1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/* stat.c -- statistical tests of random number sequences. */
/*
Copyright 1999, 2000 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
/* Examples:
$ gen 1000 | stat
Test 1000 real numbers.
$ gen 30000 | stat -2 1000
Test 1000 real numbers 30 times and then test the 30 results in a
``second level''.
$ gen -f mpz_urandomb 1000 | stat -i 0xffffffff
Test 1000 integers 0 <= X <= 2^32-1.
$ gen -f mpz_urandomb -z 34 1000 | stat -i 0x3ffffffff
Test 1000 integers 0 <= X <= 2^34-1.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include "gmp.h"
#include "gmpstat.h"
#if !HAVE_DECL_OPTARG
extern char *optarg;
extern int optind, opterr;
#endif
#define FVECSIZ (100000L)
int g_debug = 0;
static void
print_ks_results (mpf_t f_p, mpf_t f_p_prob,
mpf_t f_m, mpf_t f_m_prob,
FILE *fp)
{
double p, pp, m, mp;
p = mpf_get_d (f_p);
m = mpf_get_d (f_m);
pp = mpf_get_d (f_p_prob);
mp = mpf_get_d (f_m_prob);
fprintf (fp, "%.4f (%.0f%%)\t", p, pp * 100.0);
fprintf (fp, "%.4f (%.0f%%)\n", m, mp * 100.0);
}
static void
print_x2_table (unsigned int v, FILE *fp)
{
double t[7];
int f;
fprintf (fp, "Chi-square table for v=%u\n", v);
fprintf (fp, "1%%\t5%%\t25%%\t50%%\t75%%\t95%%\t99%%\n");
x2_table (t, v);
for (f = 0; f < 7; f++)
fprintf (fp, "%.2f\t", t[f]);
fputs ("\n", fp);
}
/* Pks () -- Distribution function for KS results with a big n (like 1000
or so): F(x) = 1 - pow(e, -2*x^2) [Knuth, vol 2, p.51]. */
/* gnuplot: plot [0:1] Pks(x), Pks(x) = 1-exp(-2*x**2) */
static void
Pks (mpf_t p, mpf_t x)
{
double dt; /* temp double */
mpf_set (p, x);
mpf_mul (p, p, p); /* p = x^2 */
mpf_mul_ui (p, p, 2); /* p = 2*x^2 */
mpf_neg (p, p); /* p = -2*x^2 */
/* No pow() in gmp. Use doubles. */
/* FIXME: Use exp()? */
dt = pow (M_E, mpf_get_d (p));
mpf_set_d (p, dt);
mpf_ui_sub (p, 1, p);
}
/* f_freq() -- frequency test on real numbers 0<=f<1*/
static void
f_freq (const unsigned l1runs, const unsigned l2runs,
mpf_t fvec[], const unsigned long n)
{
unsigned f;
mpf_t f_p, f_p_prob;
mpf_t f_m, f_m_prob;
mpf_t *l1res; /* level 1 result array */
mpf_init (f_p); mpf_init (f_m);
mpf_init (f_p_prob); mpf_init (f_m_prob);
/* Allocate space for 1st level results. */
l1res = (mpf_t *) malloc (l2runs * 2 * sizeof (mpf_t));
if (NULL == l1res)
{
fprintf (stderr, "stat: malloc failure\n");
exit (1);
}
printf ("\nEquidistribution/Frequency test on real numbers (0<=X<1):\n");
printf ("\tKp\t\tKm\n");
for (f = 0; f < l2runs; f++)
{
/* f_printvec (fvec, n); */
mpf_freqt (f_p, f_m, fvec + f * n, n);
/* what's the probability of getting these results? */
ks_table (f_p_prob, f_p, n);
ks_table (f_m_prob, f_m, n);
if (l1runs == 0)
{
/*printf ("%u:\t", f + 1);*/
print_ks_results (f_p, f_p_prob, f_m, f_m_prob, stdout);
}
else
{
/* save result */
mpf_init_set (l1res[f], f_p);
mpf_init_set (l1res[f + l2runs], f_m);
}
}
/* Now, apply the KS test on the results from the 1st level rounds
with the distribution
F(x) = 1 - pow(e, -2*x^2) [Knuth, vol 2, p.51] */
if (l1runs != 0)
{
/*printf ("-------------------------------------\n");*/
/* The Kp's. */
ks (f_p, f_m, l1res, Pks, l2runs);
ks_table (f_p_prob, f_p, l2runs);
ks_table (f_m_prob, f_m, l2runs);
printf ("Kp:\t");
print_ks_results (f_p, f_p_prob, f_m, f_m_prob, stdout);
/* The Km's. */
ks (f_p, f_m, l1res + l2runs, Pks, l2runs);
ks_table (f_p_prob, f_p, l2runs);
ks_table (f_m_prob, f_m, l2runs);
printf ("Km:\t");
print_ks_results (f_p, f_p_prob, f_m, f_m_prob, stdout);
}
mpf_clear (f_p); mpf_clear (f_m);
mpf_clear (f_p_prob); mpf_clear (f_m_prob);
free (l1res);
}
/* z_freq(l1runs, l2runs, zvec, n, max) -- frequency test on integers
0<=z<=MAX */
static void
z_freq (const unsigned l1runs,
const unsigned l2runs,
mpz_t zvec[],
const unsigned long n,
unsigned int max)
{
mpf_t V; /* result */
double d_V; /* result as a double */
mpf_init (V);
printf ("\nEquidistribution/Frequency test on integers (0<=X<=%u):\n", max);
print_x2_table (max, stdout);
mpz_freqt (V, zvec, max, n);
d_V = mpf_get_d (V);
printf ("V = %.2f (n = %lu)\n", d_V, n);
mpf_clear (V);
}
unsigned int stat_debug = 0;
int
main (argc, argv)
int argc;
char *argv[];
{
const char usage[] =
"usage: stat [-d] [-2 runs] [-i max | -r max] [file]\n" \
" file filename\n" \
" -2 runs perform 2-level test with RUNS runs on 1st level\n" \
" -d increase debugging level\n" \
" -i max input is integers 0 <= Z <= MAX\n" \
" -r max input is real numbers 0 <= R < 1 and use MAX as\n" \
" maximum value when converting real numbers to integers\n" \
"";
mpf_t fvec[FVECSIZ];
mpz_t zvec[FVECSIZ];
unsigned long int f, n, vecentries;
char *filen;
FILE *fp;
int c;
int omitoutput = 0;
int realinput = -1; /* 1: input is real numbers 0<=R<1;
0: input is integers 0 <= Z <= MAX. */
long l1runs = 0, /* 1st level runs */
l2runs = 1; /* 2nd level runs */
mpf_t f_temp;
mpz_t z_imax; /* max value when converting between
real number and integer. */
mpf_t f_imax_plus1; /* f_imax + 1 stored in an mpf_t for
convenience */
mpf_t f_imax_minus1; /* f_imax - 1 stored in an mpf_t for
convenience */
mpf_init (f_temp);
mpz_init_set_ui (z_imax, 0x7fffffff);
mpf_init (f_imax_plus1);
mpf_init (f_imax_minus1);
while ((c = getopt (argc, argv, "d2:i:r:")) != -1)
switch (c)
{
case '2':
l1runs = atol (optarg);
l2runs = -1; /* set later on */
break;
case 'd': /* increase debug level */
stat_debug++;
break;
case 'i':
if (1 == realinput)
{
fputs ("stat: options -i and -r are mutually exclusive\n", stderr);
exit (1);
}
if (mpz_set_str (z_imax, optarg, 0))
{
fprintf (stderr, "stat: bad max value %s\n", optarg);
exit (1);
}
realinput = 0;
break;
case 'r':
if (0 == realinput)
{
fputs ("stat: options -i and -r are mutually exclusive\n", stderr);
exit (1);
}
if (mpz_set_str (z_imax, optarg, 0))
{
fprintf (stderr, "stat: bad max value %s\n", optarg);
exit (1);
}
realinput = 1;
break;
case 'o':
omitoutput = atoi (optarg);
break;
case '?':
default:
fputs (usage, stderr);
exit (1);
}
argc -= optind;
argv += optind;
if (argc < 1)
fp = stdin;
else
filen = argv[0];
if (fp != stdin)
if (NULL == (fp = fopen (filen, "r")))
{
perror (filen);
exit (1);
}
if (-1 == realinput)
realinput = 1; /* default is real numbers */
/* read file and fill appropriate vec */
if (1 == realinput) /* real input */
{
for (f = 0; f < FVECSIZ ; f++)
{
mpf_init (fvec[f]);
if (!mpf_inp_str (fvec[f], fp, 10))
break;
}
}
else /* integer input */
{
for (f = 0; f < FVECSIZ ; f++)
{
mpz_init (zvec[f]);
if (!mpz_inp_str (zvec[f], fp, 10))
break;
}
}
vecentries = n = f; /* number of entries read */
fclose (fp);
if (FVECSIZ == f)
fprintf (stderr, "stat: warning: discarding input due to lazy allocation "\
"of only %ld entries. sorry.\n", FVECSIZ);
printf ("Got %lu numbers.\n", n);
/* convert and fill the other vec */
/* since fvec[] contains 0<=f<1 and we want ivec[] to contain
0<=z<=imax and we are truncating all fractions when
converting float to int, we have to add 1 to imax.*/
mpf_set_z (f_imax_plus1, z_imax);
mpf_add_ui (f_imax_plus1, f_imax_plus1, 1);
if (1 == realinput) /* fill zvec[] */
{
for (f = 0; f < n; f++)
{
mpf_mul (f_temp, fvec[f], f_imax_plus1);
mpz_init (zvec[f]);
mpz_set_f (zvec[f], f_temp); /* truncating fraction */
if (stat_debug > 1)
{
mpz_out_str (stderr, 10, zvec[f]);
fputs ("\n", stderr);
}
}
}
else /* integer input; fill fvec[] */
{
/* mpf_set_z (f_imax_minus1, z_imax);
mpf_sub_ui (f_imax_minus1, f_imax_minus1, 1);*/
for (f = 0; f < n; f++)
{
mpf_init (fvec[f]);
mpf_set_z (fvec[f], zvec[f]);
mpf_div (fvec[f], fvec[f], f_imax_plus1);
if (stat_debug > 1)
{
mpf_out_str (stderr, 10, 0, fvec[f]);
fputs ("\n", stderr);
}
}
}
/* 2 levels? */
if (1 != l2runs)
{
l2runs = n / l1runs;
printf ("Doing %ld second level rounds "\
"with %ld entries in each round", l2runs, l1runs);
if (n % l1runs)
printf (" (discarding %ld entr%s)", n % l1runs,
n % l1runs == 1 ? "y" : "ies");
puts (".");
n = l1runs;
}
#ifndef DONT_FFREQ
f_freq (l1runs, l2runs, fvec, n);
#endif
#ifdef DO_ZFREQ
z_freq (l1runs, l2runs, zvec, n, mpz_get_ui (z_imax));
#endif
mpf_clear (f_temp); mpz_clear (z_imax);
mpf_clear (f_imax_plus1);
mpf_clear (f_imax_minus1);
for (f = 0; f < vecentries; f++)
{
mpf_clear (fvec[f]);
mpz_clear (zvec[f]);
}
return 0;
}
|