1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
/* Natural loop analysis code for GNU compiler.
Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "expr.h"
#include "output.h"
/* Checks whether BB is executed exactly once in each LOOP iteration. */
bool
just_once_each_iteration_p (const struct loop *loop, basic_block bb)
{
/* It must be executed at least once each iteration. */
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
return false;
/* And just once. */
if (bb->loop_father != loop)
return false;
/* But this was not enough. We might have some irreducible loop here. */
if (bb->flags & BB_IRREDUCIBLE_LOOP)
return false;
return true;
}
/* Structure representing edge of a graph. */
struct edge
{
int src, dest; /* Source and destination. */
struct edge *pred_next, *succ_next;
/* Next edge in predecessor and successor lists. */
void *data; /* Data attached to the edge. */
};
/* Structure representing vertex of a graph. */
struct vertex
{
struct edge *pred, *succ;
/* Lists of predecessors and successors. */
int component; /* Number of dfs restarts before reaching the
vertex. */
int post; /* Postorder number. */
};
/* Structure representing a graph. */
struct graph
{
int n_vertices; /* Number of vertices. */
struct vertex *vertices;
/* The vertices. */
};
/* Dumps graph G into F. */
extern void dump_graph (FILE *, struct graph *);
void
dump_graph (FILE *f, struct graph *g)
{
int i;
struct edge *e;
for (i = 0; i < g->n_vertices; i++)
{
if (!g->vertices[i].pred
&& !g->vertices[i].succ)
continue;
fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
for (e = g->vertices[i].pred; e; e = e->pred_next)
fprintf (f, " %d", e->src);
fprintf (f, "\n");
fprintf (f, "\t->");
for (e = g->vertices[i].succ; e; e = e->succ_next)
fprintf (f, " %d", e->dest);
fprintf (f, "\n");
}
}
/* Creates a new graph with N_VERTICES vertices. */
static struct graph *
new_graph (int n_vertices)
{
struct graph *g = XNEW (struct graph);
g->n_vertices = n_vertices;
g->vertices = XCNEWVEC (struct vertex, n_vertices);
return g;
}
/* Adds an edge from F to T to graph G, with DATA attached. */
static void
add_edge (struct graph *g, int f, int t, void *data)
{
struct edge *e = xmalloc (sizeof (struct edge));
e->src = f;
e->dest = t;
e->data = data;
e->pred_next = g->vertices[t].pred;
g->vertices[t].pred = e;
e->succ_next = g->vertices[f].succ;
g->vertices[f].succ = e;
}
/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
The vertices in postorder are stored into QT. If FORWARD is false,
backward dfs is run. */
static void
dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
{
int i, tick = 0, v, comp = 0, top;
struct edge *e;
struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
for (i = 0; i < g->n_vertices; i++)
{
g->vertices[i].component = -1;
g->vertices[i].post = -1;
}
#define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
#define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
#define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
#define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
for (i = 0; i < nq; i++)
{
v = qs[i];
if (g->vertices[v].post != -1)
continue;
g->vertices[v].component = comp++;
e = FST_EDGE (v);
top = 0;
while (1)
{
while (e && g->vertices[EDGE_DEST (e)].component != -1)
e = NEXT_EDGE (e);
if (!e)
{
if (qt)
qt[tick] = v;
g->vertices[v].post = tick++;
if (!top)
break;
e = stack[--top];
v = EDGE_SRC (e);
e = NEXT_EDGE (e);
continue;
}
stack[top++] = e;
v = EDGE_DEST (e);
e = FST_EDGE (v);
g->vertices[v].component = comp - 1;
}
}
free (stack);
}
/* Marks the edge E in graph G irreducible if it connects two vertices in the
same scc. */
static void
check_irred (struct graph *g, struct edge *e)
{
edge real = e->data;
/* All edges should lead from a component with higher number to the
one with lower one. */
gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
if (g->vertices[e->src].component != g->vertices[e->dest].component)
return;
real->flags |= EDGE_IRREDUCIBLE_LOOP;
if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
real->src->flags |= BB_IRREDUCIBLE_LOOP;
}
/* Runs CALLBACK for all edges in G. */
static void
for_each_edge (struct graph *g,
void (callback) (struct graph *, struct edge *))
{
struct edge *e;
int i;
for (i = 0; i < g->n_vertices; i++)
for (e = g->vertices[i].succ; e; e = e->succ_next)
callback (g, e);
}
/* Releases the memory occupied by G. */
static void
free_graph (struct graph *g)
{
struct edge *e, *n;
int i;
for (i = 0; i < g->n_vertices; i++)
for (e = g->vertices[i].succ; e; e = n)
{
n = e->succ_next;
free (e);
}
free (g->vertices);
free (g);
}
/* Marks blocks and edges that are part of non-recognized loops; i.e. we
throw away all latch edges and mark blocks inside any remaining cycle.
Everything is a bit complicated due to fact we do not want to do this
for parts of cycles that only "pass" through some loop -- i.e. for
each cycle, we want to mark blocks that belong directly to innermost
loop containing the whole cycle.
LOOPS is the loop tree. */
#define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
#define BB_REPR(BB) ((BB)->index + 1)
void
mark_irreducible_loops (struct loops *loops)
{
basic_block act;
edge e;
edge_iterator ei;
int i, src, dest;
struct graph *g;
int *queue1 = XNEWVEC (int, last_basic_block + loops->num);
int *queue2 = XNEWVEC (int, last_basic_block + loops->num);
int nq, depth;
struct loop *cloop;
/* Reset the flags. */
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
act->flags &= ~BB_IRREDUCIBLE_LOOP;
FOR_EACH_EDGE (e, ei, act->succs)
e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
}
/* Create the edge lists. */
g = new_graph (last_basic_block + loops->num);
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
FOR_EACH_EDGE (e, ei, act->succs)
{
/* Ignore edges to exit. */
if (e->dest == EXIT_BLOCK_PTR)
continue;
/* And latch edges. */
if (e->dest->loop_father->header == e->dest
&& e->dest->loop_father->latch == act)
continue;
/* Edges inside a single loop should be left where they are. Edges
to subloop headers should lead to representative of the subloop,
but from the same place.
Edges exiting loops should lead from representative
of the son of nearest common ancestor of the loops in that
act lays. */
src = BB_REPR (act);
dest = BB_REPR (e->dest);
if (e->dest->loop_father->header == e->dest)
dest = LOOP_REPR (e->dest->loop_father);
if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
{
depth = find_common_loop (act->loop_father,
e->dest->loop_father)->depth + 1;
if (depth == act->loop_father->depth)
cloop = act->loop_father;
else
cloop = act->loop_father->pred[depth];
src = LOOP_REPR (cloop);
}
add_edge (g, src, dest, e);
}
/* Find the strongly connected components. Use the algorithm of Tarjan --
first determine the postorder dfs numbering in reversed graph, then
run the dfs on the original graph in the order given by decreasing
numbers assigned by the previous pass. */
nq = 0;
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
queue1[nq++] = BB_REPR (act);
}
for (i = 1; i < (int) loops->num; i++)
if (loops->parray[i])
queue1[nq++] = LOOP_REPR (loops->parray[i]);
dfs (g, queue1, nq, queue2, false);
for (i = 0; i < nq; i++)
queue1[i] = queue2[nq - i - 1];
dfs (g, queue1, nq, NULL, true);
/* Mark the irreducible loops. */
for_each_edge (g, check_irred);
free_graph (g);
free (queue1);
free (queue2);
loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
}
/* Counts number of insns inside LOOP. */
int
num_loop_insns (struct loop *loop)
{
basic_block *bbs, bb;
unsigned i, ninsns = 0;
rtx insn;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
ninsns++;
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
if (INSN_P (insn))
ninsns++;
}
free(bbs);
return ninsns;
}
/* Counts number of insns executed on average per iteration LOOP. */
int
average_num_loop_insns (struct loop *loop)
{
basic_block *bbs, bb;
unsigned i, binsns, ninsns, ratio;
rtx insn;
ninsns = 0;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
binsns = 1;
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
if (INSN_P (insn))
binsns++;
ratio = loop->header->frequency == 0
? BB_FREQ_MAX
: (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
ninsns += binsns * ratio;
}
free(bbs);
ninsns /= BB_FREQ_MAX;
if (!ninsns)
ninsns = 1; /* To avoid division by zero. */
return ninsns;
}
/* Returns expected number of LOOP iterations.
Compute upper bound on number of iterations in case they do not fit integer
to help loop peeling heuristics. Use exact counts if at all possible. */
unsigned
expected_loop_iterations (const struct loop *loop)
{
edge e;
edge_iterator ei;
if (loop->latch->count || loop->header->count)
{
gcov_type count_in, count_latch, expected;
count_in = 0;
count_latch = 0;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->src == loop->latch)
count_latch = e->count;
else
count_in += e->count;
if (count_in == 0)
expected = count_latch * 2;
else
expected = (count_latch + count_in - 1) / count_in;
/* Avoid overflows. */
return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
}
else
{
int freq_in, freq_latch;
freq_in = 0;
freq_latch = 0;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->src == loop->latch)
freq_latch = EDGE_FREQUENCY (e);
else
freq_in += EDGE_FREQUENCY (e);
if (freq_in == 0)
return freq_latch * 2;
return (freq_latch + freq_in - 1) / freq_in;
}
}
/* Returns the maximum level of nesting of subloops of LOOP. */
unsigned
get_loop_level (const struct loop *loop)
{
const struct loop *ploop;
unsigned mx = 0, l;
for (ploop = loop->inner; ploop; ploop = ploop->next)
{
l = get_loop_level (ploop);
if (l >= mx)
mx = l + 1;
}
return mx;
}
/* Returns estimate on cost of computing SEQ. */
static unsigned
seq_cost (rtx seq)
{
unsigned cost = 0;
rtx set;
for (; seq; seq = NEXT_INSN (seq))
{
set = single_set (seq);
if (set)
cost += rtx_cost (set, SET);
else
cost++;
}
return cost;
}
/* The properties of the target. */
unsigned target_avail_regs; /* Number of available registers. */
unsigned target_res_regs; /* Number of reserved registers. */
unsigned target_small_cost; /* The cost for register when there is a free one. */
unsigned target_pres_cost; /* The cost for register when there are not too many
free ones. */
unsigned target_spill_cost; /* The cost for register when we need to spill. */
/* Initialize the constants for computing set costs. */
void
init_set_costs (void)
{
rtx seq;
rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
unsigned i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
&& !fixed_regs[i])
target_avail_regs++;
target_res_regs = 3;
/* These are really just heuristic values. */
start_sequence ();
emit_move_insn (reg1, reg2);
seq = get_insns ();
end_sequence ();
target_small_cost = seq_cost (seq);
target_pres_cost = 2 * target_small_cost;
start_sequence ();
emit_move_insn (mem, reg1);
emit_move_insn (reg2, mem);
seq = get_insns ();
end_sequence ();
target_spill_cost = seq_cost (seq);
}
/* Calculates cost for having SIZE new loop global variables. REGS_USED is the
number of global registers used in loop. N_USES is the number of relevant
variable uses. */
unsigned
global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
{
unsigned regs_needed = regs_used + size;
unsigned cost = 0;
if (regs_needed + target_res_regs <= target_avail_regs)
cost += target_small_cost * size;
else if (regs_needed <= target_avail_regs)
cost += target_pres_cost * size;
else
{
cost += target_pres_cost * size;
cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
}
return cost;
}
/* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */
void
mark_loop_exit_edges (struct loops *loops)
{
basic_block bb;
edge e;
if (loops->num <= 1)
return;
FOR_EACH_BB (bb)
{
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (bb->loop_father->outer
&& loop_exit_edge_p (bb->loop_father, e))
e->flags |= EDGE_LOOP_EXIT;
else
e->flags &= ~EDGE_LOOP_EXIT;
}
}
}
|