File: powm.c

package info (click to toggle)
gcl 2.6.7%2Bdfsga-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 84,796 kB
  • sloc: ansic: 452,686; lisp: 156,133; asm: 111,405; sh: 29,299; cpp: 18,599; perl: 5,602; makefile: 5,201; tcl: 3,181; sed: 469; yacc: 378; lex: 174; fortran: 48; awk: 30; csh: 23
file content (302 lines) | stat: -rw-r--r-- 7,619 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/* mpn_powm -- Compute R = U^E mod M.

Copyright 2007, 2008, 2009 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */


/*
  BASIC ALGORITHM, Compute b^e mod n, where n is odd.

  1. w <- b

  2. While w^2 < n (and there are more bits in e)
       w <- power left-to-right base-2 without reduction

  3. t <- (B^n * b) / n                Convert to REDC form

  4. Compute power table of e-dependent size

  5. While there are more bits in e
       w <- power left-to-right base-k with reduction


  TODO:

   * Make getbits a macro, thereby allowing it to update the index operand.
     That will simplify the code using getbits.  (Perhaps make getbits' sibling
     getbit then have similar form, for symmetry.)

   * Write an itch function.

   * Choose window size without looping.  (Superoptimize or think(tm).)

   * How do we handle small bases?

   * This is slower than old mpz code, in particular if we base it on redc_1
     (use: #undef HAVE_NATIVE_mpn_addmul_2).  Why?

   * Make it sub-quadratic.

   * Call new division functions, not mpn_tdiv_qr.

   * Is redc obsolete with improved SB division?

   * Consider special code for one-limb M.

   * CRT for N = odd*2^t:
      Using Newton's method and 2-adic arithmetic:
        m1_inv_m2 = 1/odd mod 2^t
      Plain 2-adic (REDC) modexp:
        r1 = a ^ b mod odd
      Mullo+sqrlo-based modexp:
        r2 = a ^ b mod 2^t
      mullo, mul, add:
        r = ((r2 - r1) * m1_i_m2 mod 2^t) * odd + r1

   * How should we handle the redc1/redc2/redc2/redc4/redc_subquad choice?
     - redc1: T(binvert_1limb)  + e * (n)   * (T(mullo1x1) + n*T(addmul_1))
     - redc2: T(binvert_2limbs) + e * (n/2) * (T(mullo2x2) + n*T(addmul_2))
     - redc3: T(binvert_3limbs) + e * (n/3) * (T(mullo3x3) + n*T(addmul_3))
     This disregards the addmul_N constant term, but we could think of
     that as part of the respective mulloNxN.
*/

#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"


#define getbit(p,bi) \
  ((p[(bi - 1) / GMP_LIMB_BITS] >> (bi - 1) % GMP_LIMB_BITS) & 1)

static inline mp_limb_t
getbits (const mp_limb_t *p, unsigned long bi, int nbits)
{
  int nbits_in_r;
  mp_limb_t r;
  mp_size_t i;

  if (bi < nbits)
    {
      return p[0] & (((mp_limb_t) 1 << bi) - 1);
    }
  else
    {
      bi -= nbits;			/* bit index of low bit to extract */
      i = bi / GMP_LIMB_BITS;		/* word index of low bit to extract */
      bi %= GMP_LIMB_BITS;		/* bit index in low word */
      r = p[i] >> bi;			/* extract (low) bits */
      nbits_in_r = GMP_LIMB_BITS - bi;	/* number of bits now in r */
      if (nbits_in_r < nbits)		/* did we get enough bits? */
	r += p[i + 1] << nbits_in_r;	/* prepend bits from higher word */
      return r & (((mp_limb_t ) 1 << nbits) - 1);
    }
}

#undef HAVE_NATIVE_mpn_addmul_2

#ifndef HAVE_NATIVE_mpn_addmul_2
#define REDC_2_THRESHOLD		MP_SIZE_T_MAX
#endif

#ifndef REDC_2_THRESHOLD
#define REDC_2_THRESHOLD		4
#endif

static void mpn_redc_n () {ASSERT_ALWAYS(0);}

static inline int
win_size (unsigned long eb)
{
  int k;
  static unsigned long x[] = {1,7,25,81,241,673,1793,4609,11521,28161,~0ul};
  for (k = 0; eb > x[k]; k++)
    ;
  return k;
}

#define MPN_REDC_X(rp, tp, mp, n, mip)					\
  do {									\
    if (redc_x == 1)							\
      mpn_redc_1 (rp, tp, mp, n, mip[0]);				\
    else if (redc_x == 2)						\
      mpn_redc_2 (rp, tp, mp, n, mip);					\
    else								\
      mpn_redc_n (rp, tp, mp, n, mip);					\
  } while (0)

  /* Convert U to REDC form, U_r = B^n * U mod M */
static void
redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n)
{
  mp_ptr tp, qp;
  TMP_DECL;
  TMP_MARK;

  tp = TMP_ALLOC_LIMBS (un + n);
  qp = TMP_ALLOC_LIMBS (un + 1);	/* FIXME: Put at tp+? */

  MPN_ZERO (tp, n);
  MPN_COPY (tp + n, up, un);
  mpn_tdiv_qr (qp, rp, 0L, tp, un + n, mp, n);
  TMP_FREE;
}

/* rp[n-1..0] = bp[bn-1..0] ^ ep[en-1..0] mod mp[n-1..0]
   Requires that mp[n-1..0] is odd.
   Requires that ep[en-1..0] is > 1.
   Uses scratch space tp[3n..0], i.e., 3n+1 words.  */
void
mpn_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,
	  mp_srcptr ep, mp_size_t en,
	  mp_srcptr mp, mp_size_t n, mp_ptr tp)
{
  mp_limb_t mip[2];
  int cnt;
  long ebi;
  int windowsize, this_windowsize;
  mp_limb_t expbits;
  mp_ptr pp, this_pp, last_pp;
  mp_ptr b2p;
  long i;
  int redc_x;
  TMP_DECL;

  ASSERT (en > 1 || (en == 1 && ep[0] > 1));
  ASSERT (n >= 1 && ((mp[0] & 1) != 0));

  TMP_MARK;

  count_leading_zeros (cnt, ep[en - 1]);
  ebi = en * GMP_LIMB_BITS - cnt;

#if 0
  if (bn < n)
    {
      /* Do the first few exponent bits without mod reductions,
	 until the result is greater than the mod argument.  */
      for (;;)
	{
	  mpn_sqr_n (tp, this_pp, tn);
	  tn = tn * 2 - 1,  tn += tp[tn] != 0;
	  if (getbit (ep, ebi) != 0)
	    mpn_mul (..., tp, tn, bp, bn);
	  ebi--;
	}
    }
#endif

  windowsize = win_size (ebi);

  if (BELOW_THRESHOLD (n, REDC_2_THRESHOLD))
    {
      binvert_limb (mip[0], mp[0]);
      mip[0] = -mip[0];
      redc_x = 1;
    }
#if defined (HAVE_NATIVE_mpn_addmul_2)
  else
    {
      mpn_binvert (mip, mp, 2, tp);
      mip[0] = -mip[0]; mip[1] = ~mip[1];
      redc_x = 2;
    }
#endif
#if 0
  mpn_binvert (mip, mp, n, tp);
  redc_x = 0;
#endif

  pp = TMP_ALLOC_LIMBS (n << (windowsize - 1));

  this_pp = pp;
  redcify (this_pp, bp, bn, mp, n);

  b2p = tp + 2*n;

  /* Store b^2 in b2.  */
  mpn_sqr_n (tp, this_pp, n);
  MPN_REDC_X (b2p, tp, mp, n, mip);

  /* Precompute odd powers of b and put them in the temporary area at pp.  */
  for (i = (1 << (windowsize - 1)) - 1; i > 0; i--)
    {
      last_pp = this_pp;
      this_pp += n;
      mpn_mul_n (tp, last_pp, b2p, n);
      MPN_REDC_X (this_pp, tp, mp, n, mip);
    }

  expbits = getbits (ep, ebi, windowsize);
  ebi -= windowsize;
  if (ebi < 0)
    ebi = 0;

  count_trailing_zeros (cnt, expbits);
  ebi += cnt;
  expbits >>= cnt;

  MPN_COPY (rp, pp + n * (expbits >> 1), n);

  while (ebi != 0)
    {
      while (getbit (ep, ebi) == 0)
	{
	  mpn_sqr_n (tp, rp, n);
	  MPN_REDC_X (rp, tp, mp, n, mip);
	  ebi--;
	  if (ebi == 0)
	    goto done;
	}

      /* The next bit of the exponent is 1.  Now extract the largest block of
	 bits <= windowsize, and such that the least significant bit is 1.  */

      expbits = getbits (ep, ebi, windowsize);
      ebi -= windowsize;
      this_windowsize = windowsize;
      if (ebi < 0)
	{
	  this_windowsize += ebi;
	  ebi = 0;
	}

      count_trailing_zeros (cnt, expbits);
      this_windowsize -= cnt;
      ebi += cnt;
      expbits >>= cnt;

      do
	{
	  mpn_sqr_n (tp, rp, n);
	  MPN_REDC_X (rp, tp, mp, n, mip);
	  this_windowsize--;
	}
      while (this_windowsize != 0);

      mpn_mul_n (tp, rp, pp + n * (expbits >> 1), n);
      MPN_REDC_X (rp, tp, mp, n, mip);
    }

 done:
  MPN_COPY (tp, rp, n);
  MPN_ZERO (tp + n, n);
  MPN_REDC_X (rp, tp, mp, n, mip);
  if (mpn_cmp (rp, mp, n) >= 0)
    mpn_sub_n (rp, rp, mp, n);
  TMP_FREE;
}