *acc = accbuff; /* -> accumulator array for result */
Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
Unit *accnext; /* -> where next digit will go */
Int acclength; /* length of acc needed [Units] */
Int accunits; /* count of units accumulated */
Int accdigits; /* count of digits accumulated */
Unit varbuff[D2U (DECBUFFER * 2 + DECDPUN) * sizeof (Unit)]; /* buffer for var1 */
Unit *var1 = varbuff; /* -> var1 array for long subtraction */
Unit *varalloc = NULL; /* -> allocated buffer, iff used */
const Unit *var2; /* -> var2 array */
Int var1units, var2units; /* actual lengths */
Int var2ulen; /* logical length (units) */
Int var1initpad = 0; /* var1 initial padding (digits) */
Unit *msu1; /* -> msu of each var */
const Unit *msu2; /* -> msu of each var */
Int msu2plus; /* msu2 plus one [does not vary] */
eInt msu2pair; /* msu2 pair plus one [does not vary] */
Int maxdigits; /* longest LHS or required acc length */
Int mult; /* multiplier for subtraction */
Unit thisunit; /* current unit being accumulated */
Int residue; /* for rounding */
Int reqdigits = set->digits; /* requested DIGITS */
Int exponent; /* working exponent */
Int maxexponent = 0; /* DIVIDE maximum exponent if unrounded */
uByte bits; /* working sign */
uByte merged; /* merged flags */
Unit *target; /* work */
const Unit *source; /* work */
uInt const *pow; /* .. */
Int shift, cut; /* .. */
#if DECSUBSET
Int dropped; /* work */
#endif
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits > reqdigits)
{
alloclhs = decRoundOperand (lhs, set, status);
if (alloclhs == NULL)
break;
lhs = alloclhs;
}
if (rhs->digits > reqdigits)
{
allocrhs = decRoundOperand (rhs, set, status);
if (allocrhs == NULL)
break;
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
bits = (lhs->bits ^ rhs->bits) & DECNEG; /* assumed sign for divisions */
/* handle infinities and NaNs */
merged = (lhs->bits | rhs->bits) & DECSPECIAL;
if (merged)
{ /* a special bit set */
if (merged & (DECSNAN | DECNAN))
{ /* one or two NaNs */
decNaNs (res, lhs, rhs, status);
break;
}
/* one or two infinities */
if (decNumberIsInfinite (lhs))
{ /* LHS (dividend) is infinite */
if (decNumberIsInfinite (rhs) || /* two infinities are invalid .. */
op & (REMAINDER | REMNEAR))
{ /* as is remainder of infinity */
*status |= DEC_Invalid_operation;
break;
}
/* [Note that infinity/0 raises no exceptions] */
decNumberZero (res);
res->bits = bits | DECINF; /* set +/- infinity */
break;
}
else
{ /* RHS (divisor) is infinite */
residue = 0;
if (op & (REMAINDER | REMNEAR))
{
/* result is [finished clone of] lhs */
decCopyFit (res, lhs, set, &residue, status);
}
else
{ /* a division */
decNumberZero (res);
res->bits = bits; /* set +/- zero */
/* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
/* is a 0 with infinitely negative exponent, clamped to minimum */
if (op & DIVIDE)
{
res->exponent = set->emin - set->digits + 1;
*status |= DEC_Clamped;
}
}
decFinish (res, set, &residue, status);
break;
}
}
/* handle 0 rhs (x/0) */
if (ISZERO (rhs))
{ /* x/0 is always exceptional */
if (ISZERO (lhs))
{
decNumberZero (res); /* [after lhs test] */
*status |= DEC_Division_undefined; /* 0/0 will become NaN */
}
else
{
decNumberZero (res);
if (op & (REMAINDER | REMNEAR))
*status |= DEC_Invalid_operation;
else
{
*status |= DEC_Division_by_zero; /* x/0 */
res->bits = bits | DECINF; /* .. is +/- Infinity */
}
}
break;
}
/* handle 0 lhs (0/x) */
if (ISZERO (lhs))
{ /* 0/x [x!=0] */
#if DECSUBSET
if (!set->extended)
decNumberZero (res);
else
{
#endif
if (op & DIVIDE)
{
residue = 0;
exponent = lhs->exponent - rhs->exponent; /* ideal exponent */
decNumberCopy (res, lhs); /* [zeros always fit] */
res->bits = bits; /* sign as computed */
res->exponent = exponent; /* exponent, too */
decFinalize (res, set, &residue, status); /* check exponent */
}
else if (op & DIVIDEINT)
{
decNumberZero (res); /* integer 0 */
res->bits = bits; /* sign as computed */
}
else
{ /* a remainder */
exponent = rhs->exponent; /* [save in case overwrite] */
decNumberCopy (res, lhs); /* [zeros always fit] */
if (exponent < res->exponent)
res->exponent = exponent; /* use lower */
}
#if DECSUBSET
}
#endif
break;
}
/* Precalculate exponent. This starts off adjusted (and hence fits */
/* in 31 bits) and becomes the usual unadjusted exponent as the */
/* division proceeds. The order of evaluation is important, here, */
/* to avoid wrap. */
exponent =
(lhs->exponent + lhs->digits) - (rhs->exponent + rhs->digits);
/* If the working exponent is -ve, then some quick exits are */
/* possible because the quotient is known to be <1 */
/* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
if (exponent < 0 && !(op == DIVIDE))
{
if (op & DIVIDEINT)
{
decNumberZero (res); /* integer part is 0 */
#if DECSUBSET
if (set->extended)
#endif
res->bits = bits; /* set +/- zero */
break;
}
/* we can fastpath remainders so long as the lhs has the */
/* smaller (or equal) exponent */
if (lhs->exponent <= rhs->exponent)
{
if (op & REMAINDER || exponent < -1)
{
/* It is REMAINDER or safe REMNEAR; result is [finished */
/* clone of] lhs (r = x - 0*y) */
residue = 0;
decCopyFit (res, lhs, set, &residue, status);
decFinish (res, set, &residue, status);
break;
}
/* [unsafe REMNEAR drops through] */
}
} /* fastpaths */
/* We need long (slow) division; roll up the sleeves... */
/* The accumulator will hold the quotient of the division. */
/* If it needs to be too long for stack storage, then allocate. */
acclength = D2U (reqdigits + DECDPUN); /* in Units */
if (acclength * sizeof (Unit) > sizeof (accbuff))
{
allocacc = (Unit *) malloc (acclength * sizeof (Unit));
if (allocacc == NULL)
{ /* hopeless -- abandon */
*status |= DEC_Insufficient_storage;
break;
}
acc = allocacc; /* use the allocated space */
}
/* var1 is the padded LHS ready for subtractions. */
/* If it needs to be too long for stack storage, then allocate. */
/* The maximum units we need for var1 (long subtraction) is: */
/* Enough for */
/* (rhs->digits+reqdigits-1) -- to allow full slide to right */
/* or (lhs->digits) -- to allow for long lhs */
/* whichever is larger */
/* +1 -- for rounding of slide to right */
/* +1 -- for leading 0s */
/* +1 -- for pre-adjust if a remainder or DIVIDEINT */
/* [Note: unused units do not participate in decUnitAddSub data] */
maxdigits = rhs->digits + reqdigits - 1;
if (lhs->digits > maxdigits)
maxdigits = lhs->digits;
var1units = D2U (maxdigits) + 2;
/* allocate a guard unit above msu1 for REMAINDERNEAR */
if (!(op & DIVIDE))
var1units++;
if ((var1units + 1) * sizeof (Unit) > sizeof (varbuff))
{
varalloc = (Unit *) malloc ((var1units + 1) * sizeof (Unit));
if (varalloc == NULL)
{ /* hopeless -- abandon */
*status |= DEC_Insufficient_storage;
break;
}
var1 = varalloc; /* use the allocated space */
}
/* Extend the lhs and rhs to full long subtraction length. The lhs */
/* is truly extended into the var1 buffer, with 0 padding, so we can */
/* subtract in place. The rhs (var2) has virtual padding */
/* (implemented by decUnitAddSub). */
/* We allocated one guard unit above msu1 for rem=rem+rem in REMAINDERNEAR */
msu1 = var1 + var1units - 1; /* msu of var1 */
source = lhs->lsu + D2U (lhs->digits) - 1; /* msu of input array */
for (target = msu1; source >= lhs->lsu; source--, target--)
*target = *source;
for (; target >= var1; target--)
*target = 0;
/* rhs (var2) is left-aligned with var1 at the start */
var2ulen = var1units; /* rhs logical length (units) */
var2units = D2U (rhs->digits); /* rhs actual length (units) */
var2 = rhs->lsu; /* -> rhs array */
msu2 = var2 + var2units - 1; /* -> msu of var2 [never changes] */
/* now set up the variables which we'll use for estimating the */
/* multiplication factor. If these variables are not exact, we add */
/* 1 to make sure that we never overestimate the multiplier. */
msu2plus = *msu2; /* it's value .. */
if (var2units > 1)
msu2plus++; /* .. +1 if any more */
msu2pair = (eInt) * msu2 * (DECDPUNMAX + 1); /* top two pair .. */
if (var2units > 1)
{ /* .. [else treat 2nd as 0] */
msu2pair += *(msu2 - 1); /* .. */
if (var2units > 2)
msu2pair++; /* .. +1 if any more */
}
/* Since we are working in units, the units may have leading zeros, */
/* but we calculated the exponent on the assumption that they are */
/* both left-aligned. Adjust the exponent to compensate: add the */
/* number of leading zeros in var1 msu and subtract those in var2 msu. */
/* [We actually do this by counting the digits and negating, as */
/* lead1=DECDPUN-digits1, and similarly for lead2.] */
for (pow = &powers[1]; *msu1 >= *pow; pow++)
exponent--;
for (pow = &powers[1]; *msu2 >= *pow; pow++)
exponent++;
/* Now, if doing an integer divide or remainder, we want to ensure */
/* that the result will be Unit-aligned. To do this, we shift the */
/* var1 accumulator towards least if need be. (It's much easier to */
/* do this now than to reassemble the residue afterwards, if we are */
/* doing a remainder.) Also ensure the exponent is not negative. */
if (!(op & DIVIDE))
{
Unit *u;
/* save the initial 'false' padding of var1, in digits */
var1initpad = (var1units - D2U (lhs->digits)) * DECDPUN;
/* Determine the shift to do. */
if (exponent < 0)
cut = -exponent;
else
cut = DECDPUN - exponent % DECDPUN;
decShiftToLeast (var1, var1units, cut);
exponent += cut; /* maintain numerical value */
var1initpad -= cut; /* .. and reduce padding */
/* clean any most-significant units we just emptied */
for (u = msu1; cut >= DECDPUN; cut -= DECDPUN, u--)
*u = 0;
} /* align */
else
{ /* is DIVIDE */
maxexponent = lhs->exponent - rhs->exponent; /* save */
/* optimization: if the first iteration will just produce 0, */
/* preadjust to skip it [valid for DIVIDE only] */
if (*msu1 < *msu2)
{
var2ulen--; /* shift down */
exponent -= DECDPUN; /* update the exponent */
}
}
/* ---- start the long-division loops ------------------------------ */
accunits = 0; /* no units accumulated yet */
accdigits = 0; /* .. or digits */
accnext = acc + acclength - 1; /* -> msu of acc [NB: allows digits+1] */
for (;;)
{ /* outer forever loop */
thisunit = 0; /* current unit assumed 0 */
/* find the next unit */
for (;;)
{ /* inner forever loop */
/* strip leading zero units [from either pre-adjust or from */
/* subtract last time around]. Leave at least one unit. */
for (; *msu1 == 0 && msu1 > var1; msu1--)
var1units--;
if (var1units < var2ulen)
break; /* var1 too low for subtract */
if (var1units == var2ulen)
{ /* unit-by-unit compare needed */
/* compare the two numbers, from msu */
Unit *pv1, v2; /* units to compare */
const Unit *pv2; /* units to compare */
pv2 = msu2; /* -> msu */
for (pv1 = msu1;; pv1--, pv2--)
{
/* v1=*pv1 -- always OK */
v2 = 0; /* assume in padding */
if (pv2 >= var2)
v2 = *pv2; /* in range */
if (*pv1 != v2)
break; /* no longer the same */
if (pv1 == var1)
break; /* done; leave pv1 as is */
}
/* here when all inspected or a difference seen */
if (*pv1 < v2)
break; /* var1 too low to subtract */
if (*pv1 == v2)
{ /* var1 == var2 */
/* reach here if var1 and var2 are identical; subtraction */
/* would increase digit by one, and the residue will be 0 so */
/* we are done; leave the loop with residue set to 0. */
thisunit++; /* as though subtracted */
*var1 = 0; /* set var1 to 0 */
var1units = 1; /* .. */
break; /* from inner */
} /* var1 == var2 */
/* *pv1>v2. Prepare for real subtraction; the lengths are equal */
/* Estimate the multiplier (there's always a msu1-1)... */
/* Bring in two units of var2 to provide a good estimate. */
mult =
(Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
*(msu1 - 1)) / msu2pair);
} /* lengths the same */
else
{ /* var1units > var2ulen, so subtraction is safe */
/* The var2 msu is one unit towards the lsu of the var1 msu, */
/* so we can only use one unit for var2. */
mult =
(Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
*(msu1 - 1)) / msu2plus);
}
if (mult == 0)
mult = 1; /* must always be at least 1 */
/* subtraction needed; var1 is > var2 */
thisunit = (Unit) (thisunit + mult); /* accumulate */
/* subtract var1-var2, into var1; only the overlap needs */
/* processing, as we are in place */
shift = var2ulen - var2units;
#if DECTRACE
decDumpAr ('1', &var1[shift], var1units - shift);
decDumpAr ('2', var2, var2units);
printf ("m=%d\n", -mult);
#endif
decUnitAddSub (&var1[shift], var1units - shift,
var2, var2units, 0, &var1[shift], -mult);
#if DECTRACE
decDumpAr ('#', &var1[shift], var1units - shift);
#endif
/* var1 now probably has leading zeros; these are removed at the */
/* top of the inner loop. */
} /* inner loop */
/* We have the next unit; unless it's a leading zero, add to acc */
if (accunits != 0 || thisunit != 0)
{ /* put the unit we got */
*accnext = thisunit; /* store in accumulator */
/* account exactly for the digits we got */
if (accunits == 0)
{
accdigits++; /* at least one */
for (pow = &powers[1]; thisunit >= *pow; pow++)
accdigits++;
}
else
accdigits += DECDPUN;
accunits++; /* update count */
accnext--; /* ready for next */
if (accdigits > reqdigits)
break; /* we have all we need */
}
/* if the residue is zero, we're done (unless divide or */
/* divideInteger and we haven't got enough digits yet) */
if (*var1 == 0 && var1units == 1)
{ /* residue is 0 */
if (op & (REMAINDER | REMNEAR))
break;
if ((op & DIVIDE) && (exponent <= maxexponent))
break;
/* [drop through if divideInteger] */
}
/* we've also done enough if calculating remainder or integer */
/* divide and we just did the last ('units') unit */
if (exponent == 0 && !(op & DIVIDE))
break;
/* to get here, var1 is less than var2, so divide var2 by the per- */
/* Unit power of ten and go for the next digit */
var2ulen--; /* shift down */
exponent -= DECDPUN; /* update the exponent */
} /* outer loop */
/* ---- division is complete --------------------------------------- */
/* here: acc has at least reqdigits+1 of good results (or fewer */
/* if early stop), starting at accnext+1 (its lsu) */
/* var1 has any residue at the stopping point */
/* accunits is the number of digits we collected in acc */
if (accunits == 0)
{ /* acc is 0 */
accunits = 1; /* show we have one .. */
accdigits = 1; /* .. */
*accnext = 0; /* .. whose value is 0 */
}
else
accnext++; /* back to last placed */
/* accnext now -> lowest unit of result */
residue = 0; /* assume no residue */
if (op & DIVIDE)
{
/* record the presence of any residue, for rounding */
if (*var1 != 0 || var1units > 1)
residue = 1;
else
{ /* no residue */
/* We had an exact division; clean up spurious trailing 0s. */
/* There will be at most DECDPUN-1, from the final multiply, */
/* and then only if the result is non-0 (and even) and the */
/* exponent is 'loose'. */
#if DECDPUN>1
Unit lsu = *accnext;
if (!(lsu & 0x01) && (lsu != 0))
{
/* count the trailing zeros */
Int drop = 0;
for (;; drop++)
{ /* [will terminate because lsu!=0] */
if (exponent >= maxexponent)
break; /* don't chop real 0s */
#if DECDPUN<=4
if ((lsu - QUOT10 (lsu, drop + 1)
* powers[drop + 1]) != 0)
break; /* found non-0 digit */
#else
if (lsu % powers[drop + 1] != 0)
break; /* found non-0 digit */
#endif
exponent++;
}
if (drop > 0)
{
accunits = decShiftToLeast (accnext, accunits, drop);
accdigits = decGetDigits (accnext, accunits);
accunits = D2U (accdigits);
/* [exponent was adjusted in the loop] */
}
} /* neither odd nor 0 */
#endif
} /* exact divide */
} /* divide */
else /* op!=DIVIDE */
{
/* check for coefficient overflow */
if (accdigits + exponent > reqdigits)
{
*status |= DEC_Division_impossible;
break;
}
if (op & (REMAINDER | REMNEAR))
{
/* [Here, the exponent will be 0, because we adjusted var1 */
/* appropriately.] */
Int postshift; /* work */
Flag wasodd = 0; /* integer was odd */
Unit *quotlsu; /* for save */
Int quotdigits; /* .. */
/* Fastpath when residue is truly 0 is worthwhile [and */
/* simplifies the code below] */
if (*var1 == 0 && var1units == 1)
{ /* residue is 0 */
Int exp = lhs->exponent; /* save min(exponents) */
if (rhs->exponent < exp)
exp = rhs->exponent;
decNumberZero (res); /* 0 coefficient */
#if DECSUBSET
if (set->extended)
#endif
res->exponent = exp; /* .. with proper exponent */
break;
}
/* note if the quotient was odd */
if (*accnext & 0x01)
wasodd = 1; /* acc is odd */
quotlsu = accnext; /* save in case need to reinspect */
quotdigits = accdigits; /* .. */
/* treat the residue, in var1, as the value to return, via acc */
/* calculate the unused zero digits. This is the smaller of: */
/* var1 initial padding (saved above) */
/* var2 residual padding, which happens to be given by: */
postshift =
var1initpad + exponent - lhs->exponent + rhs->exponent;
/* [the 'exponent' term accounts for the shifts during divide] */
if (var1initpad < postshift)
postshift = var1initpad;
/* shift var1 the requested amount, and adjust its digits */
var1units = decShiftToLeast (var1, var1units, postshift);
accnext = var1;
accdigits = decGetDigits (var1, var1units);
accunits = D2U (accdigits);
exponent = lhs->exponent; /* exponent is smaller of lhs & rhs */
if (rhs->exponent < exponent)
exponent = rhs->exponent;
bits = lhs->bits; /* remainder sign is always as lhs */
/* Now correct the result if we are doing remainderNear; if it */
/* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
/* the integer was odd then the result should be rem-rhs. */
if (op & REMNEAR)
{
Int compare, tarunits; /* work */
Unit *up; /* .. */
/* calculate remainder*2 into the var1 buffer (which has */
/* 'headroom' of an extra unit and hence enough space) */
/* [a dedicated 'double' loop would be faster, here] */
tarunits =
decUnitAddSub (accnext, accunits, accnext, accunits, 0,
accnext, 1);
/* decDumpAr('r', accnext, tarunits); */
/* Here, accnext (var1) holds tarunits Units with twice the */
/* remainder's coefficient, which we must now compare to the */
/* RHS. The remainder's exponent may be smaller than the RHS's. */
compare =
decUnitCompare (accnext, tarunits, rhs->lsu,
D2U (rhs->digits),
rhs->exponent - exponent);
if (compare == BADINT)
{ /* deep trouble */
*status |= DEC_Insufficient_storage;
break;
}
/* now restore the remainder by dividing by two; we know the */
/* lsu is even. */
for (up = accnext; up < accnext + tarunits; up++)
{
Int half; /* half to add to lower unit */
half = *up & 0x01;
*up /= 2; /* [shift] */
if (!half)
continue;
*(up - 1) += (DECDPUNMAX + 1) / 2;
}
/* [accunits still describes the original remainder length] */
if (compare > 0 || (compare == 0 && wasodd))
{ /* adjustment needed */
Int exp, expunits, exprem; /* work */
/* This is effectively causing round-up of the quotient, */
/* so if it was the rare case where it was full and all */
/* nines, it would overflow and hence division-impossible */
/* should be raised */
Flag allnines = 0; /* 1 if quotient all nines */
if (quotdigits == reqdigits)
{ /* could be borderline */
for (up = quotlsu;; up++)
{
if (quotdigits > DECDPUN)
{
if (*up != DECDPUNMAX)
break; /* non-nines */
}
else
{ /* this is the last Unit */
if (*up == powers[quotdigits] - 1)
allnines = 1;
break;
}
quotdigits -= DECDPUN; /* checked those digits */
} /* up */
} /* borderline check */
if (allnines)
{
*status |= DEC_Division_impossible;
break;
}
/* we need rem-rhs; the sign will invert. Again we can */
/* safely use var1 for the working Units array. */
exp = rhs->exponent - exponent; /* RHS padding needed */
/* Calculate units and remainder from exponent. */
expunits = exp / DECDPUN;
exprem = exp % DECDPUN;
/* subtract [A+B*(-m)]; the result will always be negative */
accunits = -decUnitAddSub (accnext, accunits,
rhs->lsu, D2U (rhs->digits),
expunits, accnext,
-(Int) powers[exprem]);
accdigits = decGetDigits (accnext, accunits); /* count digits exactly */
accunits = D2U (accdigits); /* and recalculate the units for copy */
/* [exponent is as for original remainder] */
bits ^= DECNEG; /* flip the sign */
}
} /* REMNEAR */
} /* REMAINDER or REMNEAR */
} /* not DIVIDE */
/* Set exponent and bits */
res->exponent = exponent;
res->bits = (uByte) (bits & DECNEG); /* [cleaned] */
/* Now the coefficient. */
decSetCoeff (res, set, accnext, accdigits, &residue, status);
decFinish (res, set, &residue, status); /* final cleanup */
#if DECSUBSET
/* If a divide then strip trailing zeros if subset [after round] */
if (!set->extended && (op == DIVIDE))
decTrim (res, 0, &dropped);
#endif
}
while (0); /* end protected */
if (varalloc != NULL)
free (varalloc); /* drop any storage we used */
if (allocacc != NULL)
free (allocacc); /* .. */
if (allocrhs != NULL)
free (allocrhs); /* .. */
if (alloclhs != NULL)
free (alloclhs); /* .. */
return res;
}
/* ------------------------------------------------------------------ */
/* decMultiplyOp -- multiplication operation */
/* */
/* This routine performs the multiplication C=A x B. */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* status is the usual accumulator */
/* */
/* C must have space for set->digits digits. */
/* */
/* ------------------------------------------------------------------ */
/* Note: We use 'long' multiplication rather than Karatsuba, as the */
/* latter would give only a minor improvement for the short numbers */
/* we expect to handle most (and uses much more memory). */
/* */
/* We always have to use a buffer for the accumulator. */
/* ------------------------------------------------------------------ */
static decNumber *
decMultiplyOp (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set, uInt * status)
{
decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs = NULL; /* .., rhs */
Unit accbuff[D2U (DECBUFFER * 2 + 1)]; /* local buffer (+1 in case DECBUFFER==0) */
Unit *acc = accbuff; /* -> accumulator array for exact result */
Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
const Unit *mer, *mermsup; /* work */
Int accunits; /* Units of accumulator in use */
Int madlength; /* Units in multiplicand */
Int shift; /* Units to shift multiplicand by */
Int need; /* Accumulator units needed */
Int exponent; /* work */
Int residue = 0; /* rounding residue */
uByte bits; /* result sign */
uByte merged; /* merged flags */
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits > set->digits)
{
alloclhs = decRoundOperand (lhs, set, status);
if (alloclhs == NULL)
break;
lhs = alloclhs;
}
if (rhs->digits > set->digits)
{
allocrhs = decRoundOperand (rhs, set, status);
if (allocrhs == NULL)
break;
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* precalculate result sign */
bits = (uByte) ((lhs->bits ^ rhs->bits) & DECNEG);
/* handle infinities and NaNs */
merged = (lhs->bits | rhs->bits) & DECSPECIAL;
if (merged)
{ /* a special bit set */
if (merged & (DECSNAN | DECNAN))
{ /* one or two NaNs */
decNaNs (res, lhs, rhs, status);
break;
}
/* one or two infinities. Infinity * 0 is invalid */
if (((lhs->bits & DECSPECIAL) == 0 && ISZERO (lhs))
|| ((rhs->bits & DECSPECIAL) == 0 && ISZERO (rhs)))
{
*status |= DEC_Invalid_operation;
break;
}
decNumberZero (res);
res->bits = bits | DECINF; /* infinity */
break;
}
/* For best speed, as in DMSRCN, we use the shorter number as the */
/* multiplier (rhs) and the longer as the multiplicand (lhs) */
if (lhs->digits < rhs->digits)
{ /* swap... */
const decNumber *hold = lhs;
lhs = rhs;
rhs = hold;
}
/* if accumulator is too long for local storage, then allocate */
need = D2U (lhs->digits) + D2U (rhs->digits); /* maximum units in result */
if (need * sizeof (Unit) > sizeof (accbuff))
{
allocacc = (Unit *) malloc (need * sizeof (Unit));
if (allocacc == NULL)
{
*status |= DEC_Insufficient_storage;
break;
}
acc = allocacc; /* use the allocated space */
}
/* Now the main long multiplication loop */
/* Unlike the equivalent in the IBM Java implementation, there */
/* is no advantage in calculating from msu to lsu. So we do it */
/* by the book, as it were. */
/* Each iteration calculates ACC=ACC+MULTAND*MULT */
accunits = 1; /* accumulator starts at '0' */
*acc = 0; /* .. (lsu=0) */
shift = 0; /* no multiplicand shift at first */
madlength = D2U (lhs->digits); /* we know this won't change */
mermsup = rhs->lsu + D2U (rhs->digits); /* -> msu+1 of multiplier */
for (mer = rhs->lsu; mer < mermsup; mer++)
{
/* Here, *mer is the next Unit in the multiplier to use */
/* If non-zero [optimization] add it... */
if (*mer != 0)
{
accunits =
decUnitAddSub (&acc[shift], accunits - shift, lhs->lsu,
madlength, 0, &acc[shift], *mer) + shift;
}
else
{ /* extend acc with a 0; we'll use it shortly */
/* [this avoids length of <=0 later] */
*(acc + accunits) = 0;
accunits++;
}
/* multiply multiplicand by 10**DECDPUN for next Unit to left */
shift++; /* add this for 'logical length' */
} /* n */
#if DECTRACE
/* Show exact result */
decDumpAr ('*', acc, accunits);
#endif
/* acc now contains the exact result of the multiplication */
/* Build a decNumber from it, noting if any residue */
res->bits = bits; /* set sign */
res->digits = decGetDigits (acc, accunits); /* count digits exactly */
/* We might have a 31-bit wrap in calculating the exponent. */
/* This can only happen if both input exponents are negative and */
/* both their magnitudes are large. If we did wrap, we set a safe */
/* very negative exponent, from which decFinalize() will raise a */
/* hard underflow. */
exponent = lhs->exponent + rhs->exponent; /* calculate exponent */
if (lhs->exponent < 0 && rhs->exponent < 0 && exponent > 0)
exponent = -2 * DECNUMMAXE; /* force underflow */
res->exponent = exponent; /* OK to overwrite now */
/* Set the coefficient. If any rounding, residue records */
decSetCoeff (res, set, acc, res->digits, &residue, status);
decFinish (res, set, &residue, status); /* final cleanup */
}
while (0); /* end protected */
if (allocacc != NULL)
free (allocacc); /* drop any storage we used */
if (allocrhs != NULL)
free (allocrhs); /* .. */
if (alloclhs != NULL)
free (alloclhs); /* .. */
return res;
}
/* ------------------------------------------------------------------ */
/* decQuantizeOp -- force exponent to requested value */
/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has the value B or matches the exponent of B. */
/* The numerical value of C will equal A, except for the effects of */
/* any rounding that occurred. */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the requested exponent */
/* set is the context */
/* quant is 1 for quantize or 0 for rescale */
/* status is the status accumulator (this can be called without */
/* risk of control loss) */
/* */
/* C must have space for set->digits digits. */
/* */
/* Unless there is an error or the result is infinite, the exponent */
/* after the operation is guaranteed to be that requested. */
/* ------------------------------------------------------------------ */
static decNumber *
decQuantizeOp (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set, Flag quant, uInt * status)
{
decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs = NULL; /* .., rhs */
const decNumber *inrhs = rhs; /* save original rhs */
Int reqdigits = set->digits; /* requested DIGITS */
Int reqexp; /* requested exponent [-scale] */
Int residue = 0; /* rounding residue */
uByte merged; /* merged flags */
Int etiny = set->emin - (set->digits - 1);
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits > reqdigits)
{
alloclhs = decRoundOperand (lhs, set, status);
if (alloclhs == NULL)
break;
lhs = alloclhs;
}
if (rhs->digits > reqdigits)
{ /* [this only checks lostDigits] */
allocrhs = decRoundOperand (rhs, set, status);
if (allocrhs == NULL)
break;
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* Handle special values */
merged = (lhs->bits | rhs->bits) & DECSPECIAL;
if ((lhs->bits | rhs->bits) & DECSPECIAL)
{
/* NaNs get usual processing */
if (merged & (DECSNAN | DECNAN))
decNaNs (res, lhs, rhs, status);
/* one infinity but not both is bad */
else if ((lhs->bits ^ rhs->bits) & DECINF)
*status |= DEC_Invalid_operation;
/* both infinity: return lhs */
else
decNumberCopy (res, lhs); /* [nop if in place] */
break;
}
/* set requested exponent */
if (quant)
reqexp = inrhs->exponent; /* quantize -- match exponents */
else
{ /* rescale -- use value of rhs */
/* Original rhs must be an integer that fits and is in range */
#if DECSUBSET
reqexp = decGetInt (inrhs, set);
#else
reqexp = decGetInt (inrhs);
#endif
}
#if DECSUBSET
if (!set->extended)
etiny = set->emin; /* no subnormals */
#endif
if (reqexp == BADINT /* bad (rescale only) or .. */
|| (reqexp < etiny) /* < lowest */
|| (reqexp > set->emax))
{ /* > Emax */
*status |= DEC_Invalid_operation;
break;
}
/* we've processed the RHS, so we can overwrite it now if necessary */
if (ISZERO (lhs))
{ /* zero coefficient unchanged */
decNumberCopy (res, lhs); /* [nop if in place] */
res->exponent = reqexp; /* .. just set exponent */
#if DECSUBSET
if (!set->extended)
res->bits = 0; /* subset specification; no -0 */
#endif
}
else
{ /* non-zero lhs */
Int adjust = reqexp - lhs->exponent; /* digit adjustment needed */
/* if adjusted coefficient will not fit, give up now */
if ((lhs->digits - adjust) > reqdigits)
{
*status |= DEC_Invalid_operation;
break;
}
if (adjust > 0)
{ /* increasing exponent */
/* this will decrease the length of the coefficient by adjust */
/* digits, and must round as it does so */
decContext workset; /* work */
workset = *set; /* clone rounding, etc. */
workset.digits = lhs->digits - adjust; /* set requested length */
/* [note that the latter can be <1, here] */
decCopyFit (res, lhs, &workset, &residue, status); /* fit to result */
decApplyRound (res, &workset, residue, status); /* .. and round */
residue = 0; /* [used] */
/* If we rounded a 999s case, exponent will be off by one; */
/* adjust back if so. */
if (res->exponent > reqexp)
{
res->digits = decShiftToMost (res->lsu, res->digits, 1); /* shift */
res->exponent--; /* (re)adjust the exponent. */
}
#if DECSUBSET
if (ISZERO (res) && !set->extended)
res->bits = 0; /* subset; no -0 */
#endif
} /* increase */
else /* adjust<=0 */
{ /* decreasing or = exponent */
/* this will increase the length of the coefficient by -adjust */
/* digits, by adding trailing zeros. */
decNumberCopy (res, lhs); /* [it will fit] */
/* if padding needed (adjust<0), add it now... */
if (adjust < 0)
{
res->digits =
decShiftToMost (res->lsu, res->digits, -adjust);
res->exponent += adjust; /* adjust the exponent */
}
} /* decrease */
} /* non-zero */
/* Check for overflow [do not use Finalize in this case, as an */
/* overflow here is a "don't fit" situation] */
if (res->exponent > set->emax - res->digits + 1)
{ /* too big */
*status |= DEC_Invalid_operation;
break;
}
else
{
decFinalize (res, set, &residue, status); /* set subnormal flags */
*status &= ~DEC_Underflow; /* suppress Underflow [754r] */
}
}
while (0); /* end protected */
if (allocrhs != NULL)
free (allocrhs); /* drop any storage we used */
if (alloclhs != NULL)
free (alloclhs); /* .. */
return res;
}
/* ------------------------------------------------------------------ */
/* decCompareOp -- compare, min, or max two Numbers */
/* */
/* This computes C = A ? B and returns the signum (as a Number) */
/* for COMPARE or the maximum or minimum (for COMPMAX and COMPMIN). */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* op is the operation flag */
/* status is the usual accumulator */
/* */
/* C must have space for one digit for COMPARE or set->digits for */
/* COMPMAX and COMPMIN. */
/* ------------------------------------------------------------------ */
/* The emphasis here is on speed for common cases, and avoiding */
/* coefficient comparison if possible. */
/* ------------------------------------------------------------------ */
decNumber *
decCompareOp (decNumber * res, const decNumber * lhs, const decNumber * rhs,
decContext * set, Flag op, uInt * status)
{
decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs = NULL; /* .., rhs */
Int result = 0; /* default result value */
uByte merged; /* merged flags */
uByte bits = 0; /* non-0 for NaN */
#if DECCHECK
if (decCheckOperands (res, lhs, rhs, set))
return res;
#endif
do
{ /* protect allocated storage */
#if DECSUBSET
if (!set->extended)
{
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits > set->digits)
{
alloclhs = decRoundOperand (lhs, set, status);
if (alloclhs == NULL)
{
result = BADINT;
break;
}
lhs = alloclhs;
}
if (rhs->digits > set->digits)
{
allocrhs = decRoundOperand (rhs, set, status);
if (allocrhs == NULL)
{
result = BADINT;
break;
}
rhs = allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* handle NaNs now; let infinities drop through */
/* +++ review sNaN handling with 754r, for now assumes sNaN */
/* (even just one) leads to NaN. */
merged = (lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
if (merged)
{ /* a NaN bit set */
if (op == COMPARE);
else if (merged & DECSNAN);
else
{ /* 754r rules for MIN and MAX ignore single NaN */
/* here if MIN or MAX, and one or two quiet NaNs */
if (lhs->bits & rhs->bits & DECNAN);
else
{ /* just one quiet NaN */
/* force choice to be the non-NaN operand */
op = COMPMAX;
if (lhs->bits & DECNAN)
result = -1; /* pick rhs */
else
result = +1; /* pick lhs */
break;
}
}
op = COMPNAN; /* use special path */
decNaNs (res, lhs, rhs, status);
break;
}
result = decCompare (lhs, rhs); /* we have numbers */
}
while (0); /* end protected */
if (result == BADINT)
*status |= DEC_Insufficient_storage; /* rare */
else
{
if (op == COMPARE)
{ /* return signum */
decNumberZero (res); /* [always a valid result] */
if (result == 0)
res->bits = bits; /* (maybe qNaN) */
else
{
*res->lsu = 1;
if (result < 0)
res->bits = DECNEG;
}
}
else if (op == COMPNAN); /* special, drop through */
else
{ /* MAX or MIN, non-NaN result */
Int residue = 0; /* rounding accumulator */
/* choose the operand for the result */
const decNumber *choice;
if (result == 0)
{ /* operands are numerically equal */
/* choose according to sign then exponent (see 754r) */
uByte slhs = (lhs->bits & DECNEG);
uByte srhs = (rhs->bits & DECNEG);
#if DECSUBSET
if (!set->extended)
{ /* subset: force left-hand */
op = COMPMAX;
result = +1;
}
else
#endif
if (slhs != srhs)
{ /* signs differ */
if (slhs)
result = -1; /* rhs is max */
else
result = +1; /* lhs is max */
}
else if (slhs && srhs)
{ /* both negative */
if (lhs->exponent < rhs->exponent)
result = +1;
else
result = -1;
/* [if equal, we use lhs, technically identical] */
}
else
{ /* both positive */
if (lhs->exponent > rhs->exponent)
result = +1;
else
result = -1;
/* [ditto] */
}
} /* numerically equal */
/* here result will be non-0 */
if (op == COMPMIN)
result = -result; /* reverse if looking for MIN */
choice = (result > 0 ? lhs : rhs); /* choose */
/* copy chosen to result, rounding if need be */
decCopyFit (res, choice, set, &residue, status);
decFinish (res, set, &residue, status);
}
}
if (allocrhs != NULL)
free (allocrhs); /* free any storage we used */
if (alloclhs != NULL)
free (alloclhs); /* .. */
return res;
}
/* ------------------------------------------------------------------ */
/* decCompare -- compare two decNumbers by numerical value */
/* */
/* This routine compares A ? B without altering them. */
/* */
/* Arg1 is A, a decNumber which is not a NaN */
/* Arg2 is B, a decNumber which is not a NaN */
/* */
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
/* (the only possible failure is an allocation error) */
/* ------------------------------------------------------------------ */
/* This could be merged into decCompareOp */
static Int
decCompare (const decNumber * lhs, const decNumber * rhs)
{
Int result; /* result value */
Int sigr; /* rhs signum */
Int compare; /* work */
result = 1; /* assume signum(lhs) */
if (ISZERO (lhs))
result = 0;
else if (decNumberIsNegative (lhs))
result = -1;
sigr = 1; /* compute signum(rhs) */
if (ISZERO (rhs))
sigr = 0;
else if (decNumberIsNegative (rhs))
sigr = -1;
if (result > sigr)
return +1; /* L > R, return 1 */
if (result < sigr)
return -1; /* R < L, return -1 */
/* signums are the same */
if (result == 0)
return 0; /* both 0 */
/* Both non-zero */
if ((lhs->bits | rhs->bits) & DECINF)
{ /* one or more infinities */
if (lhs->bits == rhs->bits)
result = 0; /* both the same */
else if (decNumberIsInfinite (rhs))
result = -result;
return result;
}
/* we must compare the coefficients, allowing for exponents */
if (lhs->exponent > rhs->exponent)
{ /* LHS exponent larger */
/* swap sides, and sign */
const decNumber *temp = lhs;
lhs = rhs;
rhs = temp;
result = -result;
}
compare = decUnitCompare (lhs->lsu, D2U (lhs->digits),
rhs->lsu, D2U (rhs->digits),
rhs->exponent - lhs->exponent);
if (compare != BADINT)
compare *= result; /* comparison succeeded */
return compare; /* what we got */
}
/* ------------------------------------------------------------------ */
/* decUnitCompare -- compare two >=0 integers in Unit arrays */
/* */
/* This routine compares A ? B*10**E where A and B are unit arrays */
/* A is a plain integer */
/* B has an exponent of E (which must be non-negative) */
/* */
/* Arg1 is A first Unit (lsu) */
/* Arg2 is A length in Units */
/* Arg3 is B first Unit (lsu) */
/* Arg4 is B length in Units */
/* Arg5 is E */
/* */
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
/* (the only possible failure is an allocation error) */
/* ------------------------------------------------------------------ */
static Int
decUnitCompare (const Unit * a, Int alength, const Unit * b, Int blength, Int exp)
{
Unit *acc; /* accumulator for result */
Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer */
Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
Int accunits, need; /* units in use or needed for acc */
const Unit *l, *r, *u; /* work */
Int expunits, exprem, result; /* .. */
if (exp == 0)
{ /* aligned; fastpath */
if (alength > blength)
return 1;
if (alength < blength)
return -1;
/* same number of units in both -- need unit-by-unit compare */
l = a + alength - 1;
r = b + alength - 1;
for (; l >= a; l--, r--)
{
if (*l > *r)
return 1;
if (*l < *r)
return -1;
}
return 0; /* all units match */
} /* aligned */
/* Unaligned. If one is >1 unit longer than the other, padded */
/* approximately, then we can return easily */
if (alength > blength + (Int) D2U (exp))
return 1;
if (alength + 1 < blength + (Int) D2U (exp))
return -1;
/* We need to do a real subtract. For this, we need a result buffer */
/* even though we only are interested in the sign. Its length needs */
/* to be the larger of alength and padded blength, +2 */
need = blength + D2U (exp); /* maximum real length of B */
if (need < alength)
need = alength;
need += 2;
acc = accbuff; /* assume use local buffer */
if (need * sizeof (Unit) > sizeof (accbuff))
{
allocacc = (Unit *) malloc (need * sizeof (Unit));
if (allocacc == NULL)
return BADINT; /* hopeless -- abandon */
acc = allocacc;
}
/* Calculate units and remainder from exponent. */
expunits = exp / DECDPUN;
exprem = exp % DECDPUN;
/* subtract [A+B*(-m)] */
accunits = decUnitAddSub (a, alength, b, blength, expunits, acc,
-(Int) powers[exprem]);
/* [UnitAddSub result may have leading zeros, even on zero] */
if (accunits < 0)
result = -1; /* negative result */
else
{ /* non-negative result */
/* check units of the result before freeing any storage */
for (u = acc; u < acc + accunits - 1 && *u == 0;)
u++;
result = (*u == 0 ? 0 : +1);
}
/* clean up and return the result */
if (allocacc != NULL)
free (allocacc); /* drop any storage we used */
return result;
}
/* ------------------------------------------------------------------ */
/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
/* */
/* This routine performs the calculation: */
/* */
/* C=A+(B*M) */
/* */
/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
/* */
/* A may be shorter or longer than B. */
/* */
/* Leading zeros are not removed after a calculation. The result is */
/* either the same length as the longer of A and B (adding any */
/* shift), or one Unit longer than that (if a Unit carry occurred). */
/* */
/* A and B content are not altered unless C is also A or B. */
/* C may be the same array as A or B, but only if no zero padding is */
/* requested (that is, C may be B only if bshift==0). */
/* C is filled from the lsu; only those units necessary to complete */
/* the calculation are referenced. */
/* */
/* Arg1 is A first Unit (lsu) */
/* Arg2 is A length in Units */
/* Arg3 is B first Unit (lsu) */
/* Arg4 is B length in Units */
/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
/* Arg6 is C first Unit (lsu) */
/* Arg7 is M, the multiplier */
/* */
/* returns the count of Units written to C, which will be non-zero */
/* and negated if the result is negative. That is, the sign of the */
/* returned Int is the sign of the result (positive for zero) and */
/* the absolute value of the Int is the count of Units. */
/* */
/* It is the caller's responsibility to make sure that C size is */
/* safe, allowing space if necessary for a one-Unit carry. */
/* */
/* This routine is severely performance-critical; *any* change here */
/* must be measured (timed) to assure no performance degradation. */
/* In particular, trickery here tends to be counter-productive, as */
/* increased complexity of code hurts register optimizations on */
/* register-poor architectures. Avoiding divisions is nearly */
/* always a Good Idea, however. */
/* */
/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
/* (IBM Warwick, UK) for some of the ideas used in this routine. */
/* ------------------------------------------------------------------ */
static Int
decUnitAddSub (const Unit * a, Int alength,
const Unit * b, Int blength, Int bshift, Unit * c, Int m)
{
const Unit *alsu = a; /* A lsu [need to remember it] */
Unit *clsu = c; /* C ditto */
Unit *minC; /* low water mark for C */
Unit *maxC; /* high water mark for C */
eInt carry = 0; /* carry integer (could be Long) */
Int add; /* work */
#if DECDPUN==4 /* myriadal */
Int est; /* estimated quotient */
#endif
#if DECTRACE
if (alength < 1 || blength < 1)
printf ("decUnitAddSub: alen blen m %d %d [%d]\n", alength, blength, m);
#endif
maxC = c + alength; /* A is usually the longer */
minC = c + blength; /* .. and B the shorter */
if (bshift != 0)
{ /* B is shifted; low As copy across */
minC += bshift;
/* if in place [common], skip copy unless there's a gap [rare] */
if (a == c && bshift <= alength)
{
c += bshift;
a += bshift;
}
else
for (; c < clsu + bshift; a++, c++)
{ /* copy needed */
if (a < alsu + alength)
*c = *a;
else
*c = 0;
}
}
if (minC > maxC)
{ /* swap */
Unit *hold = minC;
minC = maxC;
maxC = hold;
}
/* For speed, we do the addition as two loops; the first where both A */
/* and B contribute, and the second (if necessary) where only one or */
/* other of the numbers contribute. */
/* Carry handling is the same (i.e., duplicated) in each case. */
for (; c < minC; c++)
{
carry += *a;
a++;
carry += ((eInt) * b) * m; /* [special-casing m=1/-1 */
b++; /* here is not a win] */
/* here carry is new Unit of digits; it could be +ve or -ve */
if ((ueInt) carry <= DECDPUNMAX)
{ /* fastpath 0-DECDPUNMAX */
*c = (Unit) carry;
carry = 0;
continue;
}
/* remainder operator is undefined if negative, so we must test */
#if DECDPUN==4 /* use divide-by-multiply */
if (carry >= 0)
{
est = (((ueInt) carry >> 11) * 53687) >> 18;
*c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
carry = est; /* likely quotient [89%] */
if (*c < DECDPUNMAX + 1)
continue; /* estimate was correct */
carry++;
*c -= DECDPUNMAX + 1;
continue;
}
/* negative case */
carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
est = (((ueInt) carry >> 11) * 53687) >> 18;
*c = (Unit) (carry - est * (DECDPUNMAX + 1));
carry = est - (DECDPUNMAX + 1); /* correctly negative */
if (*c < DECDPUNMAX + 1)
continue; /* was OK */
carry++;
*c -= DECDPUNMAX + 1;
#else
if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
{ /* fastpath carry +1 */
*c = (Unit) (carry - (DECDPUNMAX + 1)); /* [helps additions] */
carry = 1;
continue;
}
if (carry >= 0)
{
*c = (Unit) (carry % (DECDPUNMAX + 1));
carry = carry / (DECDPUNMAX + 1);
continue;
}
/* negative case */
carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
*c = (Unit) (carry % (DECDPUNMAX + 1));
carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
#endif
} /* c */
/* we now may have one or other to complete */
/* [pretest to avoid loop setup/shutdown] */
if (c < maxC)
for (; c < maxC; c++)
{
if (a < alsu + alength)
{ /* still in A */
carry += *a;
a++;
}
else
{ /* inside B */
carry += ((eInt) * b) * m;
b++;
}
/* here carry is new Unit of digits; it could be +ve or -ve and */
/* magnitude up to DECDPUNMAX squared */
if ((ueInt) carry <= DECDPUNMAX)
{ /* fastpath 0-DECDPUNMAX */
*c = (Unit) carry;
carry = 0;
continue;
}
/* result for this unit is negative or >DECDPUNMAX */
#if DECDPUN==4 /* use divide-by-multiply */
/* remainder is undefined if negative, so we must test */
if (carry >= 0)
{
est = (((ueInt) carry >> 11) * 53687) >> 18;
*c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
carry = est; /* likely quotient [79.7%] */
if (*c < DECDPUNMAX + 1)
continue; /* estimate was correct */
carry++;
*c -= DECDPUNMAX + 1;
continue;
}
/* negative case */
carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
est = (((ueInt) carry >> 11) * 53687) >> 18;
*c = (Unit) (carry - est * (DECDPUNMAX + 1));
carry = est - (DECDPUNMAX + 1); /* correctly negative */
if (*c < DECDPUNMAX + 1)
continue; /* was OK */
carry++;
*c -= DECDPUNMAX + 1;
#else
if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
{ /* fastpath carry 1 */
*c = (Unit) (carry - (DECDPUNMAX + 1));
carry = 1;
continue;
}
/* remainder is undefined if negative, so we must test */
if (carry >= 0)
{
*c = (Unit) (carry % (DECDPUNMAX + 1));
carry = carry / (DECDPUNMAX + 1);
continue;
}
/* negative case */
carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
*c = (Unit) (carry % (DECDPUNMAX + 1));
carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
#endif
} /* c */
/* OK, all A and B processed; might still have carry or borrow */
/* return number of Units in the result, negated if a borrow */
if (carry == 0)
return c - clsu; /* no carry, we're done */
if (carry > 0)
{ /* positive carry */
*c = (Unit) carry; /* place as new unit */
c++; /* .. */
return c - clsu;
}
/* -ve carry: it's a borrow; complement needed */
add = 1; /* temporary carry... */
for (c = clsu; c < maxC; c++)
{
add = DECDPUNMAX + add - *c;
if (add <= DECDPUNMAX)
{
*c = (Unit) add;
add = 0;
}
else
{
*c = 0;
add = 1;
}
}
/* add an extra unit iff it would be non-zero */
#if DECTRACE
printf ("UAS borrow: add %d, carry %d\n", add, carry);
#endif
if ((add - carry - 1) != 0)
{
*c = (Unit) (add - carry - 1);
c++; /* interesting, include it */
}
return clsu - c; /* -ve result indicates borrowed */
}
/* ------------------------------------------------------------------ */
/* decTrim -- trim trailing zeros or normalize */
/* */
/* dn is the number to trim or normalize */
/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
/* dropped returns the number of discarded trailing zeros */
/* returns dn */
/* */
/* All fields are updated as required. This is a utility operation, */
/* so special values are unchanged and no error is possible. */
/* ------------------------------------------------------------------ */
static decNumber *
decTrim (decNumber * dn, Flag all, Int * dropped)
{
Int d, exp; /* work */
uInt cut; /* .. */
Unit *up; /* -> current Unit */
#if DECCHECK
if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
return dn;
#endif
*dropped = 0; /* assume no zeros dropped */
if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
|| (*dn->lsu & 0x01))
return dn; /* .. or odd */
if (ISZERO (dn))
{ /* .. or 0 */
dn->exponent = 0; /* (sign is preserved) */
return dn;
}
/* we have a finite number which is even */
exp = dn->exponent;
cut = 1; /* digit (1-DECDPUN) in Unit */
up = dn->lsu; /* -> current Unit */
for (d = 0; d < dn->digits - 1; d++)
{ /* [don't strip the final digit] */
/* slice by powers */
#if DECDPUN<=4
uInt quot = QUOT10 (*up, cut);
if ((*up - quot * powers[cut]) != 0)
break; /* found non-0 digit */
#else
if (*up % powers[cut] != 0)
break; /* found non-0 digit */
#endif
/* have a trailing 0 */
if (!all)
{ /* trimming */
/* [if exp>0 then all trailing 0s are significant for trim] */
if (exp <= 0)
{ /* if digit might be significant */
if (exp == 0)
break; /* then quit */
exp++; /* next digit might be significant */
}
}
cut++; /* next power */
if (cut > DECDPUN)
{ /* need new Unit */
up++;
cut = 1;
}
} /* d */
if (d == 0)
return dn; /* none dropped */
/* effect the drop */
decShiftToLeast (dn->lsu, D2U (dn->digits), d);
dn->exponent += d; /* maintain numerical value */
dn->digits -= d; /* new length */
*dropped = d; /* report the count */
return dn;
}
/* ------------------------------------------------------------------ */
/* decShiftToMost -- shift digits in array towards most significant */
/* */
/* uar is the array */
/* digits is the count of digits in use in the array */
/* shift is the number of zeros to pad with (least significant); */
/* it must be zero or positive */
/* */
/* returns the new length of the integer in the array, in digits */
/* */
/* No overflow is permitted (that is, the uar array must be known to */
/* be large enough to hold the result, after shifting). */
/* ------------------------------------------------------------------ */
static Int
decShiftToMost (Unit * uar, Int digits, Int shift)
{
Unit *target, *source, *first; /* work */
uInt rem; /* for division */
Int cut; /* odd 0's to add */
uInt next; /* work */
if (shift == 0)
return digits; /* [fastpath] nothing to do */
if ((digits + shift) <= DECDPUN)
{ /* [fastpath] single-unit case */
*uar = (Unit) (*uar * powers[shift]);
return digits + shift;
}
cut = (DECDPUN - shift % DECDPUN) % DECDPUN;
source = uar + D2U (digits) - 1; /* where msu comes from */
first = uar + D2U (digits + shift) - 1; /* where msu of source will end up */
target = source + D2U (shift); /* where upper part of first cut goes */
next = 0;
for (; source >= uar; source--, target--)
{
/* split the source Unit and accumulate remainder for next */
#if DECDPUN<=4
uInt quot = QUOT10 (*source, cut);
rem = *source - quot * powers[cut];
next += quot;
#else
rem = *source % powers[cut];
next += *source / powers[cut];
#endif
if (target <= first)
*target = (Unit) next; /* write to target iff valid */
next = rem * powers[DECDPUN - cut]; /* save remainder for next Unit */
}
/* propagate to one below and clear the rest */
for (; target >= uar; target--)
{
*target = (Unit) next;
next = 0;
}
return digits + shift;
}
/* ------------------------------------------------------------------ */
/* decShiftToLeast -- shift digits in array towards least significant */
/* */
/* uar is the array */
/* units is length of the array, in units */
/* shift is the number of digits to remove from the lsu end; it */
/* must be zero or positive and less than units*DECDPUN. */
/* */
/* returns the new length of the integer in the array, in units */
/* */
/* Removed digits are discarded (lost). Units not required to hold */
/* the final result are unchanged. */
/* ------------------------------------------------------------------ */
static Int
decShiftToLeast (Unit * uar, Int units, Int shift)
{
Unit *target, *up; /* work */
Int cut, count; /* work */
Int quot, rem; /* for division */
if (shift == 0)
return units; /* [fastpath] nothing to do */
up = uar + shift / DECDPUN; /* source; allow for whole Units */
cut = shift % DECDPUN; /* odd 0's to drop */
target = uar; /* both paths */
if (cut == 0)
{ /* whole units shift */
for (; up < uar + units; target++, up++)
*target = *up;
return target - uar;
}
/* messier */
count = units * DECDPUN - shift; /* the maximum new length */
#if DECDPUN<=4
quot = QUOT10 (*up, cut);
#else
quot = *up / powers[cut];
#endif
for (;; target++)
{
*target = (Unit) quot;
count -= (DECDPUN - cut);
if (count <= 0)
break;
up++;
quot = *up;
#if DECDPUN<=4
quot = QUOT10 (quot, cut);
rem = *up - quot * powers[cut];
#else
rem = quot % powers[cut];
quot = quot / powers[cut];
#endif
*target = (Unit) (*target + rem * powers[DECDPUN - cut]);
count -= cut;
if (count <= 0)
break;
}
return target - uar + 1;
}
#if DECSUBSET
/* ------------------------------------------------------------------ */
/* decRoundOperand -- round an operand [used for subset only] */
/* */
/* dn is the number to round (dn->digits is > set->digits) */
/* set is the relevant context */
/* status is the status accumulator */
/* */
/* returns an allocated decNumber with the rounded result. */
/* */
/* lostDigits and other status may be set by this. */
/* */
/* Since the input is an operand, we are not permitted to modify it. */
/* We therefore return an allocated decNumber, rounded as required. */
/* It is the caller's responsibility to free the allocated storage. */
/* */
/* If no storage is available then the result cannot be used, so NULL */
/* is returned. */
/* ------------------------------------------------------------------ */
static decNumber *
decRoundOperand (const decNumber * dn, decContext * set, uInt * status)
{
decNumber *res; /* result structure */
uInt newstatus = 0; /* status from round */
Int residue = 0; /* rounding accumulator */
/* Allocate storage for the returned decNumber, big enough for the */
/* length specified by the context */
res = (decNumber *) malloc (sizeof (decNumber)
+ (D2U (set->digits) - 1) * sizeof (Unit));
if (res == NULL)
{
*status |= DEC_Insufficient_storage;
return NULL;
}
decCopyFit (res, dn, set, &residue, &newstatus);
decApplyRound (res, set, residue, &newstatus);
/* If that set Inexact then we "lost digits" */
if (newstatus & DEC_Inexact)
newstatus |= DEC_Lost_digits;
*status |= newstatus;
return res;
}
#endif
/* ------------------------------------------------------------------ */
/* decCopyFit -- copy a number, shortening the coefficient if needed */
/* */
/* dest is the target decNumber */
/* src is the source decNumber */
/* set is the context [used for length (digits) and rounding mode] */
/* residue is the residue accumulator */
/* status contains the current status to be updated */
/* */
/* (dest==src is allowed and will be a no-op if fits) */
/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
static void
decCopyFit (decNumber * dest, const decNumber * src, decContext * set,
Int * residue, uInt * status)
{
dest->bits = src->bits;
dest->exponent = src->exponent;
decSetCoeff (dest, set, src->lsu, src->digits, residue, status);
}
/* ------------------------------------------------------------------ */
/* decSetCoeff -- set the coefficient of a number */
/* */
/* dn is the number whose coefficient array is to be set. */
/* It must have space for set->digits digits */
/* set is the context [for size] */
/* lsu -> lsu of the source coefficient [may be dn->lsu] */
/* len is digits in the source coefficient [may be dn->digits] */
/* residue is the residue accumulator. This has values as in */
/* decApplyRound, and will be unchanged unless the */
/* target size is less than len. In this case, the */
/* coefficient is truncated and the residue is updated to */
/* reflect the previous residue and the dropped digits. */
/* status is the status accumulator, as usual */
/* */
/* The coefficient may already be in the number, or it can be an */
/* external intermediate array. If it is in the number, lsu must == */
/* dn->lsu and len must == dn->digits. */
/* */
/* Note that the coefficient length (len) may be < set->digits, and */
/* in this case this merely copies the coefficient (or is a no-op */
/* if dn->lsu==lsu). */
/* */
/* Note also that (only internally, from decNumberRescale and */
/* decSetSubnormal) the value of set->digits may be less than one, */
/* indicating a round to left. */
/* This routine handles that case correctly; caller ensures space. */
/* */
/* dn->digits, dn->lsu (and as required), and dn->exponent are */
/* updated as necessary. dn->bits (sign) is unchanged. */
/* */
/* DEC_Rounded status is set if any digits are discarded. */
/* DEC_Inexact status is set if any non-zero digits are discarded, or */
/* incoming residue was non-0 (implies rounded) */
/* ------------------------------------------------------------------ */
/* mapping array: maps 0-9 to canonical residues, so that we can */
/* adjust by a residue in range [-1, +1] and achieve correct rounding */
/* 0 1 2 3 4 5 6 7 8 9 */
static const uByte resmap[10] = { 0, 3, 3, 3, 3, 5, 7, 7, 7, 7 };
static void
decSetCoeff (decNumber * dn, decContext * set, const Unit * lsu,
Int len, Int * residue, uInt * status)
{
Int discard; /* number of digits to discard */
uInt discard1; /* first discarded digit */
uInt cut; /* cut point in Unit */
uInt quot, rem; /* for divisions */
Unit *target; /* work */
const Unit *up; /* work */
Int count; /* .. */
#if DECDPUN<=4
uInt temp; /* .. */
#endif
discard = len - set->digits; /* digits to discard */
if (discard <= 0)
{ /* no digits are being discarded */
if (dn->lsu != lsu)
{ /* copy needed */
/* copy the coefficient array to the result number; no shift needed */
up = lsu;
for (target = dn->lsu; target < dn->lsu + D2U (len); target++, up++)
{
*target = *up;
}
dn->digits = len; /* set the new length */
}
/* dn->exponent and residue are unchanged */
if (*residue != 0)
*status |= (DEC_Inexact | DEC_Rounded); /* record inexactitude */
return;
}
/* we have to discard some digits */
*status |= DEC_Rounded; /* accumulate Rounded status */
if (*residue > 1)
*residue = 1; /* previous residue now to right, so -1 to +1 */
if (discard > len)
{ /* everything, +1, is being discarded */
/* guard digit is 0 */
/* residue is all the number [NB could be all 0s] */
if (*residue <= 0)
for (up = lsu + D2U (len) - 1; up >= lsu; up--)
{
if (*up != 0)
{ /* found a non-0 */
*residue = 1;
break; /* no need to check any others */
}
}
if (*residue != 0)
*status |= DEC_Inexact; /* record inexactitude */
*dn->lsu = 0; /* coefficient will now be 0 */
dn->digits = 1; /* .. */
dn->exponent += discard; /* maintain numerical value */
return;
} /* total discard */
/* partial discard [most common case] */
/* here, at least the first (most significant) discarded digit exists */
/* spin up the number, noting residue as we pass, until we get to */
/* the Unit with the first discarded digit. When we get there, */
/* extract it and remember where we're at */
count = 0;
for (up = lsu;; up++)
{
count += DECDPUN;
if (count >= discard)
break; /* full ones all checked */
if (*up != 0)
*residue = 1;
} /* up */
/* here up -> Unit with discarded digit */
cut = discard - (count - DECDPUN) - 1;
if (cut == DECDPUN - 1)
{ /* discard digit is at top */
#if DECDPUN<=4
discard1 = QUOT10 (*up, DECDPUN - 1);
rem = *up - discard1 * powers[DECDPUN - 1];
#else
rem = *up % powers[DECDPUN - 1];
discard1 = *up / powers[DECDPUN - 1];
#endif
if (rem != 0)
*residue = 1;
up++; /* move to next */
cut = 0; /* bottom digit of result */
quot = 0; /* keep a certain compiler happy */
}
else
{
/* discard digit is in low digit(s), not top digit */
if (cut == 0)
quot = *up;
else /* cut>0 */
{ /* it's not at bottom of Unit */
#if DECDPUN<=4
quot = QUOT10 (*up, cut);
rem = *up - quot * powers[cut];
#else
rem = *up % powers[cut];
quot = *up / powers[cut];
#endif
if (rem != 0)
*residue = 1;
}
/* discard digit is now at bottom of quot */
#if DECDPUN<=4
temp = (quot * 6554) >> 16; /* fast /10 */
/* Vowels algorithm here not a win (9 instructions) */
discard1 = quot - X10 (temp);
quot = temp;
#else
discard1 = quot % 10;
quot = quot / 10;
#endif
cut++; /* update cut */
}
/* here: up -> Unit of the array with discarded digit */
/* cut is the division point for each Unit */
/* quot holds the uncut high-order digits for the current */
/* Unit, unless cut==0 in which case it's still in *up */
/* copy the coefficient array to the result number, shifting as we go */
count = set->digits; /* digits to end up with */
if (count <= 0)
{ /* special for Rescale/Subnormal :-( */
*dn->lsu = 0; /* .. result is 0 */
dn->digits = 1; /* .. */
}
else
{ /* shift to least */
/* [this is similar to decShiftToLeast code, with copy] */
dn->digits = count; /* set the new length */
if (cut == 0)
{
/* on unit boundary, so simple shift down copy loop suffices */
for (target = dn->lsu; target < dn->lsu + D2U (count);
target++, up++)
{
*target = *up;
}
}
else
for (target = dn->lsu;; target++)
{
*target = (Unit) quot;
count -= (DECDPUN - cut);
if (count <= 0)
break;
up++;
quot = *up;
#if DECDPUN<=4
quot = QUOT10 (quot, cut);
rem = *up - quot * powers[cut];
#else
rem = quot % powers[cut];
quot = quot / powers[cut];
#endif
*target = (Unit) (*target + rem * powers[DECDPUN - cut]);
count -= cut;
if (count <= 0)
break;
}
} /* shift to least needed */
dn->exponent += discard; /* maintain numerical value */
/* here, discard1 is the guard digit, and residue is everything else */
/* [use mapping to accumulate residue safely] */
*residue += resmap[discard1];
if (*residue != 0)
*status |= DEC_Inexact; /* record inexactitude */
return;
}
/* ------------------------------------------------------------------ */
/* decApplyRound -- apply pending rounding to a number */
/* */
/* dn is the number, with space for set->digits digits */
/* set is the context [for size and rounding mode] */
/* residue indicates pending rounding, being any accumulated */
/* guard and sticky information. It may be: */
/* 6-9: rounding digit is >5 */
/* 5: rounding digit is exactly half-way */
/* 1-4: rounding digit is <5 and >0 */
/* 0: the coefficient is exact */
/* -1: as 1, but the hidden digits are subtractive, that */
/* is, of the opposite sign to dn. In this case the */
/* coefficient must be non-0. */
/* status is the status accumulator, as usual */
/* */
/* This routine applies rounding while keeping the length of the */
/* coefficient constant. The exponent and status are unchanged */
/* except if: */
/* */
/* -- the coefficient was increased and is all nines (in which */
/* case Overflow could occur, and is handled directly here so */
/* the caller does not need to re-test for overflow) */
/* */
/* -- the coefficient was decreased and becomes all nines (in which */
/* case Underflow could occur, and is also handled directly). */
/* */
/* All fields in dn are updated as required. */
/* */
/* ------------------------------------------------------------------ */
static void
decApplyRound (decNumber * dn, decContext * set, Int residue, uInt * status)
{
Int bump; /* 1 if coefficient needs to be incremented */
/* -1 if coefficient needs to be decremented */
if (residue == 0)
return; /* nothing to apply */
bump = 0; /* assume a smooth ride */
/* now decide whether, and how, to round, depending on mode */
switch (set->round)
{
case DEC_ROUND_DOWN:
{
/* no change, except if negative residue */
if (residue < 0)
bump = -1;
break;
} /* r-d */
case DEC_ROUND_HALF_DOWN:
{
if (residue > 5)
bump = 1;
break;
} /* r-h-d */
case DEC_ROUND_HALF_EVEN:
{
if (residue > 5)
bump = 1; /* >0.5 goes up */
else if (residue == 5)
{ /* exactly 0.5000... */
/* 0.5 goes up iff [new] lsd is odd */
if (*dn->lsu & 0x01)
bump = 1;
}
break;
} /* r-h-e */
case DEC_ROUND_HALF_UP:
{
if (residue >= 5)
bump = 1;
break;
} /* r-h-u */
case DEC_ROUND_UP:
{
if (residue > 0)
bump = 1;
break;
} /* r-u */
case DEC_ROUND_CEILING:
{
/* same as _UP for positive numbers, and as _DOWN for negatives */
/* [negative residue cannot occur on 0] */
if (decNumberIsNegative (dn))
{
if (residue < 0)
bump = -1;
}
else
{
if (residue > 0)
bump = 1;
}
break;
} /* r-c */
case DEC_ROUND_FLOOR:
{
/* same as _UP for negative numbers, and as _DOWN for positive */
/* [negative residue cannot occur on 0] */
if (!decNumberIsNegative (dn))
{
if (residue < 0)
bump = -1;
}
else
{
if (residue > 0)
bump = 1;
}
break;
} /* r-f */
default:
{ /* e.g., DEC_ROUND_MAX */
*status |= DEC_Invalid_context;
#if DECTRACE
printf ("Unknown rounding mode: %d\n", set->round);
#endif
break;
}
} /* switch */
/* now bump the number, up or down, if need be */
if (bump == 0)
return; /* no action required */
/* Simply use decUnitAddSub unless we are bumping up and the number */
/* is all nines. In this special case we set to 1000... and adjust */
/* the exponent by one (as otherwise we could overflow the array) */
/* Similarly handle all-nines result if bumping down. */
if (bump > 0)
{
Unit *up; /* work */
uInt count = dn->digits; /* digits to be checked */
for (up = dn->lsu;; up++)
{
if (count <= DECDPUN)
{
/* this is the last Unit (the msu) */
if (*up != powers[count] - 1)
break; /* not still 9s */
/* here if it, too, is all nines */
*up = (Unit) powers[count - 1]; /* here 999 -> 100 etc. */
for (up = up - 1; up >= dn->lsu; up--)
*up = 0; /* others all to 0 */
dn->exponent++; /* and bump exponent */
/* [which, very rarely, could cause Overflow...] */
if ((dn->exponent + dn->digits) > set->emax + 1)
{
decSetOverflow (dn, set, status);
}
return; /* done */
}
/* a full unit to check, with more to come */
if (*up != DECDPUNMAX)
break; /* not still 9s */
count -= DECDPUN;
} /* up */
} /* bump>0 */
else
{ /* -1 */
/* here we are lookng for a pre-bump of 1000... (leading 1, */
/* all other digits zero) */
Unit *up, *sup; /* work */
uInt count = dn->digits; /* digits to be checked */
for (up = dn->lsu;; up++)
{
if (count <= DECDPUN)
{
/* this is the last Unit (the msu) */
if (*up != powers[count - 1])
break; /* not 100.. */
/* here if we have the 1000... case */
sup = up; /* save msu pointer */
*up = (Unit) powers[count] - 1; /* here 100 in msu -> 999 */
/* others all to all-nines, too */
for (up = up - 1; up >= dn->lsu; up--)
*up = (Unit) powers[DECDPUN] - 1;
dn->exponent--; /* and bump exponent */
/* iff the number was at the subnormal boundary (exponent=etiny) */
/* then the exponent is now out of range, so it will in fact get */
/* clamped to etiny and the final 9 dropped. */
/* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
/* dn->exponent, set->digits); */
if (dn->exponent + 1 == set->emin - set->digits + 1)
{
if (count == 1 && dn->digits == 1)
*sup = 0; /* here 9 -> 0[.9] */
else
{
*sup = (Unit) powers[count - 1] - 1; /* here 999.. in msu -> 99.. */
dn->digits--;
}
dn->exponent++;
*status |=
DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
}
return; /* done */
}
/* a full unit to check, with more to come */
if (*up != 0)
break; /* not still 0s */
count -= DECDPUN;
} /* up */
} /* bump<0 */
/* Actual bump needed. Do it. */
decUnitAddSub (dn->lsu, D2U (dn->digits), one, 1, 0, dn->lsu, bump);
}
#if DECSUBSET
/* ------------------------------------------------------------------ */
/* decFinish -- finish processing a number */
/* */
/* dn is the number */
/* set is the context */
/* residue is the rounding accumulator (as in decApplyRound) */
/* status is the accumulator */
/* */
/* This finishes off the current number by: */
/* 1. If not extended: */
/* a. Converting a zero result to clean '0' */
/* b. Reducing positive exponents to 0, if would fit in digits */
/* 2. Checking for overflow and subnormals (always) */
/* Note this is just Finalize when no subset arithmetic. */
/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
static void
decFinish (decNumber * dn, decContext * set, Int * residue, uInt * status)
{
if (!set->extended)
{
if ISZERO
(dn)
{ /* value is zero */
dn->exponent = 0; /* clean exponent .. */
dn->bits = 0; /* .. and sign */
return; /* no error possible */
}
if (dn->exponent >= 0)
{ /* non-negative exponent */
/* >0; reduce to integer if possible */
if (set->digits >= (dn->exponent + dn->digits))
{
dn->digits = decShiftToMost (dn->lsu, dn->digits, dn->exponent);
dn->exponent = 0;
}
}
} /* !extended */
decFinalize (dn, set, residue, status);
}
#endif
/* ------------------------------------------------------------------ */
/* decFinalize -- final check, clamp, and round of a number */
/* */
/* dn is the number */
/* set is the context */
/* residue is the rounding accumulator (as in decApplyRound) */
/* status is the status accumulator */
/* */
/* This finishes off the current number by checking for subnormal */
/* results, applying any pending rounding, checking for overflow, */
/* and applying any clamping. */
/* Underflow and overflow conditions are raised as appropriate. */
/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
static void
decFinalize (decNumber * dn, decContext * set, Int * residue, uInt * status)
{
Int shift; /* shift needed if clamping */
/* We have to be careful when checking the exponent as the adjusted */
/* exponent could overflow 31 bits [because it may already be up */
/* to twice the expected]. */
/* First test for subnormal. This must be done before any final */
/* round as the result could be rounded to Nmin or 0. */
if (dn->exponent < 0 /* negative exponent */
&& (dn->exponent < set->emin - dn->digits + 1))
{
/* Go handle subnormals; this will apply round if needed. */
decSetSubnormal (dn, set, residue, status);
return;
}
/* now apply any pending round (this could raise overflow). */
if (*residue != 0)
decApplyRound (dn, set, *residue, status);
/* Check for overflow [redundant in the 'rare' case] or clamp */
if (dn->exponent <= set->emax - set->digits + 1)
return; /* neither needed */
/* here when we might have an overflow or clamp to do */
if (dn->exponent > set->emax - dn->digits + 1)
{ /* too big */
decSetOverflow (dn, set, status);
return;
}
/* here when the result is normal but in clamp range */
if (!set->clamp)
return;
/* here when we need to apply the IEEE exponent clamp (fold-down) */
shift = dn->exponent - (set->emax - set->digits + 1);
/* shift coefficient (if non-zero) */
if (!ISZERO (dn))
{
dn->digits = decShiftToMost (dn->lsu, dn->digits, shift);
}
dn->exponent -= shift; /* adjust the exponent to match */
*status |= DEC_Clamped; /* and record the dirty deed */
return;
}
/* ------------------------------------------------------------------ */
/* decSetOverflow -- set number to proper overflow value */
/* */
/* dn is the number (used for sign [only] and result) */
/* set is the context [used for the rounding mode] */
/* status contains the current status to be updated */
/* */
/* This sets the sign of a number and sets its value to either */
/* Infinity or the maximum finite value, depending on the sign of */
/* dn and therounding mode, following IEEE 854 rules. */
/* ------------------------------------------------------------------ */
static void
decSetOverflow (decNumber * dn, decContext * set, uInt * status)
{
Flag needmax = 0; /* result is maximum finite value */
uByte sign = dn->bits & DECNEG; /* clean and save sign bit */
if (ISZERO (dn))
{ /* zero does not overflow magnitude */
Int emax = set->emax; /* limit value */
if (set->clamp)
emax -= set->digits - 1; /* lower if clamping */
if (dn->exponent > emax)
{ /* clamp required */
dn->exponent = emax;
*status |= DEC_Clamped;
}
return;
}
decNumberZero (dn);
switch (set->round)
{
case DEC_ROUND_DOWN:
{
needmax = 1; /* never Infinity */
break;
} /* r-d */
case DEC_ROUND_CEILING:
{
if (sign)
needmax = 1; /* Infinity if non-negative */
break;
} /* r-c */
case DEC_ROUND_FLOOR:
{
if (!sign)
needmax = 1; /* Infinity if negative */
break;
} /* r-f */
default:
break; /* Infinity in all other cases */
}
if (needmax)
{
Unit *up; /* work */
Int count = set->digits; /* nines to add */
dn->digits = count;
/* fill in all nines to set maximum value */
for (up = dn->lsu;; up++)
{
if (count > DECDPUN)
*up = DECDPUNMAX; /* unit full o'nines */
else
{ /* this is the msu */
*up = (Unit) (powers[count] - 1);
break;
}
count -= DECDPUN; /* we filled those digits */
} /* up */
dn->bits = sign; /* sign */
dn->exponent = set->emax - set->digits + 1;
}
else
dn->bits = sign | DECINF; /* Value is +/-Infinity */
*status |= DEC_Overflow | DEC_Inexact | DEC_Rounded;
}
/* ------------------------------------------------------------------ */
/* decSetSubnormal -- process value whose exponent is <Emin */
/* */
/* dn is the number (used as input as well as output; it may have */
/* an allowed subnormal value, which may need to be rounded) */
/* set is the context [used for the rounding mode] */
/* residue is any pending residue */
/* status contains the current status to be updated */
/* */
/* If subset mode, set result to zero and set Underflow flags. */
/* */
/* Value may be zero with a low exponent; this does not set Subnormal */
/* but the exponent will be clamped to Etiny. */
/* */
/* Otherwise ensure exponent is not out of range, and round as */
/* necessary. Underflow is set if the result is Inexact. */
/* ------------------------------------------------------------------ */
static void
decSetSubnormal (decNumber * dn, decContext * set,
Int * residue, uInt * status)
{
decContext workset; /* work */
Int etiny, adjust; /* .. */
#if DECSUBSET
/* simple set to zero and 'hard underflow' for subset */
if (!set->extended)
{
decNumberZero (dn);
/* always full overflow */
*status |= DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
return;
}
#endif
/* Full arithmetic -- allow subnormals, rounded to minimum exponent */
/* (Etiny) if needed */
etiny = set->emin - (set->digits - 1); /* smallest allowed exponent */
if ISZERO
(dn)
{ /* value is zero */
/* residue can never be non-zero here */
#if DECCHECK
if (*residue != 0)
{
printf ("++ Subnormal 0 residue %d\n", *residue);
*status |= DEC_Invalid_operation;
}
#endif
if (dn->exponent < etiny)
{ /* clamp required */
dn->exponent = etiny;
*status |= DEC_Clamped;
}
return;
}
*status |= DEC_Subnormal; /* we have a non-zero subnormal */
adjust = etiny - dn->exponent; /* calculate digits to remove */
if (adjust <= 0)
{ /* not out of range; unrounded */
/* residue can never be non-zero here, so fast-path out */
#if DECCHECK
if (*residue != 0)
{
printf ("++ Subnormal no-adjust residue %d\n", *residue);
*status |= DEC_Invalid_operation;
}
#endif
/* it may already be inexact (from setting the coefficient) */
if (*status & DEC_Inexact)
*status |= DEC_Underflow;
return;
}
/* adjust>0. we need to rescale the result so exponent becomes Etiny */
/* [this code is similar to that in rescale] */
workset = *set; /* clone rounding, etc. */
workset.digits = dn->digits - adjust; /* set requested length */
workset.emin -= adjust; /* and adjust emin to match */
/* [note that the latter can be <1, here, similar to Rescale case] */
decSetCoeff (dn, &workset, dn->lsu, dn->digits, residue, status);
decApplyRound (dn, &workset, *residue, status);
/* Use 754R/854 default rule: Underflow is set iff Inexact */
/* [independent of whether trapped] */
if (*status & DEC_Inexact)
*status |= DEC_Underflow;
/* if we rounded up a 999s case, exponent will be off by one; adjust */
/* back if so [it will fit, because we shortened] */
if (dn->exponent > etiny)
{
dn->digits = decShiftToMost (dn->lsu, dn->digits, 1);
dn->exponent--; /* (re)adjust the exponent. */
}
}
/* ------------------------------------------------------------------ */
/* decGetInt -- get integer from a number */
/* */
/* dn is the number [which will not be altered] */
/* set is the context [requested digits], subset only */
/* returns the converted integer, or BADINT if error */
/* */
/* This checks and gets a whole number from the input decNumber. */
/* The magnitude of the integer must be <2^31. */
/* Any discarded fractional part must be 0. */
/* If subset it must also fit in set->digits */
/* ------------------------------------------------------------------ */
#if DECSUBSET
static Int
decGetInt (const decNumber * dn, decContext * set)
{
#else
static Int
decGetInt (const decNumber * dn)
{
#endif
Int theInt; /* result accumulator */
const Unit *up; /* work */
Int got; /* digits (real or not) processed */
Int ilength = dn->digits + dn->exponent; /* integral length */
/* The number must be an integer that fits in 10 digits */
/* Assert, here, that 10 is enough for any rescale Etiny */
#if DEC_MAX_EMAX > 999999999
#error GetInt may need updating [for Emax]
#endif
#if DEC_MIN_EMIN < -999999999
#error GetInt may need updating [for Emin]
#endif
if (ISZERO (dn))
return 0; /* zeros are OK, with any exponent */
if (ilength > 10)
return BADINT; /* always too big */
#if DECSUBSET
if (!set->extended && ilength > set->digits)
return BADINT;
#endif
up = dn->lsu; /* ready for lsu */
theInt = 0; /* ready to accumulate */
if (dn->exponent >= 0)
{ /* relatively easy */
/* no fractional part [usual]; allow for positive exponent */
got = dn->exponent;
}
else
{ /* -ve exponent; some fractional part to check and discard */
Int count = -dn->exponent; /* digits to discard */
/* spin up whole units until we get to the Unit with the unit digit */
for (; count >= DECDPUN; up++)
{
if (*up != 0)
return BADINT; /* non-zero Unit to discard */
count -= DECDPUN;
}
if (count == 0)
got = 0; /* [a multiple of DECDPUN] */
else
{ /* [not multiple of DECDPUN] */
Int rem; /* work */
/* slice off fraction digits and check for non-zero */
#if DECDPUN<=4
theInt = QUOT10 (*up, count);
rem = *up - theInt * powers[count];
#else
rem = *up % powers[count]; /* slice off discards */
theInt = *up / powers[count];
#endif
if (rem != 0)
return BADINT; /* non-zero fraction */
/* OK, we're good */
got = DECDPUN - count; /* number of digits so far */
up++; /* ready for next */
}
}
/* collect the rest */
for (; got < ilength; up++)
{
theInt += *up * powers[got];
got += DECDPUN;
}
if ((ilength == 10) /* check no wrap */
&& (theInt / (Int) powers[got - DECDPUN] != *(up - 1)))
return BADINT;
/* [that test also disallows the BADINT result case] */
/* apply any sign and return */
if (decNumberIsNegative (dn))
theInt = -theInt;
return theInt;
}
/* ------------------------------------------------------------------ */
/* decStrEq -- caseless comparison of strings */
/* */
/* str1 is one of the strings to compare */
/* str2 is the other */
/* */
/* returns 1 if strings caseless-compare equal, 0 otherwise */
/* */
/* Note that the strings must be the same length if they are to */
/* compare equal; there is no padding. */
/* ------------------------------------------------------------------ */
/* [strcmpi is not in ANSI C] */
static Flag
decStrEq (const char *str1, const char *str2)
{
for (;; str1++, str2++)
{
unsigned char u1 = (unsigned char) *str1;
unsigned char u2 = (unsigned char) *str2;
if (u1 == u2)
{
if (u1 == '\0')
break;
}
else
{
if (tolower (u1) != tolower (u2))
return 0;
}
} /* stepping */
return 1;
}
/* ------------------------------------------------------------------ */
/* decNaNs -- handle NaN operand or operands */
/* */
/* res is the result number */
/* lhs is the first operand */
/* rhs is the second operand, or NULL if none */
/* status contains the current status */
/* returns res in case convenient */
/* */
/* Called when one or both operands is a NaN, and propagates the */
/* appropriate result to res. When an sNaN is found, it is changed */
/* to a qNaN and Invalid operation is set. */
/* ------------------------------------------------------------------ */
static decNumber *
decNaNs (decNumber * res, const decNumber * lhs, const decNumber * rhs, uInt * status)
{
/* This decision tree ends up with LHS being the source pointer, */
/* and status updated if need be */
if (lhs->bits & DECSNAN)
*status |= DEC_Invalid_operation | DEC_sNaN;
else if (rhs == NULL);
else if (rhs->bits & DECSNAN)
{
lhs = rhs;
*status |= DEC_Invalid_operation | DEC_sNaN;
}
else if (lhs->bits & DECNAN);
else
lhs = rhs;
decNumberCopy (res, lhs);
res->bits &= ~DECSNAN; /* convert any sNaN to NaN, while */
res->bits |= DECNAN; /* .. preserving sign */
res->exponent = 0; /* clean exponent */
/* [coefficient was copied] */
return res;
}
/* ------------------------------------------------------------------ */
/* decStatus -- apply non-zero status */
/* */
/* dn is the number to set if error */
/* status contains the current status (not yet in context) */
/* set is the context */
/* */
/* If the status is an error status, the number is set to a NaN, */
/* unless the error was an overflow, divide-by-zero, or underflow, */
/* in which case the number will have already been set. */
/* */
/* The context status is then updated with the new status. Note that */
/* this may raise a signal, so control may never return from this */
/* routine (hence resources must be recovered before it is called). */
/* ------------------------------------------------------------------ */
static void
decStatus (decNumber * dn, uInt status, decContext * set)
{
if (status & DEC_NaNs)
{ /* error status -> NaN */
/* if cause was an sNaN, clear and propagate [NaN is already set up] */
if (status & DEC_sNaN)
status &= ~DEC_sNaN;
else
{
decNumberZero (dn); /* other error: clean throughout */
dn->bits = DECNAN; /* and make a quiet NaN */
}
}
decContextSetStatus (set, status);
return;
}
/* ------------------------------------------------------------------ */
/* decGetDigits -- count digits in a Units array */
/* */
/* uar is the Unit array holding the number [this is often an */
/* accumulator of some sort] */
/* len is the length of the array in units */
/* */
/* returns the number of (significant) digits in the array */
/* */
/* All leading zeros are excluded, except the last if the array has */
/* only zero Units. */
/* ------------------------------------------------------------------ */
/* This may be called twice during some operations. */
static Int
decGetDigits (const Unit * uar, Int len)
{
const Unit *up = uar + len - 1; /* -> msu */
Int digits = len * DECDPUN; /* maximum possible digits */
uInt const *pow; /* work */
for (; up >= uar; up--)
{
digits -= DECDPUN;
if (*up == 0)
{ /* unit is 0 */
if (digits != 0)
continue; /* more to check */
/* all units were 0 */
digits++; /* .. so bump digits to 1 */
break;
}
/* found the first non-zero Unit */
digits++;
if (*up < 10)
break; /* fastpath 1-9 */
digits++;
for (pow = &powers[2]; *up >= *pow; pow++)
digits++;
break;
} /* up */
return digits;
}
#if DECTRACE | DECCHECK
/* ------------------------------------------------------------------ */
/* decNumberShow -- display a number [debug aid] */
/* dn is the number to show */
/* */
/* Shows: sign, exponent, coefficient (msu first), digits */
/* or: sign, special-value */
/* ------------------------------------------------------------------ */
/* this is public so other modules can use it */
void
decNumberShow (const decNumber * dn)
{
const Unit *up; /* work */
uInt u, d; /* .. */
Int cut; /* .. */
char isign = '+'; /* main sign */
if (dn == NULL)
{
printf ("NULL\n");
return;
}
if (decNumberIsNegative (dn))
isign = '-';
printf (" >> %c ", isign);
if (dn->bits & DECSPECIAL)
{ /* Is a special value */
if (decNumberIsInfinite (dn))
printf ("Infinity");
else
{ /* a NaN */
if (dn->bits & DECSNAN)
printf ("sNaN"); /* signalling NaN */
else
printf ("NaN");
}
/* if coefficient and exponent are 0, we're done */
if (dn->exponent == 0 && dn->digits == 1 && *dn->lsu == 0)
{
printf ("\n");
return;
}
/* drop through to report other information */
printf (" ");
}
/* now carefully display the coefficient */
up = dn->lsu + D2U (dn->digits) - 1; /* msu */
printf ("%d", *up);
for (up = up - 1; up >= dn->lsu; up--)
{
u = *up;
printf (":");
for (cut = DECDPUN - 1; cut >= 0; cut--)
{
d = u / powers[cut];
u -= d * powers[cut];
printf ("%d", d);
} /* cut */
} /* up */
if (dn->exponent != 0)
{
char esign = '+';
if (dn->exponent < 0)
esign = '-';
printf (" E%c%d", esign, abs (dn->exponent));
}
printf (" [%d]\n", dn->digits);
}
#endif
#if DECTRACE || DECCHECK
/* ------------------------------------------------------------------ */
/* decDumpAr -- display a unit array [debug aid] */
/* name is a single-character tag name */
/* ar is the array to display */
/* len is the length of the array in Units */
/* ------------------------------------------------------------------ */
static void
decDumpAr (char name, const Unit * ar, Int len)
{
Int i;
#if DECDPUN==4
const char *spec = "%04d ";
#else
const char *spec = "%d ";
#endif
printf (" :%c: ", name);
for (i = len - 1; i >= 0; i--)
{
if (i == len - 1)
printf ("%d ", ar[i]);
else
printf (spec, ar[i]);
}
printf ("\n");
return;
}
#endif
#if DECCHECK
/* ------------------------------------------------------------------ */
/* decCheckOperands -- check operand(s) to a routine */
/* res is the result structure (not checked; it will be set to */
/* quiet NaN if error found (and it is not NULL)) */
/* lhs is the first operand (may be DECUNUSED) */
/* rhs is the second (may be DECUNUSED) */
/* set is the context (may be DECUNUSED) */
/* returns 0 if both operands, and the context are clean, or 1 */
/* otherwise (in which case the context will show an error, */
/* unless NULL). Note that res is not cleaned; caller should */
/* handle this so res=NULL case is safe. */
/* The caller is expected to abandon immediately if 1 is returned. */
/* ------------------------------------------------------------------ */
static Flag
decCheckOperands (decNumber * res, const decNumber * lhs,
const decNumber * rhs, decContext * set)
{
Flag bad = 0;
if (set == NULL)
{ /* oops; hopeless */
#if DECTRACE
printf ("Context is NULL.\n");
#endif
bad = 1;
return 1;
}
else if (set != DECUNUSED
&& (set->digits < 1 || set->round < 0
|| set->round >= DEC_ROUND_MAX))
{
bad = 1;
#if DECTRACE
printf ("Bad context [digits=%d round=%d].\n", set->digits, set->round);
#endif
}
else
{
if (res == NULL)
{
bad = 1;
#if DECTRACE
printf ("Bad result [is NULL].\n");
#endif
}
if (!bad && lhs != DECUNUSED)
bad = (decCheckNumber (lhs, set));
if (!bad && rhs != DECUNUSED)
bad = (decCheckNumber (rhs, set));
}
if (bad)
{
if (set != DECUNUSED)
decContextSetStatus (set, DEC_Invalid_operation);
if (res != DECUNUSED && res != NULL)
{
decNumberZero (res);
res->bits = DECNAN; /* qNaN */
}
}
return bad;
}
/* ------------------------------------------------------------------ */
/* decCheckNumber -- check a number */
/* dn is the number to check */
/* set is the context (may be DECUNUSED) */
/* returns 0 if the number is clean, or 1 otherwise */
/* */
/* The number is considered valid if it could be a result from some */
/* operation in some valid context (not necessarily the current one). */
/* ------------------------------------------------------------------ */
Flag
decCheckNumber (const decNumber * dn, decContext * set)
{
const Unit *up; /* work */
uInt maxuint; /* .. */
Int ae, d, digits; /* .. */
Int emin, emax; /* .. */
if (dn == NULL)
{ /* hopeless */
#if DECTRACE
printf ("Reference to decNumber is NULL.\n");
#endif
return 1;
}
/* check special values */
if (dn->bits & DECSPECIAL)
{
if (dn->exponent != 0)
{
#if DECTRACE
printf ("Exponent %d (not 0) for a special value.\n", dn->exponent);
#endif
return 1;
}
/* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
if (decNumberIsInfinite (dn))
{
if (dn->digits != 1)
{
#if DECTRACE
printf ("Digits %d (not 1) for an infinity.\n", dn->digits);
#endif
return 1;
}
if (*dn->lsu != 0)
{
#if DECTRACE
printf ("LSU %d (not 0) for an infinity.\n", *dn->lsu);
#endif
return 1;
}
} /* Inf */
/* 2002.12.26: negative NaNs can now appear through proposed IEEE */
/* concrete formats (decimal64, etc.), though they are */
/* never visible in strings. */
return 0;
/* if ((dn->bits & DECINF) || (dn->bits & DECNEG)==0) return 0; */
/* #if DECTRACE */
/* printf("Negative NaN in number.\n"); */
/* #endif */
/* return 1; */
}
/* check the coefficient */
if (dn->digits < 1 || dn->digits > DECNUMMAXP)
{
#if DECTRACE
printf ("Digits %d in number.\n", dn->digits);
#endif
return 1;
}
d = dn->digits;
for (up = dn->lsu; d > 0; up++)
{
if (d > DECDPUN)
maxuint = DECDPUNMAX;
else
{ /* we are at the msu */
maxuint = powers[d] - 1;
if (dn->digits > 1 && *up < powers[d - 1])
{
#if DECTRACE
printf ("Leading 0 in number.\n");
decNumberShow (dn);
#endif
return 1;
}
}
if (*up > maxuint)
{
#if DECTRACE
printf ("Bad Unit [%08x] in number at offset %d [maxuint %d].\n",
*up, up - dn->lsu, maxuint);
#endif
return 1;
}
d -= DECDPUN;
}
/* check the exponent. Note that input operands can have exponents */
/* which are out of the set->emin/set->emax and set->digits range */
/* (just as they can have more digits than set->digits). */
ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
emax = DECNUMMAXE;
emin = DECNUMMINE;
digits = DECNUMMAXP;
if (ae < emin - (digits - 1))
{
#if DECTRACE
printf ("Adjusted exponent underflow [%d].\n", ae);
decNumberShow (dn);
#endif
return 1;
}
if (ae > +emax)
{
#if DECTRACE
printf ("Adjusted exponent overflow [%d].\n", ae);
decNumberShow (dn);
#endif
return 1;
}
return 0; /* it's OK */
}
#endif
#if DECALLOC
#undef malloc
#undef free
/* ------------------------------------------------------------------ */
/* decMalloc -- accountable allocation routine */
/* n is the number of bytes to allocate */
/* */
/* Semantics is the same as the stdlib malloc routine, but bytes */
/* allocated are accounted for globally, and corruption fences are */
/* added before and after the 'actual' storage. */
/* ------------------------------------------------------------------ */
/* This routine allocates storage with an extra twelve bytes; 8 are */
/* at the start and hold: */
/* 0-3 the original length requested */
/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
/* ------------------------------------------------------------------ */
static void *
decMalloc (uInt n)
{
uInt size = n + 12; /* true size */
void *alloc; /* -> allocated storage */
uInt *j; /* work */
uByte *b, *b0; /* .. */
alloc = malloc (size); /* -> allocated storage */
if (alloc == NULL)
return NULL; /* out of strorage */
b0 = (uByte *) alloc; /* as bytes */
decAllocBytes += n; /* account for storage */
j = (uInt *) alloc; /* -> first four bytes */
*j = n; /* save n */
/* printf("++ alloc(%d)\n", n); */
for (b = b0 + 4; b < b0 + 8; b++)
*b = DECFENCE;
for (b = b0 + n + 8; b < b0 + n + 12; b++)
*b = DECFENCE;
return b0 + 8; /* -> play area */
}
/* ------------------------------------------------------------------ */
/* decFree -- accountable free routine */
/* alloc is the storage to free */
/* */
/* Semantics is the same as the stdlib malloc routine, except that */
/* the global storage accounting is updated and the fences are */
/* checked to ensure that no routine has written 'out of bounds'. */
/* ------------------------------------------------------------------ */
/* This routine first checks that the fences have not been corrupted. */
/* It then frees the storage using the 'truw' storage address (that */
/* is, offset by 8). */
/* ------------------------------------------------------------------ */
static void
decFree (void *alloc)
{
uInt *j, n; /* pointer, original length */
uByte *b, *b0; /* work */
if (alloc == NULL)
return; /* allowed; it's a nop */
b0 = (uByte *) alloc; /* as bytes */
b0 -= 8; /* -> true start of storage */
j = (uInt *) b0; /* -> first four bytes */
n = *j; /* lift */
for (b = b0 + 4; b < b0 + 8; b++)
if (*b != DECFENCE)
printf ("=== Corrupt byte [%02x] at offset %d from %d ===\n", *b,
b - b0 - 8, (Int) b0);
for (b = b0 + n + 8; b < b0 + n + 12; b++)
if (*b != DECFENCE)
printf ("=== Corrupt byte [%02x] at offset +%d from %d, n=%d ===\n", *b,
b - b0 - 8, (Int) b0, n);
free (b0); /* drop the storage */
decAllocBytes -= n; /* account for storage */
}
#endif
|