File: chap-6.texi

package info (click to toggle)
gclinfo 2.2-6
  • links: PTS
  • area: main
  • in suites: slink
  • size: 3,872 kB
  • ctags: 15
  • sloc: sed: 1,681; makefile: 61; lisp: 58; sh: 6
file content (2866 lines) | stat: -rw-r--r-- 100,254 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866


@node Iteration, Objects, Data and Control Flow, Top
@chapter Iteration

@menu
* The LOOP Facility::		
* Iteration Dictionary::	
@end menu

@node The LOOP Facility, Iteration Dictionary, Iteration, Iteration
@section The LOOP Facility

@c including concept-loop

@menu
* Overview of the Loop Facility::  
* Variable Initialization and Stepping Clauses::  
* Value Accumulation Clauses::	
* Termination Test Clauses::	
* Unconditional Execution Clauses::  
* Conditional Execution Clauses::  
* Miscellaneous Clauses::	
* Examples of Miscellaneous Loop Features::  
* Notes about Loop::		
@end menu

@node Overview of the Loop Facility, Variable Initialization and Stepping Clauses, The LOOP Facility, The LOOP Facility
@subsection Overview of the Loop Facility

The @b{loop} @i{macro} performs iteration.

@menu
* Simple vs Extended Loop::	
* Simple Loop::			
* Extended Loop::		
* Loop Keywords::		
* Parsing Loop Clauses::	
* Expanding Loop Forms::	
* Summary of Loop Clauses::	
* Summary of Variable Initialization and Stepping Clauses::  
* Summary of Value Accumulation Clauses::  
* Summary of Termination Test Clauses::	 
* Summary of Unconditional Execution Clauses::	
* Summary of Conditional Execution Clauses::  
* Summary of Miscellaneous Clauses::  
* Order of Execution::		
* Destructuring::		
* Restrictions on Side-Effects::  
@end menu

@node Simple vs Extended Loop, Simple Loop, Overview of the Loop Facility, Overview of the Loop Facility
@subsubsection Simple vs Extended Loop

@b{loop} @i{forms} are partitioned into two categories: 
     simple @b{loop} @i{forms} 
 and extended @b{loop} @i{forms}.

@node Simple Loop, Extended Loop, Simple vs Extended Loop, Overview of the Loop Facility
@subsubsection Simple Loop

A simple @b{loop} @i{form} is one that has a body containing
only @i{compound forms}.
Each @i{form} is @i{evaluated} in turn from left to right.
When the last @i{form} has been @i{evaluated}, 
then the first @i{form} is evaluated again, and so on, in a never-ending cycle.
A simple @b{loop} @i{form} establishes an @i{implicit block} named @b{nil}.
The execution of a simple @b{loop} can be terminated by explicitly
transfering control to the @i{implicit block} (using @b{return} or
@b{return-from}) or to some @i{exit point} outside of the @i{block} 
(@i{e.g.}, using @b{throw}, @b{go}, or @b{return-from}).

@node Extended Loop, Loop Keywords, Simple Loop, Overview of the Loop Facility
@subsubsection Extended Loop

An extended @b{loop} @i{form} is one that has a body containing
@i{atomic} @i{expressions}.  When the @b{loop} @i{macro} processes such a
@i{form}, it invokes a facility that is commonly called ``the Loop Facility.''

The Loop Facility provides standardized access to mechanisms commonly used 
in iterations through Loop schemas, which are introduced by @i{loop keywords}.

The body of an extended @b{loop} @i{form} is divided into @b{loop} clauses,
each which is in turn made up of @i{loop keywords} and @i{forms}. 

@node Loop Keywords, Parsing Loop Clauses, Extended Loop, Overview of the Loop Facility
@subsubsection Loop Keywords

@i{Loop keywords} are not true @i{keywords}_1; 
they are special @i{symbols}, recognized by @i{name} rather than @i{object} identity,
that are meaningful only to the @b{loop} facility.
A @i{loop keyword} is a @i{symbol} but is recognized by its @i{name}
(not its identity), regardless of the @i{packages} in which it is @i{accessible}.  

In general, @i{loop keywords} are not @i{external symbols} of the @t{COMMON-LISP} @i{package},
except in the coincidental situation that a @i{symbol} with the same name as a
@i{loop keyword} was needed for some other purpose in @r{Common Lisp}.  For example,
there is a @i{symbol} in the @t{COMMON-LISP} @i{package} whose @i{name} is @t{"UNLESS"} but
not one whose @i{name} is @t{"UNTIL"}.

If no @i{loop keywords} are supplied in a @b{loop} @i{form},
the Loop Facility executes the loop body repeatedly; see @ref{Simple Loop}.

@node Parsing Loop Clauses, Expanding Loop Forms, Loop Keywords, Overview of the Loop Facility
@subsubsection Parsing Loop Clauses

The syntactic parts of an extended @b{loop} @i{form} are called clauses; 
the rules for parsing are determined by 
that clause's keyword.
The following example shows a @b{loop} @i{form} with six clauses:

@example
 (loop for i from 1 to (compute-top-value)       ; first clause
       while (not (unacceptable i))              ; second clause
       collect (square i)                        ; third clause
       do (format t "Working on ~D now" i)       ; fourth clause
       when (evenp i)                            ; fifth clause
         do (format t "~D is a non-odd number" i)
       finally (format t "About to exit!"))      ; sixth clause
@end example

Each @i{loop keyword} introduces 
either a compound loop clause or a simple loop clause
that can consist of a @i{loop keyword} followed by a single @i{form}.
The number of @i{forms} in a clause is determined by the @i{loop keyword} 
that begins the clause and by the auxiliary keywords in the clause.
The keywords @t{do}, 

@t{doing},

@t{initially}, and @t{finally} 
are the only loop keywords that can take any number of @i{forms} and 
group them as an @i{implicit progn}.

Loop clauses can contain auxiliary keywords, which are sometimes
called prepositions.  For example, the first clause in the code
above includes the prepositions @t{from} and @t{to}, 
which mark the value from which stepping begins and the value at which stepping
ends.

For detailed information about @b{loop} syntax,
see the @i{macro} @b{loop}.

@node Expanding Loop Forms, Summary of Loop Clauses, Parsing Loop Clauses, Overview of the Loop Facility
@subsubsection Expanding Loop Forms

A @b{loop} @i{macro form} expands into a @i{form} containing
one or more binding forms (that @i{establish} @i{bindings} of loop variables)
and a @b{block} and a @b{tagbody} (that express a looping control 
structure). The variables established in @b{loop} are bound as
if by @b{let} or @b{lambda}.  

Implementations can interleave the setting of initial values with the @i{bindings}.  
However, the assignment of the initial values is always calculated in the order
specified by the user.  A variable is thus sometimes bound to a meaningless value 
of the correct @i{type}, and then later in the prologue it is set to the true
initial value by using @b{setq}.

One implication of this interleaving is that it is @i{implementation-dependent}
whether the @i{lexical environment} in which the initial value @i{forms}
(variously called the @i{form1}, @i{form2}, @i{form3}, @i{step-fun},
 @i{vector}, @i{hash-table}, and @i{package}) in any @i{for-as-subclause},
except @i{for-as-equals-then},
are @i{evaluated} includes only the loop variables preceding that @i{form}
or includes more or all of the loop variables;
the @i{form1} and @i{form2} in a @i{for-as-equals-then} form
includes the @i{lexical environment} of all the loop variables.

After the @i{form} is expanded, it consists of three basic parts in the 
@b{tagbody}: 
      the loop prologue,
      the loop body,
  and the loop epilogue.

@table @asis

@item @b{Loop prologue}  
The loop prologue contains @i{forms} 
that are executed before iteration begins, such as
any automatic variable initializations prescribed 
by the @i{variable} clauses, along with any @t{initially} clauses
in the order they appear in the source.

@item @b{Loop body}  
The loop body contains those @i{forms} that are executed during iteration, 
including application-specific calculations, termination tests,
and variable @i{stepping}_1.

@item @b{Loop epilogue}  
The loop epilogue contains @i{forms} that are executed after iteration 
terminates, such as @t{finally} clauses, if any, along
with any implicit return value from an @i{accumulation} clause or
an @i{termination-test} clause.

@end table

Some clauses from the source @i{form}
contribute code only to the loop prologue; these clauses must
  come before other clauses that are in the main body of the @b{loop} form.            
  Others contribute code only to the loop epilogue.
  All other clauses contribute to the final 
translated @i{form} in the same 
  order given in the original source @i{form} of the @b{loop}.

Expansion of the @b{loop} macro produces an @i{implicit block} named @b{nil} 

unless @t{named} is supplied.

Thus, @b{return-from} (and sometimes @b{return})
can be used to return values from @b{loop} or to exit @b{loop}.

@node Summary of Loop Clauses, Summary of Variable Initialization and Stepping Clauses, Expanding Loop Forms, Overview of the Loop Facility
@subsubsection Summary of Loop Clauses

Loop clauses fall into one of the following categories:

@node Summary of Variable Initialization and Stepping Clauses, Summary of Value Accumulation Clauses, Summary of Loop Clauses, Overview of the Loop Facility
@subsubsection Summary of Variable Initialization and Stepping Clauses

The @t{for} and @t{as} constructs provide iteration control clauses
that establish a variable to be initialized.
@t{for} and @t{as} clauses can be combined with the loop
keyword @t{and} to get @i{parallel} initialization and @i{stepping}_1.
Otherwise, the initialization and @i{stepping}_1 are @i{sequential}.

The @t{with} construct is similar to a single @b{let} clause.
@t{with} clauses can be combined using the @i{loop keyword} @t{and}
to get @i{parallel} initialization.

For more information, see @ref{Variable Initialization and Stepping Clauses}.

@node Summary of Value Accumulation Clauses, Summary of Termination Test Clauses, Summary of Variable Initialization and Stepping Clauses, Overview of the Loop Facility
@subsubsection Summary of Value Accumulation Clauses

The @t{collect} (or @t{collecting}) construct
takes one @i{form} in its clause
and adds the value of that @i{form} to the end of a @i{list} 
of values.  By default, the @i{list} of values is returned 
when the @b{loop} finishes.

The @t{append} (or @t{appending}) construct 
takes one @i{form} in its clause
and appends the value of that @i{form} to the end of a @i{list}
of values.  By default, the @i{list} of values is returned when the 
@b{loop} finishes.

The @t{nconc} (or @t{nconcing}) construct 
is similar to the @t{append} construct,  
but its @i{list} values are concatenated as if by the function
@t{nconc}.  By default, the @i{list} of values is returned when 
the @b{loop} finishes.

The @t{sum} (or @t{summing}) construct 
takes one @i{form} in its clause 
that must evaluate to a @i{number} and accumulates the sum of all these
@i{numbers}.  By default, the cumulative sum is returned when the
@b{loop} finishes.

The @t{count} (or @t{counting}) construct 
takes one @i{form} in its clause 
and counts the number of times that the @i{form} evaluates to @i{true}.
By default, the count is returned when the @b{loop} finishes.

The @t{minimize} (or @t{minimizing}) construct
takes one @i{form} in its clause 
and determines the minimum value obtained by evaluating that @i{form}.
By default, the minimum value is returned when the @b{loop} finishes.

The @t{maximize} (or @t{maximizing}) construct
takes one @i{form} in its clause 
and determines the maximum value obtained by evaluating that @i{form}.
By default, the maximum value is returned when the @b{loop} finishes.

For more information, see @ref{Value Accumulation Clauses}.

@node Summary of Termination Test Clauses, Summary of Unconditional Execution Clauses, Summary of Value Accumulation Clauses, Overview of the Loop Facility
@subsubsection Summary of Termination Test Clauses

The @t{for} and @t{as} constructs provide a termination test
that is determined by the iteration control clause.

The @t{repeat} construct causes termination after a specified
number of iterations.
(It uses an internal variable to keep track of the number of iterations.)

The @t{while} construct takes one @i{form}, a @i{test}, 
and terminates the iteration if the @i{test} evaluates to @i{false}.
A @t{while} clause is equivalent to the expression 
@t{(if (not @i{test}) (loop-finish))}.

The @t{until} construct is the inverse of @t{while};
it terminates the iteration if the @i{test} evaluates to
any @i{non-nil} value.
An @t{until} clause is equivalent to the expression
@t{(if @i{test} (loop-finish))}.

The @t{always} construct takes one @i{form} and
terminates the @b{loop} if the @i{form} ever evaluates to @i{false};
in this case, the @b{loop} @i{form} returns @b{nil}.
Otherwise, it provides a default return value of @b{t}.

The @t{never} construct takes one @i{form} and
terminates the @b{loop} if the @i{form} ever evaluates to @i{true};
in this case, the @b{loop} @i{form} returns @b{nil}.
Otherwise, it provides a default return value of @b{t}.

The @t{thereis} construct takes one @i{form} and
terminates the @b{loop} if the @i{form} ever evaluates to
a @i{non-nil} @i{object};
in this case, the @b{loop} @i{form} returns that @i{object}.

Otherwise, it provides a default return value of @b{nil}.

If multiple termination test clauses are specified, 
the @b{loop} @i{form} terminates if any are satisfied.

For more information, see @ref{Termination Test Clauses}.

@node Summary of Unconditional Execution Clauses, Summary of Conditional Execution Clauses, Summary of Termination Test Clauses, Overview of the Loop Facility
@subsubsection Summary of Unconditional Execution Clauses

The @t{do} (or @t{doing}) construct evaluates all @i{forms} in its clause.

The @t{return} construct takes one 

  @i{form}. Any @i{values} returned by the @i{form} are
  immediately returned by the @b{loop} form.
   It is equivalent to the clause
   @t{do (return-from @i{block-name} @i{value})},
   where @i{block-name} is the name specified in a @t{named}
   clause, or @b{nil} if there is no @t{named} clause.

For more information, see @ref{Unconditional Execution Clauses}.

@node Summary of Conditional Execution Clauses, Summary of Miscellaneous Clauses, Summary of Unconditional Execution Clauses, Overview of the Loop Facility
@subsubsection Summary of Conditional Execution Clauses

The @t{if} and @t{when} constructs take one @i{form} as a test 
and a clause that is executed when the test @i{yields} @i{true}.
The clause can be a value accumulation, unconditional, or 
another conditional clause; it can also be any combination
of such clauses connected by the @b{loop} @t{and} keyword.

The @b{loop} @t{unless} construct is similar to the @b{loop} @t{when} construct
except that it complements the test result.

The @b{loop} @t{else} construct provides an optional component of @t{if},
@t{when}, and @t{unless} clauses that is executed 
     when an @t{if} or @t{when} test @i{yields} @i{false}
  or when an @t{unless} test @i{yields} @i{true}.
The component is one of the clauses described under @t{if}.

The @b{loop} @t{end} construct provides an optional component to mark the
end of a conditional clause.

For more information, see @ref{Conditional Execution Clauses}.

@node Summary of Miscellaneous Clauses, Order of Execution, Summary of Conditional Execution Clauses, Overview of the Loop Facility
@subsubsection Summary of Miscellaneous Clauses

The @b{loop} @t{named} construct gives a name for the @i{block} of the loop.

The @b{loop} @t{initially} construct causes its @i{forms} to be
evaluated in the loop prologue, which precedes all @b{loop} code
except for initial settings supplied by the constructs @t{with},
@t{for}, or @t{as}.

The @b{loop} @t{finally} construct causes its @i{forms} to
be evaluated in the loop epilogue after normal iteration terminates.

For more information, see @ref{Miscellaneous Clauses}.

@node Order of Execution, Destructuring, Summary of Miscellaneous Clauses, Overview of the Loop Facility
@subsubsection Order of Execution

@ITindex{order of evaluation}

@ITindex{evaluation order}

  With the exceptions listed below, clauses are executed in the loop body
  in the order in which they appear in the source.  Execution is repeated 
  until a clause
  terminates the @b{loop} or until a @b{return}, @b{go},
  or @b{throw} form is encountered 
which transfers control to a point outside of the loop.
 The following actions are
  exceptions to the linear order of execution:

@table @asis

@item @t{*}  
All variables are initialized first, 
  regardless of where the establishing clauses appear in the
  source.  The order of initialization follows the order of these clauses.

@item @t{*}  
The code for any @t{initially} clauses is collected
  into one @b{progn} in the order in which the clauses appear in
  the source.  The collected code is executed once in the loop prologue
  after any implicit variable initializations.

@item @t{*}  
The code for any @t{finally} clauses is collected 
  into one @b{progn} in the order in which the clauses appear in
  the source.  The collected code is executed once in the loop epilogue
  before any implicit values from the accumulation clauses are returned.
  Explicit returns anywhere in the source, however, will exit the 
  @b{loop} without executing the epilogue code.

@item @t{*}  
A @t{with} clause introduces a variable @i{binding}
  and an optional initial value.  The initial values are calculated 
  in the order in which the @t{with} clauses occur.

@item @t{*}  
Iteration control clauses implicitly perform the following actions:

@table @asis

@item --  
initialize variables;

@item --  
@i{step} variables, generally 
between each execution of the loop body;

@item --  
perform termination tests, 
generally just before the execution of the
  loop body.

@end table

@end table

@node Destructuring, Restrictions on Side-Effects, Order of Execution, Overview of the Loop Facility
@subsubsection Destructuring

The @i{d-type-spec} argument is used for destructuring.
If the
@i{d-type-spec} argument consists solely of the @i{type} @b{fixnum},
@b{float}, @b{t}, or @b{nil}, the @t{of-type} keyword is optional.
The @t{of-type} construct is optional in these cases to provide backwards
compatibility; thus, the following two expressions are the same:

@example
;;; This expression uses the old syntax for type specifiers.
 (loop for i fixnum upfrom 3 ...)

;;; This expression uses the new syntax for type specifiers.
 (loop for i of-type fixnum upfrom 3 ...)

;; Declare X and Y to be of type VECTOR and FIXNUM respectively.
 (loop for (x y) of-type (vector fixnum) 
       in l do ...)
@end example

A @i{type specifier} for a destructuring pattern is a @i{tree} of 
@i{type specifiers} with the same shape as the @i{tree} of
@i{variable} @i{names}, with the following exceptions:

@table @asis

@item @t{*}  
When aligning the @i{trees}, an @i{atom} in the
@i{tree} of @i{type specifiers} that matches a @i{cons} 
in the variable tree declares the same @i{type} for each variable
in the subtree rooted at the @i{cons}.

@item @t{*}  
A @i{cons} in the @i{tree} of @i{type specifiers} that 
matches an @i{atom} in the @i{tree} of @i{variable} @i{names}
is a @i{compound type specifer}.

@end table

Destructuring allows @i{binding} of a set of variables to a corresponding
set of values anywhere that a value can normally be bound to a single
variable.  During @b{loop} expansion, 
each variable in the variable list
is matched with the values in the values list.  If there are more variables
in the variable list than there are values in the values list, the 
remaining variables are given a value of @b{nil}.  If there are more
values than variables listed, the extra values are discarded.

To assign values from a list to the variables @t{a},
@t{b}, and @t{c}, the @t{for} clause could be used to
bind the variable @t{numlist} to the 
@i{car} of the supplied @i{form},
and then another @t{for} clause could be used to bind the variables
@t{a}, @t{b}, and @t{c} @i{sequentially}.  

@example
;; Collect values by using FOR constructs.
 (loop for numlist in '((1 2 4.0) (5 6 8.3) (8 9 10.4))
       for a of-type integer = (first numlist)
       and b of-type integer = (second numlist)
       and c of-type float = (third numlist)
       collect (list c b a))
@result{}  ((4.0 2 1) (8.3 6 5) (10.4 9 8))
@end example

Destructuring makes this process easier by allowing the variables to
be bound in each loop iteration.  
@i{Types} can be declared by using a 
list of @i{type-spec} arguments.  If 
all the @i{types}
are the same, a shorthand destructuring syntax can be used, as the second
example illustrates.

@example
;; Destructuring simplifies the process.
 (loop for (a b c) of-type (integer integer float) in
       '((1 2 4.0) (5 6 8.3) (8 9 10.4))
       collect (list c b a))
@result{}  ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;; If all the types are the same, this way is even simpler.
 (loop for (a b c) of-type float in
       '((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))
       collect (list c b a))
@result{}  ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))
@end example

If destructuring is used to declare or initialize a number of groups
of variables into @i{types}, the @i{loop keyword} @t{and} can be used
to simplify the process further.

@example
;; Initialize and declare variables in parallel by using the AND construct.\kern-7pt
 (loop with (a b) of-type float = '(1.0 2.0)
       and (c d) of-type integer = '(3 4)
       and (e f)
       return (list a b c d e f))
@result{}  (1.0 2.0 3 4 NIL NIL)
@end example

If @b{nil} is used in a destructuring list, no variable is provided for
its place.

@example
 (loop for (a nil b) = '(1 2 3)
       do (return (list a b)))
@result{}  (1 3)
@end example

Note that 
@i{dotted lists}
can specify destructuring.

@example
 (loop for (x . y) = '(1 . 2)
       do (return y))
@result{}  2
 (loop for ((a . b) (c . d)) of-type ((float . float) (integer . integer)) in
       '(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))
       collect (list a b c d))
@result{}  ((1.2 2.4 3 4) (3.4 4.6 5 6))
@end example

An error of @i{type} @b{program-error} is signaled (at macro expansion time)
if the same variable is bound twice in any variable-binding
clause of a single @b{loop} expression.  Such variables include
local variables, iteration control variables, and variables found by
destructuring.

@node Restrictions on Side-Effects,  , Destructuring, Overview of the Loop Facility
@subsubsection Restrictions on Side-Effects

See @ref{Traversal Rules and Side Effects}.

@node Variable Initialization and Stepping Clauses, Value Accumulation Clauses, Overview of the Loop Facility, The LOOP Facility
@subsection Variable Initialization and Stepping Clauses

@menu
* Iteration Control::		
* The for-as-arithmetic subclause::  
* Examples of for-as-arithmetic subclause::  
* The for-as-in-list subclause::  
* Examples of for-as-in-list subclause::  
* The for-as-on-list subclause::  
* Examples of for-as-on-list subclause::  
* The for-as-equals-then subclause::  
* Examples of for-as-equals-then subclause::  
* The for-as-across subclause::	 
* Examples of for-as-across subclause::	 
* The for-as-hash subclause::	
* The for-as-package subclause::  
* Examples of for-as-package subclause::  
* Local Variable Initializations::  
* Examples of WITH clause::	
@end menu

@node Iteration Control, The for-as-arithmetic subclause, Variable Initialization and Stepping Clauses, Variable Initialization and Stepping Clauses
@subsubsection Iteration Control

Iteration control clauses allow direction of @b{loop} iteration.
The @i{loop keywords} @t{for} and @t{as}
designate iteration control clauses.
Iteration control clauses differ with respect to the specification of
termination tests and to the initialization and @i{stepping}_1
of loop variables.  Iteration clauses by themselves
do not cause the Loop Facility to return values, but they
can be used in conjunction with value-accumulation clauses to
return values.  

All variables are initialized in the loop prologue.  
A @i{variable} @i{binding} has @i{lexical scope}
unless it is proclaimed @b{special};
thus, by default, the variable can be @i{accessed} only by @i{forms} 
that lie textually within the @b{loop}.
Stepping assignments are made in the loop body before any other @i{forms}
are evaluated in the body.  

The variable argument in iteration control clauses can be a 
destructuring list.  A destructuring list
is a @i{tree} whose @i{non-nil} @i{atoms} are @i{variable} @i{names}.
See @ref{Destructuring}.

The iteration control clauses @t{for}, @t{as},  and @t{repeat} 
must precede any other loop clauses, except
  @t{initially}, @t{with}, and @t{named},
since they establish variable @i{bindings}.  
When iteration control clauses are
used in a @b{loop},
the corresponding
termination tests in the loop body are evaluated
before any other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable
initialization and @i{stepping}_1 occur @i{sequentially} by default.  
The @t{and} construct can be used to connect two or more
iteration clauses when @i{sequential} @i{binding} and 
@i{stepping}_1 are not necessary.
The iteration behavior of clauses joined by @t{and}
is analogous to the behavior of the macro @b{do} with
respect to @b{do*}.

The @t{for} and @t{as} clauses iterate by using one or more local 
loop  variables that are initialized to some value and that 
can be modified or @i{stepped}_1 after each iteration.  
For these clauses, iteration terminates when a local
variable reaches some supplied value or when some other loop clause
terminates iteration.
At each iteration, variables can be 
   @i{stepped}_1 by an increment or a decrement
or can be assigned a new value by the evaluation of a @i{form}).
Destructuring can be used to assign 
values to variables during iteration. 

The @t{for} and @t{as} keywords are synonyms; they can be used
interchangeably.  There are seven syntactic formats for these constructs.
In each syntactic format, the @i{type} of
@i{var} can be supplied by the optional @i{type-spec}
argument.  If @i{var} is a destructuring list, the @i{type}
supplied by the @i{type-spec} argument must appropriately match
the elements of the list.  
By convention, @t{for} introduces new iterations and @t{as}
introduces iterations that depend on a previous iteration specification.

@node The for-as-arithmetic subclause, Examples of for-as-arithmetic subclause, Iteration Control, Variable Initialization and Stepping Clauses
@subsubsection The for-as-arithmetic subclause

In the @i{for-as-arithmetic} subclause, the @t{for} 
or @t{as} construct iterates from the value supplied by
@i{form1} to the value supplied by @i{form2} in increments or
decrements denoted by @i{form3}. Each
expression is evaluated only once and must evaluate to a @i{number}.  
The variable @i{var} is bound to the value of 
@i{form1} in the first iteration and is @i{stepped}_1
by the value of @i{form3} in each succeeding iteration,
or by 1 if @i{form3} is not provided.  
The following @i{loop keywords} serve as valid prepositions within this 
syntax.
At least one of the 
prepositions must be used; 
and at most one from each line may be used in a single subclause.

@table @asis

@item from | downfrom | upfrom  
@item to | downto | upto | below | above  
@item by  
@end table

The prepositional phrases in each subclause may appear in any order.
For example, either ``@t{from x by y}'' or ``@t{by y from x}'' is permitted.
However, because left-to-right order of evaluation is preserved,
the effects will be different in the case of side effects.

@ITindex{order of evaluation}

@ITindex{evaluation order}

Consider:

@example
(let ((x 1)) (loop for i from x by (incf x) to 10 collect i))
@result{}  (1 3 5 7 9)
(let ((x 1)) (loop for i by (incf x) from x to 10 collect i))
@result{}  (2 4 6 8 10)
@end example

The descriptions of the prepositions follow:

@table @asis

@item from  
The @i{loop keyword} @t{from} specifies the value from which
@i{stepping}_1 begins, as supplied by @i{form1}.  
@i{Stepping}_1 is incremental by default.  If 
decremental @i{stepping}_1 is desired, 
the preposition @t{downto} 
or @t{above} must be used with @i{form2}.  For incremental
@i{stepping}_1, the default @t{from} value is 0.

@item downfrom, upfrom  
The @i{loop keyword} @t{downfrom} 
indicates that the variable @i{var} is decreased in decrements
supplied by @i{form3}; the @i{loop keyword} @t{upfrom} indicates that 
@i{var} is increased in increments supplied by @i{form3}.

@item to  
The @i{loop keyword} @t{to} marks the end value
for @i{stepping}_1 supplied in @i{form2}.
@i{Stepping}_1 is incremental by default.
If decremental @i{stepping}_1 is desired, 
the preposition @t{downfrom} must be used with @i{form1},
or else the preposition @t{downto} or @t{above} should be used instead
   of @t{to} with @i{form2}.

@item downto, upto  
The @i{loop keyword} @t{downto} specifies decremental @i{stepping};
the @i{loop keyword} @t{upto} specifies incremental @i{stepping}.
In both cases, the amount of change on each step is specified by @i{form3},
and the @b{loop} terminates when the variable @i{var} passes 
the value of @i{form2}.
Since there is no default for @i{form1} in decremental @i{stepping}_1,
a @i{form1} value must be supplied (using @t{from} or @t{downfrom})
when @t{downto} is supplied.

@item below, above  
The @i{loop keywords} @t{below} and @t{above} are analogous to
@t{upto} and @t{downto} respectively.  These keywords stop
iteration just before the value of the variable @i{var} reaches the value 
supplied by @i{form2}; the end value of @i{form2} is not included.
Since there is no default for @i{form1} in decremental @i{stepping}_1,
a @i{form1} value must be supplied (using @t{from} or @t{downfrom})
when @t{above} is supplied.

@item by  
The @i{loop keyword} @t{by} marks the increment or decrement supplied by
@i{form3}.  The value of @i{form3} can be any 
positive 
@i{number}.
The default value is 1.

@end table

In an iteration control clause, the @t{for} or @t{as} construct
causes termination when the supplied limit is reached.  That is,
iteration continues until the value @i{var} is stepped to the
exclusive or inclusive limit supplied by @i{form2}.  The range is
exclusive if @i{form3} increases or decreases @i{var}
to the value of @i{form2} without reaching that value; the loop
keywords @t{below} and @t{above} provide exclusive limits.  An
inclusive limit allows @i{var} to attain the value of
@i{form2}; @t{to}, @t{downto}, and @t{upto} provide inclusive
limits.  

@node Examples of for-as-arithmetic subclause, The for-as-in-list subclause, The for-as-arithmetic subclause, Variable Initialization and Stepping Clauses
@subsubsection Examples of for-as-arithmetic subclause

@example
;; Print some numbers.
 (loop for i from 1 to 3
       do (print i))
@t{ |> } 1
@t{ |> } 2
@t{ |> } 3
@result{}  NIL

;; Print every third number.
 (loop for i from 10 downto 1 by 3
       do (print i))
@t{ |> } 10 
@t{ |> } 7 
@t{ |> } 4 
@t{ |> } 1 
@result{}  NIL

;; Step incrementally from the default starting value.
 (loop for i below 3
       do (print i))
@t{ |> } 0
@t{ |> } 1
@t{ |> } 2
@result{}  NIL
@end example

@node The for-as-in-list subclause, Examples of for-as-in-list subclause, Examples of for-as-arithmetic subclause, Variable Initialization and Stepping Clauses
@subsubsection The for-as-in-list subclause

In the @i{for-as-in-list} subclause,
the @t{for} 
or @t{as} construct iterates over the contents of a 
@i{list}.  It checks for 
the end of the @i{list} as if by using @b{endp}.  
The variable @i{var} is bound to the successive elements  of 
the @i{list} in @i{form1} before each
iteration.  At the end of each iteration, the function @i{step-fun}
is applied to the @i{list}; the default value for @i{step-fun} is
@b{cdr}.
The @i{loop keywords} @t{in} and @t{by} serve as valid prepositions in
this syntax.
The @t{for} or @t{as} construct causes termination when the
end of the @i{list} is reached.

@node Examples of for-as-in-list subclause, The for-as-on-list subclause, The for-as-in-list subclause, Variable Initialization and Stepping Clauses
@subsubsection Examples of for-as-in-list subclause

@example
;; Print every item in a list.
 (loop for item in '(1 2 3) do (print item))
@t{ |> } 1
@t{ |> } 2
@t{ |> } 3
@result{}  NIL

;; Print every other item in a list.
 (loop for item in '(1 2 3 4 5) by #'cddr
       do (print item))
@t{ |> } 1
@t{ |> } 3
@t{ |> } 5
@result{}  NIL

;; Destructure a list, and sum the x values using fixnum arithmetic.
 (loop for (item . x) of-type (t . fixnum) in '((A . 1) (B . 2) (C . 3))
       unless (eq item 'B) sum x)
@result{}  4
@end example

@node The for-as-on-list subclause, Examples of for-as-on-list subclause, Examples of for-as-in-list subclause, Variable Initialization and Stepping Clauses
@subsubsection The for-as-on-list subclause

In the @i{for-as-on-list} subclause, the @t{for} or @t{as}
construct iterates over
a @i{list}. It checks for the
end of the @i{list} as if by using @b{atom}.

The variable @i{var} is bound to the successive tails of the 
@i{list} in 
@i{form1}.  At the end of each iteration, the function @i{step-fun}
 is applied to the @i{list}; the default value for @i{step-fun} is @b{cdr}.
 The @i{loop keywords} @t{on} and @t{by} serve as valid
prepositions in this syntax.
The @t{for} or @t{as} construct causes termination when the
end of the @i{list} is reached.

@node Examples of for-as-on-list subclause, The for-as-equals-then subclause, The for-as-on-list subclause, Variable Initialization and Stepping Clauses
@subsubsection Examples of for-as-on-list subclause

@example
;; Collect successive tails of a list.
 (loop for sublist on '(a b c d)
       collect sublist)
@result{}  ((A B C D) (B C D) (C D) (D))

;; Print a list by using destructuring with the loop keyword ON.
 (loop for (item) on '(1 2 3)
       do (print item))
@t{ |> } 1 
@t{ |> } 2 
@t{ |> } 3 
@result{}  NIL

@end example

@node The for-as-equals-then subclause, Examples of for-as-equals-then subclause, Examples of for-as-on-list subclause, Variable Initialization and Stepping Clauses
@subsubsection The for-as-equals-then subclause

In the @i{for-as-equals-then} subclause
the @t{for} 
or @t{as} construct 
initializes the variable @i{var} by setting it to the
  result of evaluating @i{form1} on the first iteration, then setting
  it to the result of evaluating @i{form2} on the second and
  subsequent iterations.  If @i{form2} is omitted, the construct
  uses @i{form1} on the second and
  subsequent iterations.  
The @i{loop keywords} {=} and @t{then} serve as valid prepositions
in this syntax. 
This construct does not provide any termination tests.

@node Examples of for-as-equals-then subclause, The for-as-across subclause, The for-as-equals-then subclause, Variable Initialization and Stepping Clauses
@subsubsection Examples of for-as-equals-then subclause

@example
;; Collect some numbers.
 (loop for item = 1 then (+ item 10)
       for iteration from 1 to 5
       collect item)
@result{}  (1 11 21 31 41)
@end example

@node The for-as-across subclause, Examples of for-as-across subclause, Examples of for-as-equals-then subclause, Variable Initialization and Stepping Clauses
@subsubsection The for-as-across subclause

  In the @i{for-as-across} subclause the @t{for} 
  or @t{as} construct binds the variable @i{var} to the value of
  each element in the array @i{vector}.
  The @i{loop keyword} @t{across} marks the array @i{vector}; @t{across}
  is used as a preposition in this syntax.
  Iteration stops when there are no more elements in the supplied
  @i{array} that can be referenced.
  Some implementations might recognize a @b{the} special form
  in the @i{vector} form to produce more efficient code.

@node Examples of for-as-across subclause, The for-as-hash subclause, The for-as-across subclause, Variable Initialization and Stepping Clauses
@subsubsection Examples of for-as-across subclause

@example
 (loop for char across (the simple-string (find-message channel))
       do (write-char char stream))
@end example

@node The for-as-hash subclause, The for-as-package subclause, Examples of for-as-across subclause, Variable Initialization and Stepping Clauses
@subsubsection The for-as-hash subclause

  In the @i{for-as-hash} subclause
  the @t{for} 
  or @t{as} construct 
  iterates over the elements, keys, and values of a @i{hash-table}.
  In this syntax, a compound preposition is used to designate access to a
  @i{hash table}.
  The variable @i{var} takes on the value of each hash key
  or hash value in the supplied @i{hash-table}. 
  The following @i{loop keywords} serve as valid prepositions within this syntax:

@table @asis

@item @t{being}  
The keyword @t{being} introduces either the Loop schema 
@t{hash-key} or @t{hash-value}.

@item @t{each}, @t{the}  
The @i{loop keyword} @t{each}
follows the @i{loop keyword} @t{being} when @t{hash-key} or
@t{hash-value} is used.  The @i{loop keyword} @t{the} is used with
@t{hash-keys} and @t{hash-values} only for ease of reading.
This agreement isn't required.

@item @t{hash-key}, @t{hash-keys}  
These @i{loop keywords} access each key entry of the @i{hash table}.  If 
the name @t{hash-value} is supplied in a @t{using} construct with one
of these Loop schemas, the iteration can optionally access the keyed
value. The order in which the keys are accessed is undefined; empty
slots in the @i{hash table} are ignored.  

@item @t{hash-value}, @t{hash-values}  
These @i{loop keywords} access each value entry of a 
@i{hash table}.  If 
the name @t{hash-key} is supplied in a @t{using} construct with one of
these Loop schemas, the iteration can optionally access the key that
corresponds to the value.  The order in which the keys are accessed is
undefined; empty slots in the @i{hash table} are ignored. 

@item @t{using}  
The @i{loop keyword} @t{using} introduces 
the optional key or the keyed value to
be accessed.  It allows access to the hash key if iteration is over
the hash values, and the hash value if 
iteration is over the hash keys.

@item @t{in}, @t{of}  
These loop prepositions introduce @i{hash-table}.

@end table

In effect 

@t{being}
@{{each} | @t{the}@}
@{{hash-value}  |
       @t{hash-values} |
       @t{hash-key}    |
       @t{hash-keys}@}
@{{in} | @t{of}@}

is a compound preposition.

Iteration stops when there are no more hash keys or hash values to be
referenced in the supplied @i{hash-table}.

@node The for-as-package subclause, Examples of for-as-package subclause, The for-as-hash subclause, Variable Initialization and Stepping Clauses
@subsubsection The for-as-package subclause

In the @i{for-as-package} subclause
the @t{for} 
or @t{as} construct                    
iterates over the @i{symbols} in a @i{package}.
In this syntax, a compound preposition is used to designate access to a
@i{package}.
The variable @i{var} takes on the value of each @i{symbol}
in the supplied @i{package}.  
 The following @i{loop keywords} serve as valid prepositions within this syntax:

@table @asis

@item @t{being}  
The keyword @t{being} introduces either the Loop schema 
@t{symbol}, @t{present-symbol},  or @t{external-symbol}.

@item @t{each}, @t{the}  
The @i{loop keyword} @t{each}
follows the @i{loop keyword} @t{being} when @t{symbol}, 
@t{present-symbol}, or @t{external-symbol} is used.  
The @i{loop keyword} @t{the} is used with @t{symbols}, 
@t{present-symbols}, and @t{external-symbols} only for ease of reading.
This agreement isn't required.

@item @t{present-symbol}, @t{present-symbols}  
These Loop schemas iterate over the @i{symbols} 

that are @i{present} in a @i{package}.

The @i{package} to be iterated over is supplied in the same way
that @i{package} arguments to @b{find-package} are supplied.  
If the @i{package} for the iteration is not supplied, 
the @i{current package} is used.  
If a @i{package} that does not exist is supplied, 
an error of @i{type} @b{package-error} is signaled.

@item @t{symbol}, @t{symbols}  
These Loop schemas iterate over @i{symbols} that are
@i{accessible} in a given @i{package}.  
The @i{package} to be iterated over is supplied in the same way
that @i{package} arguments to @b{find-package} are supplied.
If the @i{package} for the iteration is not supplied, 
the @i{current package} is used.
If a @i{package} that does not exist is supplied, 
an error of @i{type} @b{package-error} is signaled.

@item @t{external-symbol}, @t{external-symbols}  
These Loop schemas iterate over the @i{external symbols} of a @i{package}.
The @i{package} to be iterated over is supplied in the same way
that @i{package} arguments to @b{find-package} are supplied.
If the @i{package} for the iteration is not supplied, 
the @i{current package} is used.
If a @i{package} that does not exist is supplied, 
an error of @i{type} @b{package-error} is signaled.

@item @t{in}, @t{of}  
These loop prepositions introduce @i{package}.

@end table

In effect 

@t{being}
@{{each} | @t{the}@}
@{{symbol}          |
       @t{symbols}         |
       @t{present-symbol}  |
       @t{present-symbols} |
       @t{external-symbol} |
       @t{external-symbols}@}
@{{in} | @t{of}@}

is a compound preposition.

Iteration stops when there are no more @i{symbols} to be referenced 
in the supplied @i{package}.

@node Examples of for-as-package subclause, Local Variable Initializations, The for-as-package subclause, Variable Initialization and Stepping Clauses
@subsubsection Examples of for-as-package subclause

@example
 (let ((*package* (make-package "TEST-PACKAGE-1")))
   ;; For effect, intern some symbols
   (read-from-string "(THIS IS A TEST)")
   (export (intern "THIS"))
   (loop for x being each present-symbol of *package*
          do (print x)))
@t{ |> } A 
@t{ |> } TEST 
@t{ |> } THIS
@t{ |> } IS 
@result{}  NIL
@end example

@node Local Variable Initializations, Examples of WITH clause, Examples of for-as-package subclause, Variable Initialization and Stepping Clauses
@subsubsection Local Variable Initializations

When a @b{loop} @i{form} is executed, the local variables are bound and are
initialized to some value.  These local variables exist until @b{loop}
iteration terminates, at which point they cease to exist.  
Implicit variables are also established by iteration control clauses and the
@t{into} preposition of accumulation clauses.

The @t{with} construct initializes variables that are local to 
a loop.  The variables are initialized one time only.
If the optional @i{type-spec} argument is supplied for the variable 
@i{var}, but there is no related expression to be evaluated, @i{var}
is initialized to an appropriate default value for its @i{type}.
For example, for the types @b{t}, @b{number}, 
and @b{float},
the default values are @b{nil}, @t{0}, and @t{0.0} respectively.
The consequences are undefined if a 
@i{type-spec} argument is supplied for @i{var} if
the related expression returns a value that is not of the supplied 
@i{type}.
By default, the @t{with} construct initializes variables
@i{sequentially}; that is, one variable is assigned a value before the
next expression is evaluated.  However, by using the @i{loop keyword} @t{and}
to join several @t{with} clauses, 
initializations can be forced to occur in @i{parallel}; that 
is, all of the supplied
@i{forms} are evaluated, and the results are bound to the respective
variables simultaneously.

@i{Sequential} @i{binding} is used when it is desireable for the initialization of
some variables to depend on the values of previously bound variables.
For example, suppose the variables @t{a}, @t{b}, and @t{c} are to be bound in sequence:

@example
 (loop with a = 1 
       with b = (+ a 2) 
       with c = (+ b 3)
       return (list a b c))
@result{}  (1 3 6)
@end example

The execution of the above @b{loop} is equivalent to the execution of
the following code:

@example
 (block nil
   (let* ((a 1)
          (b (+ a 2))
          (c (+ b 3)))
     (tagbody
         (next-loop (return (list a b c))
                    (go next-loop)
                    end-loop))))
@end example

If the values of previously bound variables are not needed
for the initialization of other local variables, an 
@t{and} clause can be used to 
specify that the bindings are to occur in @i{parallel}:

@example
 (loop with a = 1 
       and b = 2 
       and c = 3
       return (list a b c))
@result{}  (1 2 3)
@end example

The execution of the above loop is equivalent to the execution of
the following code:

@example
 (block nil
   (let ((a 1)
         (b 2)
         (c 3))
     (tagbody
         (next-loop (return (list a b c))
                    (go next-loop)
                    end-loop))))
@end example

@node Examples of WITH clause,  , Local Variable Initializations, Variable Initialization and Stepping Clauses
@subsubsection Examples of WITH clause

@example
;; These bindings occur in sequence.
 (loop with a = 1 
       with b = (+ a 2) 
       with c = (+ b 3)
       return (list a b c))
@result{}  (1 3 6)

;; These bindings occur in parallel.
 (setq a 5 b 10)
@result{}  10
 (loop with a = 1
       and b = (+ a 2)
       and c = (+ b 3)
       return (list a b c))
@result{}  (1 7 13)

;; This example shows a shorthand way to declare local variables 
;; that are of different types.
 (loop with (a b c) of-type (float integer float)
       return (format nil "~A ~A ~A" a b c))
@result{}  "0.0 0 0.0"

;; This example shows a shorthand way to declare local variables 
;; that are the same type.
 (loop with (a b c) of-type float 
       return (format nil "~A ~A ~A" a b c))
@result{}  "0.0 0.0 0.0"
@end example

@node Value Accumulation Clauses, Termination Test Clauses, Variable Initialization and Stepping Clauses, The LOOP Facility
@subsection Value Accumulation Clauses

The constructs @t{collect}, @t{collecting},
@t{append}, @t{appending},
@t{nconc}, @t{nconcing},
@t{count}, @t{counting},
@t{maximize}, @t{maximizing},
@t{minimize}, @t{minimizing},
@t{sum}, and @t{summing},
allow values to be accumulated in a @b{loop}.

The constructs @t{collect}, 
@t{collecting}, @t{append}, @t{appending}, 
@t{nconc}, and @t{nconcing}, 
designate clauses that
accumulate values in @i{lists} and return them.
The constructs @t{count}, @t{counting}, 
@t{maximize}, @t{maximizing}, @t{minimize}, @t{minimizing},
@t{sum}, and @t{summing} designate clauses that accumulate and
return numerical values.

During each iteration,  the constructs
@t{collect} and @t{collecting}
collect the value of the supplied
@i{form} into a @i{list}. 
When iteration terminates, the @i{list} is returned.
The argument @i{var} is 
set to the @i{list} 
of collected values; if @i{var} is supplied, the @b{loop}
does not return the final @i{list} automatically.  If 
@i{var} is not
supplied, it is equivalent to supplying an internal name for
@i{var} and returning its value in a @t{finally} clause.
The @i{var} argument
is bound as if by the construct @t{with}.
No mechanism is provided for declaring the @i{type} of @i{var};
it must be of @i{type} @b{list}.

The constructs @t{append}, @t{appending}, 
@t{nconc}, and  @t{nconcing}
are similar to @t{collect} except that the
values of the supplied @i{form} must be @i{lists}.  

@table @asis

@item @t{*}  
The @t{append} keyword causes its @i{list} values to be concatenated 
into a single @i{list}, as if 
they were arguments to the @i{function} @b{append}.

@item @t{*}  
The @t{nconc} keyword causes its @i{list} values to be concatenated
into a single @i{list},
as if they were arguments to the @i{function} @b{nconc}.  
@end table

The argument @i{var} is 
set to the @i{list} of 
concatenated values; if @i{var} is supplied, 
@b{loop}
does not return the final @i{list} automatically.  
The @i{var} argument
is bound as if by the construct @t{with}.
 A @i{type} cannot be supplied for @i{var}; 
it must be of @i{type} @b{list}.
 The construct @t{nconc} 
destructively modifies its argument @i{lists}.

The @t{count} construct counts the number of times 
that the supplied @i{form} returns @i{true}.
The argument @i{var} accumulates the number of occurrences; 
if @i{var} is supplied, 
@b{loop} does not return the final count automatically.
The @i{var} argument is bound as if by the construct @t{with} 
to a zero of the appropriate type.
Subsequent values (including any necessary coercions) 
are computed as if by the function @b{1+}.
If @t{into} @i{var} is used,
a @i{type} can be supplied  for @i{var} with the @i{type-spec} argument;
the consequences are unspecified if a nonnumeric @i{type} is supplied.           
If there is no @t{into} variable,
the optional @i{type-spec} argument
applies to the internal variable that is keeping the count.  
The default @i{type} is @i{implementation-dependent}; 
but it must be
a @i{supertype} of @i{type} @b{fixnum}.

The @t{maximize} and 
@t{minimize} 
constructs compare
the value of the supplied @i{form} obtained during the first 
iteration with values obtained in successive iterations.
The maximum (for @t{maximize}) or minimum (for @t{minimize}) 
value encountered is determined 
(as if by the @i{function} @b{max} for @t{maximize} and
 as if by the @i{function} @b{min} for @t{minimize})
and returned.
If the @t{maximize} or @t{minimize} clause
is never executed, the accumulated value is unspecified.
The argument @i{var} accumulates the maximum or minimum value;
if @i{var} is supplied,
@b{loop} does not return the maximum or minimum automatically.
The @i{var} argument is bound as if by the construct @t{with}.
If @t{into} @i{var} is used,
a @i{type} can be supplied for @i{var} with the @i{type-spec} argument;
the consequences are unspecified if a nonnumeric @i{type} is supplied.           
If there is no @t{into} variable,
the optional @i{type-spec} argument applies to the internal variable 
that is keeping the maximum or minimum value.  
The default @i{type} 
is @i{implementation-dependent}; but it
must be a @i{supertype} of @i{type} @b{real}.

The @t{sum} construct forms a cumulative sum 
of the successive @i{primary values} of the supplied @i{form}
at each iteration.
The argument @i{var} is used to accumulate the sum;
if @i{var} is supplied,
@b{loop} does not return the final sum automatically.
The @i{var} argument is bound as if by the construct @t{with}
to a zero of the appropriate type.
Subsequent values (including any necessary coercions) are computed as if by the @i{function} @b{+}.
If @t{into} @i{var} is used,
a @i{type} can be supplied for @i{var} with the @i{type-spec} argument;
the consequences are unspecified if a nonnumeric @i{type} is supplied.           
If there is no @t{into} variable,
the optional @i{type-spec} argument applies to the internal variable
that is keeping the sum.
The default @i{type}
is @i{implementation-dependent}; but it
must be a @i{supertype} of @i{type} @b{number}.

If @t{into} is used,
the construct does not provide a default return value;
however, the variable is available
for use in any @t{finally} clause.  

Certain kinds of accumulation clauses can be combined in a @b{loop} 
if their destination is the same 
(the result of @b{loop} or an @t{into} @i{var}) 
because they are considered to accumulate conceptually compatible quantities.
In particular, 
any elements of following sets of accumulation clauses can be mixed
with other elements of the same set for the same destination 
in a @b{loop} @i{form}:

@table @asis

@item @t{*}  
@t{collect}, @t{append}, @t{nconc}

@item @t{*}  
@t{sum}, @t{count}

@item @t{*}  
@t{maximize}, @t{minimize}
@end table

@example
;; Collect every name and the kids in one list by using 
;; COLLECT and APPEND.
 (loop for name in '(fred sue alice joe june)
       for kids in '((bob ken) () () (kris sunshine) ())
       collect name
       append kids)
@result{}  (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)
@end example

Any two
clauses that do not accumulate the same @i{type} of 
@i{object} 
can coexist in a @b{loop} only 
if each clause accumulates its values into 
a different
@i{variable}.  

@menu
* Examples of COLLECT clause::	
* Examples of APPEND and NCONC clauses::  
* Examples of COUNT clause::	
* Examples of MAXIMIZE and MINIMIZE clauses::  
* Examples of SUM clause::	
@end menu

@node Examples of COLLECT clause, Examples of APPEND and NCONC clauses, Value Accumulation Clauses, Value Accumulation Clauses
@subsubsection Examples of COLLECT clause

@example
;; Collect all the symbols in a list.
 (loop for i in '(bird 3 4 turtle (1 . 4) horse cat)
       when (symbolp i) collect i)
@result{}  (BIRD TURTLE HORSE CAT)

;; Collect and return odd numbers.
 (loop for i from 1 to 10
       if (oddp i) collect i)
@result{}  (1 3 5 7 9)

;; Collect items into local variable, but don't return them.
 (loop for i in '(a b c d) by #'cddr
       collect i into my-list
       finally (print my-list))
@t{ |> } (A C) 
@result{}  NIL
@end example

@node Examples of APPEND and NCONC clauses, Examples of COUNT clause, Examples of COLLECT clause, Value Accumulation Clauses
@subsubsection Examples of APPEND and NCONC clauses

@example
;; Use APPEND to concatenate some sublists.
  (loop for x in '((a) (b) ((c)))
        append x)
@result{}  (A B (C))

;; NCONC some sublists together.  Note that only lists made by the
;; call to LIST are modified.
  (loop for i upfrom 0 
        as x in '(a b (c))
        nconc (if (evenp i) (list x) nil))
@result{}  (A (C))
@end example

@node Examples of COUNT clause, Examples of MAXIMIZE and MINIMIZE clauses, Examples of APPEND and NCONC clauses, Value Accumulation Clauses
@subsubsection Examples of COUNT clause

@example
 (loop for i in '(a b nil c nil d e)
       count i)
@result{}  5
@end example

@node Examples of MAXIMIZE and MINIMIZE clauses, Examples of SUM clause, Examples of COUNT clause, Value Accumulation Clauses
@subsubsection Examples of MAXIMIZE and MINIMIZE clauses

@example
 (loop for i in '(2 1 5 3 4)
       maximize i)
@result{}  5
 (loop for i in '(2 1 5 3 4)
       minimize i)
@result{}  1

;; In this example, FIXNUM applies to the internal variable that holds
;; the maximum value.
 (setq series '(1.2 4.3 5.7))
@result{}  (1.2 4.3 5.7)
 (loop for v in series 
       maximize (round v) of-type fixnum)
@result{}  6

;; In this example, FIXNUM applies to the variable RESULT.
 (loop for v of-type float in series
       minimize (round v) into result of-type fixnum
       finally (return result))
@result{}  1
@end example

@node Examples of SUM clause,  , Examples of MAXIMIZE and MINIMIZE clauses, Value Accumulation Clauses
@subsubsection Examples of SUM clause

@example
 (loop for i of-type fixnum in '(1 2 3 4 5)
       sum i)
@result{}  15
 (setq series '(1.2 4.3 5.7))
@result{}  (1.2 4.3 5.7)
 (loop for v in series 
       sum (* 2.0 v))
@result{}  22.4
@end example

@node Termination Test Clauses, Unconditional Execution Clauses, Value Accumulation Clauses, The LOOP Facility
@subsection Termination Test Clauses

The @t{repeat} construct causes iteration to terminate after a
specified number of times.
 The loop body executes @i{n} times, where @i{n} is the value 
of the expression @i{form}.  The @i{form} argument is evaluated one time
in the loop prologue.  If the expression evaluates to 0 or 
to a negative @i{number}, the loop body is not evaluated.

The constructs @t{always},
@t{never},
@t{thereis},
@t{while},
@t{until},
and the macro @b{loop-finish}
allow conditional termination of iteration within
a @b{loop}.

The constructs @t{always}, @t{never}, and @t{thereis} provide
specific values to be returned when a @b{loop} terminates.  
Using @t{always}, @t{never}, or @t{thereis} in a loop with 
value accumulation clauses that are not @t{into} causes 
an error of @i{type} @b{program-error} to be signaled (at macro expansion time).
Since @t{always}, @t{never}, and @t{thereis}
use 

the @b{return-from} @i{special operator}

to terminate iteration,
any @t{finally} clause that is supplied is not evaluated
when exit occurs due to any of these constructs.
In all other respects these
constructs behave like the @t{while} and @t{until} constructs.

  The @t{always} construct takes one @i{form} and terminates the 
@b{loop}
  if the @i{form} ever evaluates to @b{nil}; in this case, it returns
  @b{nil}.  Otherwise, it provides a default return value of @b{t}.
If the value of the supplied @i{form} is never @b{nil}, some other construct
can terminate the iteration.

The @t{never} construct terminates iteration the first time that
the value of the supplied @i{form} is @i{non-nil}; the @b{loop} returns 
@b{nil}.                                         
If the value of the supplied @i{form} is always  @b{nil}, some other 
construct can terminate the iteration.  
Unless some other clause contributes 
a return value, the default value returned is @b{t}.

The @t{thereis} construct terminates iteration the first time that the
value of the supplied @i{form} is @i{non-nil}; the @b{loop} returns the
value of the supplied @i{form}.
If the value of the supplied @i{form} 
is always  @b{nil}, some other
construct can terminate the iteration.  Unless some other clause contributes a 
return value, the default value returned is @b{nil}.

There are two differences between the @t{thereis} and @t{until}
constructs: 

@table @asis

@item @t{*}  
The @t{until} construct does not return a value or 
@b{nil} based on the value of the supplied @i{form}.

@item @t{*}  
The @t{until} construct executes 
any @t{finally} clause.
Since @t{thereis} uses

the @b{return-from} @i{special operator}

to terminate iteration,
any @t{finally} clause that is supplied is not evaluated
when exit occurs due to @t{thereis}.

@end table

The @t{while} construct allows iteration to continue until the 
supplied @i{form} 
evaluates to @i{false}.  The supplied @i{form} 
is reevaluated at the location of the @t{while} clause.

The @t{until} construct is equivalent to 
@t{while (not @i{form})\dots}.  If the value of the
supplied @i{form} is @i{non-nil}, iteration terminates.

Termination-test control constructs can be used anywhere within the loop body.
The termination tests are used in the order in which they appear.
If an @t{until} or @t{while} clause causes
termination, any clauses that precede it in the source
are still evaluated.  
If the @t{until} and @t{while} constructs cause termination,
control is passed to the loop epilogue, where any @t{finally}
clauses will be executed.  

There are two differences between the @t{never} and @t{until}
constructs: 

@table @asis

@item @t{*}  
The @t{until} construct does not return 
@b{t} or @b{nil} based on the value of the supplied @i{form}.

@item @t{*}  
The @t{until} construct 
does not bypass any @t{finally} clauses.
Since @t{never} uses 

the @b{return-from} @i{special operator}

to terminate iteration,
any @t{finally} clause that is supplied is not evaluated
when exit occurs due to @t{never}. 
@end table

In most cases it is not necessary to use @b{loop-finish}
because other loop control clauses terminate the @b{loop}.  
The macro @b{loop-finish} is used to provide a normal exit
from a nested conditional inside a @b{loop}.
Since @b{loop-finish} transfers control to the loop epilogue,
using @b{loop-finish} within a @t{finally} expression can cause
infinite looping.

@menu
* Examples of REPEAT clause::	
* Examples of ALWAYS::		
* Examples of WHILE and UNTIL clauses::	 
@end menu

@node Examples of REPEAT clause, Examples of ALWAYS, Termination Test Clauses, Termination Test Clauses
@subsubsection Examples of REPEAT clause

@example
 (loop repeat 3
       do (format t "~&What I say three times is true.~
@t{ |> } What I say three times is true.
@t{ |> } What I say three times is true.
@t{ |> } What I say three times is true.
@result{}  NIL
 (loop repeat -15
   do (format t "What you see is what you expect~
@result{}  NIL
@end example

@node Examples of ALWAYS, Examples of WHILE and UNTIL clauses, Examples of REPEAT clause, Termination Test Clauses
@subsubsection Examples of ALWAYS, NEVER, and THEREIS clauses

@example
;; Make sure I is always less than 11 (two ways).
;; The FOR construct terminates these loops.
 (loop for i from 0 to 10
       always (< i 11))
@result{}  T
 (loop for i from 0 to 10
       never (> i 11))
@result{}  T

;; If I exceeds 10 return I; otherwise, return NIL.
;; The THEREIS construct terminates this loop.
 (loop for i from 0
       thereis (when (> i 10) i) )
@result{}  11

;;; The FINALLY clause is not evaluated in these examples.
 (loop for i from 0 to 10
       always (< i 9)
       finally (print "you won't see this"))
@result{}  NIL
 (loop never t
       finally (print "you won't see this"))
@result{}  NIL
 (loop thereis "Here is my value"
       finally (print "you won't see this"))
@result{}  "Here is my value"

;; The FOR construct terminates this loop, so the FINALLY clause 
;; is evaluated.
 (loop for i from 1 to 10
       thereis (> i 11)
       finally (prin1 'got-here))
@t{ |> } GOT-HERE
@result{}  NIL

;; If this code could be used to find a counterexample to Fermat's
;; last theorem, it would still not return the value of the
;; counterexample because all of the THEREIS clauses in this example
;; only return T.  But if Fermat is right, that won't matter
;; because this won't terminate.

 (loop for z upfrom 2
       thereis
         (loop for n upfrom 3 below (log z 2)
               thereis
                 (loop for x below z
                       thereis
                         (loop for y below z
                               thereis (= (+ (expt x n) (expt y n))
                                          (expt z n))))))
@end example

@node Examples of WHILE and UNTIL clauses,  , Examples of ALWAYS, Termination Test Clauses
@subsubsection Examples of WHILE and UNTIL clauses

@example
 (loop while (hungry-p) do (eat))

;; UNTIL NOT is equivalent to WHILE.
 (loop until (not (hungry-p)) do (eat))

;; Collect the length and the items of STACK.
 (let ((stack '(a b c d e f)))
   (loop for item = (length stack) then (pop stack)
         collect item
         while stack))
@result{}  (6 A B C D E F)

;; Use WHILE to terminate a loop that otherwise wouldn't terminate.
;; Note that WHILE occurs after the WHEN.
 (loop for i fixnum from 3
       when (oddp i) collect i
       while (< i 5))
@result{}  (3 5)
@end example

@node Unconditional Execution Clauses, Conditional Execution Clauses, Termination Test Clauses, The LOOP Facility
@subsection Unconditional Execution Clauses

The @t{do} and @t{doing} constructs 
evaluate the 
supplied @i{forms} 
wherever they occur in the expanded form of @b{loop}.
 The @i{form} argument can be any @i{compound form}.
Each @i{form} is evaluated in every iteration.
Because every loop clause must begin with a @i{loop keyword}, 
the keyword @t{do} is used when no control action other than execution is 
required.

 The @t{return} construct takes one @i{form}. 
 Any @i{values} returned by the @i{form} 
 are immediately returned by the @b{loop} form.
  It is equivalent to the clause
  @t{do (return-from @i{block-name} @i{value})},
  where @i{block-name} is the name specified in a @t{named}
  clause, or @b{nil} if there is no @t{named} clause.

@menu
* Examples of unconditional execution::	 
@end menu

@node Examples of unconditional execution,  , Unconditional Execution Clauses, Unconditional Execution Clauses
@subsubsection Examples of unconditional execution

@example
;; Print numbers and their squares.
;; The DO construct applies to multiple forms.
 (loop for i from 1 to 3
       do (print i)
          (print (* i i)))
@t{ |> } 1 
@t{ |> } 1 
@t{ |> } 2 
@t{ |> } 4 
@t{ |> } 3 
@t{ |> } 9 
@result{}  NIL

@end example

@node Conditional Execution Clauses, Miscellaneous Clauses, Unconditional Execution Clauses, The LOOP Facility
@subsection Conditional Execution Clauses

The @t{if}, @t{when}, and @t{unless} constructs
establish conditional control in a @b{loop}. If the test
passes, the succeeding loop clause is executed. If the test does
not pass, the succeeding clause is skipped, and program control
moves to the clause that follows the @i{loop keyword}
@t{else}. If the test does not pass and no @t{else}
clause is supplied, control is transferred to the clause or
construct following the entire conditional clause.

If conditional clauses are nested, each @t{else} is paired
with the closest preceding conditional clause that has no
associated @t{else} or @t{end}. 

In the @t{if} and @t{when} clauses, which are
synonymous, the test passes if the value of @i{form} is
@i{true}.

In the @t{unless} clause,
the test passes if the value of @i{form} is @i{false}.

Clauses that follow the test expression can be grouped by using 
the @i{loop keyword} @t{and} to produce a conditional block consisting of 
a compound clause.

The @i{loop keyword} @t{it} can be used to refer to the result
of the test expression in a clause.
Use the @i{loop keyword} @t{it} in place of the form in a
@t{return} clause or an @i{accumulation} clause that is
inside a conditional execution clause.
If multiple clauses are connected with @t{and}, the @t{it}
construct must be in the first clause in the block.

The optional @i{loop keyword} @t{end} marks the end of the clause.  If this
keyword is not supplied, the next @i{loop keyword} marks the end.  The construct
@t{end} can be used to distinguish the scoping of compound clauses.

@menu
* Examples of WHEN clause::	
@end menu

@node Examples of WHEN clause,  , Conditional Execution Clauses, Conditional Execution Clauses
@subsubsection Examples of WHEN clause

@example
;; Signal an exceptional condition.
 (loop for item in '(1 2 3 a 4 5)
       when (not (numberp item))
        return (cerror "enter new value" "non-numeric value: ~s" item))
Error: non-numeric value: A

;; The previous example is equivalent to the following one.
 (loop for item in '(1 2 3 a 4 5)
       when (not (numberp item))
        do (return 
            (cerror "Enter new value" "non-numeric value: ~s" item)))
Error: non-numeric value: A
@end example

@example
;; This example parses a simple printed string representation from 
;; BUFFER (which is itself a string) and returns the index of the
;; closing double-quote character.
 (let ((buffer "\"a\" \"b\""))
   (loop initially (unless (char= (char buffer 0) #\")
                     (loop-finish))
         for i of-type fixnum from 1 below (length (the string buffer))
         when (char= (char buffer i) #\")
          return i))
@result{}  2

;; The collected value is returned.
 (loop for i from 1 to 10
       when (> i 5)
         collect i
       finally (prin1 'got-here))
@t{ |> } GOT-HERE
@result{}  (6 7 8 9 10) 

;; Return both the count of collected numbers and the numbers.
 (loop for i from 1 to 10
       when (> i 5)
         collect i into number-list
         and count i into number-count
       finally (return (values number-count number-list)))
@result{}  5, (6 7 8 9 10)
@end example

@node Miscellaneous Clauses, Examples of Miscellaneous Loop Features, Conditional Execution Clauses, The LOOP Facility
@subsection Miscellaneous Clauses

@menu
* Control Transfer Clauses::	
* Examples of NAMED clause::	
* Initial and Final Execution::	 
@end menu

@node Control Transfer Clauses, Examples of NAMED clause, Miscellaneous Clauses, Miscellaneous Clauses
@subsubsection Control Transfer Clauses

The @t{named} construct
establishes a name for an @i{implicit block} surrounding the 

entire

@b{loop} so that the @b{return-from} @i{special operator} can be used to return 
values from or to exit @b{loop}.   
Only one name per @b{loop} @i{form} can be assigned.
If used, the @t{named} construct must be the first clause in the loop expression.

 The @t{return} construct takes one @i{form}. 
 Any @i{values} returned by the @i{form} 
 are immediately returned by the @b{loop} form.

This construct is similar to the @b{return-from} @i{special operator} and the @b{return} @i{macro}.
The @t{return} construct 

does not execute any @t{finally} clause that 

the @b{loop} @i{form}

is given.

@node Examples of NAMED clause, Initial and Final Execution, Control Transfer Clauses, Miscellaneous Clauses
@subsubsection Examples of NAMED clause

@example
;; Just name and return.
 (loop named max
       for i from 1 to 10
       do (print i)
       do (return-from max 'done))
@t{ |> } 1 
@result{}  DONE
@end example

@node Initial and Final Execution,  , Examples of NAMED clause, Miscellaneous Clauses
@subsubsection Initial and Final Execution

The @t{initially} and @t{finally} constructs
evaluate forms that occur before and after the loop body.

The @t{initially} construct causes the supplied
@i{compound-forms}
to be evaluated
in the loop prologue, which precedes all loop code except for 
initial settings supplied by constructs @t{with}, @t{for}, or
@t{as}.
  The code for any @t{initially} clauses is 
executed
in the order in which the clauses appeared in
  the @b{loop}.  

The @t{finally} construct causes the supplied
@i{compound-forms}
to be evaluated
in the loop epilogue after normal iteration terminates.
  The code for any @t{finally} clauses is 
executed
 in the order in which the clauses appeared in
  the @b{loop}.  The collected code is executed once in the loop epilogue
  before any implicit values are returned from the accumulation clauses.
An explicit transfer of control (@i{e.g.}, by @b{return}, @b{go}, or @b{throw})
from the loop body, however, will exit the 
  @b{loop} without executing the epilogue code.

Clauses such as @t{return}, @t{always}, @t{never}, and 
@t{thereis}
can bypass the @t{finally} clause.

@b{return} (or @b{return-from}, if the @t{named} option was supplied)

can be used after @t{finally} to return values from a @b{loop}.  

Such an @i{explicit return}

inside the
@t{finally} clause takes precedence over returning the accumulation
from clauses supplied by such keywords as @t{collect}, @t{nconc}, 
@t{append}, @t{sum}, @t{count}, @t{maximize}, and 
@t{minimize}; 
the accumulation values for these preempted clauses are not returned by 
@b{loop} if @b{return} or @b{return-from} is used.

@node Examples of Miscellaneous Loop Features, Notes about Loop, Miscellaneous Clauses, The LOOP Facility
@subsection Examples of Miscellaneous Loop Features

@example
 (let ((i 0))                     ; no loop keywords are used
    (loop (incf i) (if (= i 3) (return i)))) @result{}  3
 (let ((i 0)(j 0))
    (tagbody
      (loop (incf j 3) (incf i) (if (= i 3) (go exit)))
      exit)
    j) @result{}  9
@end example

In the following example, the variable @t{x} is stepped
before @t{y} is stepped; thus, the value of @t{y}
reflects the updated value of @t{x}:

@example
 (loop for x from 1 to 10 
       for y = nil then x 
       collect (list x y))
@result{}  ((1 NIL) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) (10 10))
@end example

In this example, @t{x} and @t{y} are stepped in @i{parallel}:

@example
 (loop for x from 1 to 10 
       and y = nil then x 
       collect (list x y))
@result{}  ((1 NIL) (2 1) (3 2) (4 3) (5 4) (6 5) (7 6) (8 7) (9 8) (10 9))
@end example

@menu
* Examples of clause grouping::	 
@end menu

@node Examples of clause grouping,  , Examples of Miscellaneous Loop Features, Examples of Miscellaneous Loop Features
@subsubsection Examples of clause grouping

@example
;; Group conditional clauses.
 (loop for i in '(1 324 2345 323 2 4 235 252)
       when (oddp i)
         do (print i)
         and collect i into odd-numbers
         and do (terpri)
       else                              ; I is even.
         collect i into even-numbers
       finally
         (return (values odd-numbers even-numbers)))
@t{ |> } 1 
@t{ |> } 
@t{ |> } 2345 
@t{ |> } 
@t{ |> } 323 
@t{ |> } 
@t{ |> } 235 
@result{}  (1 2345 323 235), (324 2 4 252)

;; Collect numbers larger than 3.
 (loop for i in '(1 2 3 4 5 6)
       when (and (> i 3) i)
       collect it)                      ; IT refers to (and (> i 3) i).
@result{}  (4 5 6)

;; Find a number in a list.
 (loop for i in '(1 2 3 4 5 6)
       when (and (> i 3) i)
       return it)
@result{}  4

;; The above example is similar to the following one.
 (loop for i in '(1 2 3 4 5 6)
       thereis (and (> i 3) i))
@result{}  4

;; Nest conditional clauses.
 (let ((list '(0 3.0 apple 4 5 9.8 orange banana)))
   (loop for i in list
         when (numberp i)
           when (floatp i)
             collect i into float-numbers
           else                                  ; Not (floatp i)
             collect i into other-numbers
         else                                    ; Not (numberp i)
           when (symbolp i) 
             collect i into symbol-list
           else                                  ; Not (symbolp i)
             do (error "found a funny value in list ~S, value ~S~
         finally (return (values float-numbers other-numbers symbol-list))))
@result{}  (3.0 9.8), (0 4 5), (APPLE ORANGE BANANA)

;; Without the END preposition, the last AND would apply to the
;; inner IF rather than the outer one.
 (loop for x from 0 to 3 
       do (print x)
       if (zerop (mod x 2))
         do (princ " a")
          and if (zerop (floor x 2))
                do (princ " b")
                end
          and do (princ " c"))
@t{ |> } 0  a b c
@t{ |> } 1 
@t{ |> } 2  a c
@t{ |> } 3 
@result{}  NIL
@end example

@node Notes about Loop,  , Examples of Miscellaneous Loop Features, The LOOP Facility
@subsection Notes about Loop

@i{Types} can be supplied for loop variables.  
It is not necessary to supply a @i{type} for any variable,
but supplying the @i{type} 
can ensure that the variable has a correctly typed initial value,
and it can also enable compiler optimizations 
(depending on the @i{implementation}).

The clause @t{repeat} @i{n} ... is roughly equivalent to a clause such as 

@example
 (loop for @i{internal-variable} downfrom (- @i{n} 1) to 0 ...)
@end example

but in some @i{implementations},
the @t{repeat} construct might be more efficient.

Within the executable parts of the loop clauses and around the entire
@b{loop} form, variables can be bound by using @b{let}.

Use caution when using a variable named @t{IT} (in any @i{package})
in connection with @b{loop}, since @t{it} is a @i{loop keyword} 
that can be used in place of a @i{form} in certain contexts.

There is

no

@i{standardized}
mechanism for users to add
extensions to @b{loop}.

@c end of including concept-loop

@node Iteration Dictionary,  , The LOOP Facility, Iteration
@section Iteration Dictionary

@c including dict-iteration

@menu
* do::				
* dotimes::			
* dolist::			
* loop::			
* loop-finish::			
@end menu

@node do, dotimes, Iteration Dictionary, Iteration Dictionary
@subsection do, do*                                                             [Macro]

@code{do}  @i{@r{(}@{@i{var} | @r{(}@i{var} @r{[}init-form @r{[}step-form@r{]}@r{]}@r{)}@}{*}@r{)}
	 	   	 @r{(}end-test-form @{@i{result-form}@}{*}@r{)}
	 	   	 @{@i{declaration}@}{*} @{tag | statement@}{*}}@*
   @result{}  @i{@{@i{result}@}{*}}

@code{do*}  @i{@r{(}@{@i{var} | @r{(}@i{var} @r{[}init-form @r{[}step-form@r{]}@r{]}@r{)}@}{*}@r{)}
	 	   	 @r{(}end-test-form {@{@i{result-form}@}{*}}@r{)}
	 	   	 @{@i{declaration}@}{*} @{tag | statement@}{*}}@*
   @result{}  @i{@{@i{result}@}{*}}

@subsubheading  Arguments and Values::

@i{var}---a @i{symbol}.

@i{init-form}---a @i{form}.

@i{step-form}---a @i{form}.

@i{end-test-form}---a @i{form}.

@i{result-forms}---an @i{implicit progn}.

@i{declaration}---a @b{declare} @i{expression}; not evaluated.

@i{tag}---a @i{go tag}; not evaluated.

@i{statement}---a @i{compound form}; evaluated as described below.

@i{results}---if a @b{return} or @b{return-from} form is executed,
 the @i{values} passed from that @i{form};
 otherwise, the @i{values} returned by the @i{result-forms}.

@subsubheading  Description::

@b{do} iterates over a group of @i{statements}
while a test condition holds.
@b{do} accepts an arbitrary number of iteration @i{vars}
which are bound within the iteration and stepped in parallel.
An initial value may be supplied for each iteration variable by use of
an @i{init-form}.
@i{Step-forms} may be used to specify how the
@i{vars} should be updated on succeeding iterations through the loop.  
@i{Step-forms} may be used both to generate successive
values or to accumulate results.
If the @i{end-test-form} condition 
is met prior to an execution of the body, the iteration terminates.
@i{Tags} label @i{statements}.

@b{do*} is exactly like @b{do} 
except that the @i{bindings} and steppings
of the @i{vars} are performed sequentially rather than in parallel.

Before the first iteration, all the @i{init-forms} are evaluated, and
each @i{var} is bound to the value of its respective @i{init-form},
if supplied.
This is a @i{binding}, not an assignment; when the loop terminates,
the old values of those variables will be restored.
For @b{do}, all 
of the @i{init-forms} are evaluated before any @i{var}
is bound. The
@i{init-forms} can refer to the @i{bindings} of the @i{vars}
visible before beginning execution of
@b{do}.
For @b{do*}, the first @i{init-form} is evaluated, then the first
@i{var} is bound to that value, then the second @i{init-form} 
is evaluated, then the second @i{var} is bound, and so on;
in general, the @i{k}th @i{init-form} can refer to the new binding 
of the @i{j}th @i{var} if @i{j} < @i{k}, and otherwise to the 
old binding of the @i{j}th @i{var}.

At the beginning of each iteration, after processing the variables,
the @i{end-test-form} is evaluated.  If the result is
@i{false}, execution proceeds with the body of the @b{do} 
(or @b{do*}) form.
If the result is @i{true}, the @i{result-forms} are evaluated in order
as an @i{implicit progn},
and then @b{do} or @b{do*} returns.  

At the beginning of each iteration other than the first, 
@i{vars} are updated as follows.  All the @i{step-forms}, if supplied,
are evaluated, from left to right, and the resulting values are
assigned to the respective @i{vars}.
Any @i{var} that has no associated @i{step-form} is not assigned to.
For @b{do}, all the @i{step-forms} are evaluated before any @i{var}
is updated; the assignment of values to @i{vars} is done in parallel,
as if by @b{psetq}.
Because all of the @i{step-forms} are evaluated before any
of the @i{vars} are altered, a @i{step-form} when evaluated always has
access to the old values of all the @i{vars}, even if other @i{step-forms}
precede it.
For @b{do*}, the first @i{step-form} is evaluated, then the
value is assigned to the first @i{var}, then the second @i{step-form} 
is evaluated, then the value is assigned to the second @i{var}, and so on;
the assignment of values to variables is done sequentially,
as if by @b{setq}.
For either @b{do} or @b{do*},
after the @i{vars} have been updated,
the @i{end-test-form} 
is evaluated as described above, and the iteration continues.

The remainder of the @b{do} (or @b{do*}) form constitutes 
an @i{implicit tagbody}.
@i{Tags} may appear within the body of a @b{do} loop
for use by @b{go} statements appearing in the body (but such @b{go}
statements may not appear in the variable specifiers, the @i{end-test-form},
or the @i{result-forms}).
When the end of a @b{do} body is reached, the next iteration cycle
(beginning with the evaluation of @i{step-forms}) occurs.

An @i{implicit block} named @b{nil} surrounds the entire @b{do} 
(or @b{do*}) form.
A @b{return} statement may be used at any point to exit the loop
immediately.

@i{Init-form}  is an
initial value for the @i{var} with which it is associated.
If @i{init-form} is omitted, the initial value of @i{var} is @b{nil}.
If a @i{declaration} is supplied for a @i{var}, @i{init-form} 
must be consistent with the @i{declaration}.

@i{Declarations} can appear at the beginning of a @b{do} 
(or @b{do*}) body.
They apply to code in the @b{do} (or @b{do*}) body, 
to the @i{bindings} of the @b{do} (or @b{do*}) 
@i{vars}, 
to the @i{step-forms},
to the @i{end-test-form}, and to the @i{result-forms}.

@subsubheading  Examples::
@example
 (do ((temp-one 1 (1+ temp-one))
       (temp-two 0 (1- temp-two)))
      ((> (- temp-one temp-two) 5) temp-one)) @result{}  4

 (do ((temp-one 1 (1+ temp-one))
       (temp-two 0 (1+ temp-one)))     
      ((= 3 temp-two) temp-one)) @result{}  3

 (do* ((temp-one 1 (1+ temp-one))
        (temp-two 0 (1+ temp-one)))
       ((= 3 temp-two) temp-one)) @result{}  2                     

 (do ((j 0 (+ j 1)))
     (nil)                       ;Do forever.
   (format t "~
   (let ((item (read)))
     (if (null item) (return)   ;Process items until NIL seen.
         (format t "~&Output ~D: ~S" j item))))
@t{ |> } Input 0: @b{|>>}@t{banana}@b{<<|}
@t{ |> } Output 0: BANANA
@t{ |> } Input 1: @b{|>>}@t{(57 boxes)}@b{<<|}
@t{ |> } Output 1: (57 BOXES)
@t{ |> } Input 2: @b{|>>}@t{NIL}@b{<<|}
@result{}  NIL

 (setq a-vector (vector 1 nil 3 nil))
 (do ((i 0 (+ i 1))     ;Sets every null element of a-vector to zero.
      (n (array-dimension a-vector 0)))
     ((= i n))
   (when (null (aref a-vector i))
     (setf (aref a-vector i) 0))) @result{}  NIL
a-vector @result{}  #(1 0 3 0)
@end example

@example
 (do ((x e (cdr x))
      (oldx x x))
     ((null x))
   body)
@end example

is an example of parallel assignment to index variables.  On the first
iteration, the value of @t{oldx} is whatever value @t{x} had before
the @b{do} was entered.  On succeeding iterations, @t{oldx} contains
the value that @t{x} had on the previous iteration. 

@example
 (do ((x foo (cdr x))
      (y bar (cdr y))
      (z '() (cons (f (car x) (car y)) z)))
     ((or (null x) (null y))
      (nreverse z)))
@end example

does the same thing as @t{(mapcar #'f foo bar)}.  The step
computation for @t{z} is an example of the fact that variables 
are stepped in parallel.
Also, the body of the loop is empty.  

@example
 (defun list-reverse (list)
        (do ((x list (cdr x))
             (y '() (cons (car x) y)))
            ((endp x) y)))
@end example

As an example of nested iterations, consider a data structure that is a 
@i{list} of @i{conses}. The @i{car} of each @i{cons} is a 
@i{list} of @i{symbols},
and the @i{cdr} of each @i{cons} is a 
@i{list} of equal length containing
corresponding values.  Such a data structure is similar to an association
list,
but is divided into ``frames''; the overall structure resembles a rib-cage.
A lookup function on such a data structure might be:

@example
 (defun ribcage-lookup (sym ribcage)           
        (do ((r ribcage (cdr r)))
            ((null r) nil)
          (do ((s (caar r) (cdr s))
               (v (cdar r) (cdr v))) 
              ((null s))
            (when (eq (car s) sym)
              (return-from ribcage-lookup (car v)))))) @result{}  RIBCAGE-LOOKUP
@end example

@subsubheading  See Also:: 

other iteration functions
 (
@ref{dolist}
, 
@ref{dotimes}
, and 
@ref{loop}
)
and more primitive functionality 
 (
@ref{tagbody}
, 
@ref{go}
, 
@ref{block}
, 
@ref{return}
, 

@ref{let; let*}
, and 
@ref{setq}
)

@subsubheading  Notes::
If @i{end-test-form} is @b{nil}, the test will never succeed.
This provides an idiom for ``do forever'':
the body of the @b{do} or @b{do*} 
is executed repeatedly.
The infinite loop can be terminated by the use of @b{return},
@b{return-from}, @b{go} to an outer level, or @b{throw}.

A @b{do} @i{form} may be explained in terms of the more primitive @i{forms}
@b{block}, @b{return}, 
@b{let}, @b{loop}, @b{tagbody},
and @b{psetq} as follows:

@example
 (block nil        
   (let ((var1 init1)
         (var2 init2)
         ...
         (varn initn))
     @i{declarations}
     (loop (when end-test (return (progn . result)))
           (tagbody . tagbody)
           (psetq var1 step1
                  var2 step2
                  ...
                  varn stepn))))
@end example

@b{do*} is similar, except that @b{let*} and @b{setq} replace
the @b{let} and @b{psetq}, respectively.

@node dotimes, dolist, do, Iteration Dictionary
@subsection dotimes                                                             [Macro]

@code{dotimes}  @i{@r{(}var count-form @r{[}result-form@r{]}@r{)}
		  @{@i{declaration}@}{*}
		  @{tag | statement@}{*}}@*
   @result{}  @i{@{@i{result}@}{*}}

@subsubheading  Arguments and Values:: 

@i{var}---a @i{symbol}.

@i{count-form}---a @i{form}.

@i{result-form}---a @i{form}.

@i{declaration}---a @b{declare} @i{expression}; not evaluated.

@i{tag}---a @i{go tag}; not evaluated.

@i{statement}---a @i{compound form}; evaluated as described below.

@i{results}---if a @b{return} or @b{return-from} form is executed,
 the @i{values} passed from that @i{form};
 otherwise, the @i{values} returned by the @i{result-form}
 or @b{nil} if there is no @i{result-form}.

@subsubheading  Description::

@b{dotimes} iterates over a series of @i{integers}.

@b{dotimes} evaluates @i{count-form},
which should produce an @i{integer}. 
If @i{count-form} is zero or negative,
the body is not executed.
@b{dotimes} then executes the body once for each @i{integer} from 0 up to
but not including
the value of @i{count-form},
in the order in which the
@i{tags} and @i{statements} occur, with
@i{var} bound to each @i{integer}.
Then @i{result-form} 
is evaluated.
At the time @i{result-form} is processed, @i{var} is bound to
the number of times the body was executed.
@i{Tags} label
@i{statements}.

An @i{implicit block}  
named @b{nil} surrounds @b{dotimes}.
@b{return} may be used to terminate the loop immediately without
performing any further iterations, returning zero or more @i{values}.

The body of the loop is an @i{implicit tagbody}; 
it may contain tags to serve as the targets of @b{go} statements.
Declarations may appear before the body of the loop.

The @i{scope} of the binding of @i{var}
does not include the @i{count-form},
but the @i{result-form} is included.

It is @i{implementation-dependent} whether @b{dotimes}
@i{establishes} a new @i{binding} of @i{var} on each iteration
or whether it @i{establishes} a binding for @i{var} once at the
beginning and then @i{assigns} it on any subsequent iterations.

@subsubheading  Examples::

@example
 (dotimes (temp-one 10 temp-one)) @result{}  10
 (setq temp-two 0) @result{}  0
 (dotimes (temp-one 10 t) (incf temp-two)) @result{}  T
 temp-two @result{}  10
@end example

Here is an example of the use of @t{dotimes} in processing strings:

@example
;;; True if the specified subsequence of the string is a
;;; palindrome (reads the same forwards and backwards).
 (defun palindromep (string @t{&optional}
                           (start 0)
                           (end (length string)))
   (dotimes (k (floor (- end start) 2) t)
    (unless (char-equal (char string (+ start k))
                        (char string (- end k 1)))
      (return nil))))
 (palindromep "Able was I ere I saw Elba") @result{}  T
 (palindromep "A man, a plan, a canal--Panama!") @result{}  NIL
 (remove-if-not #'alpha-char-p          ;Remove punctuation.
               "A man, a plan, a canal--Panama!")
@result{}  "AmanaplanacanalPanama"
 (palindromep
  (remove-if-not #'alpha-char-p
                "A man, a plan, a canal--Panama!")) @result{}  T
 (palindromep
  (remove-if-not
   #'alpha-char-p
   "Unremarkable was I ere I saw Elba Kramer, nu?")) @result{}  T
 (palindromep
  (remove-if-not
   #'alpha-char-p
   "A man, a plan, a cat, a ham, a yak,
                  a yam, a hat, a canal--Panama!")) @result{}  T
@end example

@subsubheading  See Also::

@ref{do; do*}
, 
@ref{dolist}
, 
@ref{tagbody}

@subsubheading  Notes::

@b{go} may be used within the body of
@b{dotimes} to transfer control to a statement labeled by a @i{tag}.

@node dolist, loop, dotimes, Iteration Dictionary
@subsection dolist                                                              [Macro]

@code{dolist}  @i{@r{(}var list-form @r{[}result-form@r{]}@r{)}
		   @{@i{declaration}@}{*}
	           @{tag | statement@}{*}}@*
   @result{}  @i{@{@i{result}@}{*}}

@subsubheading  Arguments and Values::

@i{var}---a @i{symbol}.

@i{list-form}---a @i{form}.

@i{result-form}---a @i{form}.

@i{declaration}---a @b{declare} @i{expression}; not evaluated.

@i{tag}---a @i{go tag}; not evaluated.

@i{statement}---a @i{compound form}; evaluated as described below.

@i{results}---if a @b{return} or @b{return-from} form is executed,
 the @i{values} passed from that @i{form};
 otherwise, the @i{values} returned by the @i{result-form}
 or @b{nil} if there is no @i{result-form}.

@subsubheading  Description::

@b{dolist} iterates over the elements of a @i{list}.
The body of @b{dolist} is like a @b{tagbody}.
It consists of a series of @i{tags} and @i{statements}.

@b{dolist}
evaluates @i{list-form},
which should produce a @i{list}. It then executes the body
once for each element in the @i{list}, in the order in which the
@i{tags} and @i{statements} occur, with
@i{var} bound to the element.
Then @i{result-form} 
is evaluated.
@i{tags} label
@i{statements}.

At the time @i{result-form} is processed, 
@i{var} is bound to @b{nil}.

An @i{implicit block}  
named @b{nil} surrounds @b{dolist}.
@b{return} may be used to terminate the loop immediately without
performing any further iterations, returning zero or more @i{values}.

The @i{scope} of the binding of @i{var}
does not include the @i{list-form},
but the @i{result-form} is included.

It is @i{implementation-dependent} whether @b{dolist}
@i{establishes} a new @i{binding} of @i{var} on each iteration
or whether it @i{establishes} a binding for @i{var} once at the
beginning and then @i{assigns} it on any subsequent iterations.

@subsubheading  Examples::
@example
 (setq temp-two '()) @result{}  NIL
 (dolist (temp-one '(1 2 3 4) temp-two) (push temp-one temp-two)) @result{}  (4 3 2 1)

 (setq temp-two 0) @result{}  0
 (dolist (temp-one '(1 2 3 4)) (incf temp-two)) @result{}  NIL
 temp-two @result{}  4

 (dolist (x '(a b c d)) (prin1 x) (princ " ")) 
@t{ |> } A B C D 
@result{}  NIL
@end example

@subsubheading  See Also::

@ref{do; do*}
,
@ref{dotimes}
,
@ref{tagbody}
,

@ref{Traversal Rules and Side Effects}

@subsubheading  Notes::

@b{go} may be used within the body of @b{dolist} 
to transfer control to a statement labeled by a @i{tag}.

@node loop, loop-finish, dolist, Iteration Dictionary
@subsection loop                                                                [Macro]

The ``simple'' @b{loop} @i{form}:

@code{loop}  @i{@{@i{compound-form}@}{*}} @result{}  @i{@{@i{result}@}{*}}

The ``extended'' @b{loop} @i{form}:

@code{loop}  @i{@r{[}!@i{name-clause}@r{]}
			@{!@i{variable-clause}@}{*}
		        @{!@i{main-clause}@}{*}} @result{}  @i{@{@i{result}@}{*}}

@w{@i{name-clause} ::=@t{named} @i{name}}

@w{@i{variable-clause} ::=!@i{with-clause} | !@i{initial-final} | !@i{for-as-clause}}

@w{@i{with-clause} ::=@t{with} @i{var1} @r{[}@i{type-spec}@r{]} @r{[}= @i{form1}@r{]} @{{and} @i{var2} @r{[}@i{type-spec}@r{]} @r{[}= @i{form2}@r{]}@}{*}}

@w{@i{main-clause} ::=!@i{unconditional} | !@i{accumulation} | !@i{conditional} | !@i{termination-test} | !@i{initial-final}}

@w{@i{initial-final} ::=@t{initially} @{@i{compound-form}@}^+ | @t{finally} @{@i{compound-form}@}^+}

@w{@i{unconditional} ::=@{{do} | @t{doing}@} @{@i{compound-form}@}^+ | @t{return} @{@i{form} | @t{it}@}}

@w{@i{accumulation} ::=!@i{list-accumulation} | !@i{numeric-accumulation}}

@w{@i{list-accumulation} ::=@{{collect} | @t{collecting} | @t{append} | @t{appending} | @t{nconc} | @t{nconcing}@} @{@i{form} | @t{it}@} }
@w{                      @r{[}@t{into} @i{simple-var}@r{]}}

@w{@i{numeric-accumulation} ::=@{{count} | @t{counting} | @t{sum} | @t{summing} | @}
@w{                         @t{maximize} | @t{maximizing} | @t{minimize} | @t{minimizing}} @{@i{form} | @t{it}@} }
@w{                         @r{[}@t{into} @i{simple-var}@r{]} @r{[}@i{type-spec}@r{]}}

@w{@i{conditional} ::=@{{if} | @t{when} | @t{unless}@} @i{form} !@i{selectable-clause} @{{and} !@i{selectable-clause}@}{*} }
@w{                @r{[}@t{else} !@i{selectable-clause} @{{and} !@i{selectable-clause}@}{*}@r{]} }
@w{                @r{[}@t{end}@r{]}}

@w{@i{selectable-clause} ::=!@i{unconditional} | !@i{accumulation} | !@i{conditional}}

@w{@i{termination-test} ::=@t{while} @i{form} | @t{until} @i{form} | @t{repeat} @i{form} | @t{always} @i{form} | @t{never} @i{form} | @t{thereis} @i{form}}

@w{@i{for-as-clause} ::=@{{for} | @t{as}@} !@i{for-as-subclause} @{{and} !@i{for-as-subclause}@}{*}}

@w{@i{for-as-subclause} ::=!@i{for-as-arithmetic} | !@i{for-as-in-list} | !@i{for-as-on-list} | !@i{for-as-equals-then} |}
@w{                     !@i{for-as-across} | !@i{for-as-hash} | !@i{for-as-package}}

@w{@i{for-as-arithmetic} ::=@i{var} @r{[}@i{type-spec}@r{]} !@i{for-as-arithmetic-subclause}}

@w{@i{for-as-arithmetic-subclause} ::=!@i{arithmetic-up} | !@i{arithmetic-downto} | !@i{arithmetic-downfrom}}

@w{@i{arithmetic-up} ::=[[@{{from} | @t{upfrom}@} @i{form1} | @{{to} | @t{upto} | @t{below}@} @i{form2} | @t{by} @i{form3}]]^+}

@w{@i{arithmetic-downto} ::=[[@{{from} @i{form1}@}^1 | @{@{{downto} | @t{above}@} @i{form2}@}^1 | @t{by} @i{form3}]]}

@w{@i{arithmetic-downfrom} ::=[[@{{downfrom} @i{form1}@}^1 | @{{to} | @t{downto} | @t{above}@} @i{form2} | @t{by} @i{form3}]]}

@w{@i{for-as-in-list} ::=@i{var} @r{[}@i{type-spec}@r{]} @t{in} @i{form1} @r{[}@t{by} @i{step-fun}@r{]}}

@w{@i{for-as-on-list} ::=@i{var} @r{[}@i{type-spec}@r{]} @t{on} @i{form1} @r{[}@t{by} @i{step-fun}@r{]}}

@w{@i{for-as-equals-then} ::=@i{var} @r{[}@i{type-spec}@r{]} = @i{form1} @r{[}@t{then} @i{form2}@r{]}}

@w{@i{for-as-across} ::=@i{var} @r{[}@i{type-spec}@r{]} @t{across} @i{vector}}

@w{@i{for-as-hash} ::=@i{var} @r{[}@i{type-spec}@r{]} @t{being} @{{each} | @t{the}@} }
@w{                @{@{{hash-key} | @t{hash-keys}@} @{{in} | @t{of}@} @i{hash-table} }
@w{                @r{[}@t{using} @r{(}@t{hash-value} @i{other-var}@r{)}@r{]} | }
@w{                @{{hash-value} | @t{hash-values}@} @{{in} | @t{of}@} @i{hash-table} }
@w{                @r{[}@t{using} @r{(}@t{hash-key} @i{other-var}@r{)}@r{]}@}}

@w{@i{for-as-package} ::=@i{var} @r{[}@i{type-spec}@r{]} @t{being} @{{each} | @t{the}@} }
@w{                   @{{symbol} | @t{symbols} |}
@w{                   @t{present-symbol} | @t{present-symbols} |}
@w{                   @t{external-symbol} | @t{external-symbols}@} }
@w{                   @r{[}@{{in} | @t{of}@} @i{package}@r{]}}

@w{@i{type-spec} ::=!@i{simple-type-spec} | !@i{destructured-type-spec}}

@w{@i{simple-type-spec} ::=@b{fixnum} | @b{float} | @b{t} | @b{nil}}

@w{@i{destructured-type-spec} ::=@t{of-type} @i{d-type-spec}}

@w{@i{d-type-spec} ::=@i{type-specifier} | @t{(@i{d-type-spec} . @i{d-type-spec})}}

@w{@i{var} ::=!@i{d-var-spec}}

@w{@i{var1} ::=!@i{d-var-spec}}

@w{@i{var2} ::=!@i{d-var-spec}}

@w{@i{other-var} ::=!@i{d-var-spec}}

@w{@i{d-var-spec} ::=@i{simple-var} | @b{nil} | @r{(}!@i{d-var-spec} @t{.} !@i{d-var-spec}@r{)}}

@subsubheading  Arguments and Values::

@i{compound-form}---a @i{compound form}.

@i{name}---a @i{symbol}.

@i{simple-var}---a @i{symbol} (a @i{variable} name).

@i{form}, @i{form1}, @i{form2}, @i{form3}---a @i{form}.

@i{step-fun}---a @i{form} that evaluates to a @i{function} of one @i{argument}.

@i{vector}---a @i{form} that evaluates to a @i{vector}.

@i{hash-table}---a @i{form} that evaluates to a @i{hash table}.

@i{package}---a @i{form} that evaluates to a @i{package designator}.

@i{type-specifier}---a @i{type specifier}.
  This might be either an @i{atomic type specifier} or a @i{compound type specifier},
  which introduces some additional complications to proper parsing in the face of 
  destructuring; for further information, see @ref{Destructuring}.

@i{result}---an @i{object}.

@subsubheading  Description::

For details, see @ref{The LOOP Facility}.

@subsubheading  Examples::

@example
;; An example of the simple form of LOOP.
 (defun sqrt-advisor ()
   (loop (format t "~&Number: ")
         (let ((n (parse-integer (read-line) :junk-allowed t)))
           (when (not n) (return))
           (format t "~&The square root of ~D is ~D.~
@result{}  SQRT-ADVISOR
 (sqrt-advisor)
@t{ |> } Number: @b{|>>}@t{5{@i{[<--}~]}}@b{<<|}
@t{ |> } The square root of 5 is 2.236068.
@t{ |> } Number: @b{|>>}@t{4{@i{[<--}~]}}@b{<<|}
@t{ |> } The square root of 4 is 2.
@t{ |> } Number: @b{|>>}@t{done{@i{[<--}~]}}@b{<<|}
@result{}  NIL

;; An example of the extended form of LOOP.
 (defun square-advisor ()
   (loop as n = (progn (format t "~&Number: ")
                       (parse-integer (read-line) :junk-allowed t))
         while n
         do (format t "~&The square of ~D is ~D.~
@result{}  SQUARE-ADVISOR
 (square-advisor)
@t{ |> } Number: @b{|>>}@t{4{@i{[<--}~]}}@b{<<|}
@t{ |> } The square of 4 is 16.
@t{ |> } Number: @b{|>>}@t{23{@i{[<--}~]}}@b{<<|}
@t{ |> } The square of 23 is 529.
@t{ |> } Number: @b{|>>}@t{done{@i{[<--}~]}}@b{<<|}
@result{}  NIL

;; Another example of the extended form of LOOP.
 (loop for n from 1 to 10
       when (oddp n)
         collect n)
@result{}  (1 3 5 7 9)
@end example

@subsubheading  See Also::

@ref{do; do*}
, 
@ref{dolist}
, 
@ref{dotimes}
, 
@ref{return}
, 
@ref{go}
, 
@ref{throw}
,
@ref{Destructuring}

@subsubheading  Notes::

Except that @b{loop-finish} cannot be used within a simple @b{loop} @i{form},
a simple @b{loop} @i{form} is related to an extended @b{loop} @i{form} 
in the following way:

@example
 (loop @{@i{compound-form}@}{*}) @equiv{} (loop do @{@i{compound-form}@}{*})
@end example

@node loop-finish,  , loop, Iteration Dictionary
@subsection loop-finish                                                   [Local Macro]

@subsubheading  Syntax::

@code{loop-finish}  @i{<@i{no @i{arguments}}>} @result{}  #<NoValue>

@subsubheading  Description::

The @b{loop-finish} @i{macro} can be used lexically within 
an extended
@b{loop} @i{form} 
to terminate that @i{form} ``normally.''
That is, it transfers control to the loop epilogue
of the lexically innermost extended @b{loop} @i{form}.
This permits execution of any @b{finally} clause (for effect)
and
the return of
any accumulated result.

@subsubheading  Examples::

@example
;; Terminate the loop, but return the accumulated count.
 (loop for i in '(1 2 3 stop-here 4 5 6)
       when (symbolp i) do (loop-finish)
       count i)
@result{}  3

;; The preceding loop is equivalent to:
 (loop for i in '(1 2 3 stop-here 4 5 6)
       until (symbolp i)
       count i)
@result{}  3

;; While LOOP-FINISH can be used can be used in a variety of 
;; situations it is really most needed in a situation where a need
;; to exit is detected at other than the loop's `top level'
;; (where UNTIL or WHEN often work just as well), or where some 
;; computation must occur between the point where a need to exit is
;; detected and the point where the exit actually occurs.  For example:
 (defun tokenize-sentence (string)
   (macrolet ((add-word (wvar svar)
                `(when ,wvar
                   (push (coerce (nreverse ,wvar) 'string) ,svar)
                   (setq ,wvar nil))))
     (loop with word = '() and sentence = '() and endpos = nil
           for i below (length string)
           do (let ((char (aref string i)))
                (case char
                  (#\Space (add-word word sentence))
                  (#\. (setq endpos (1+ i)) (loop-finish))
                  (otherwise (push char word))))
           finally (add-word word sentence)
                   (return (values (nreverse sentence) endpos)))))
@result{}  TOKENIZE-SENTENCE

 (tokenize-sentence "this is a sentence. this is another sentence.")
@result{}  ("this" "is" "a" "sentence"), 19

 (tokenize-sentence "this is a sentence")
@result{}  ("this" "is" "a" "sentence"), NIL

@end example

@subsubheading  Side Effects::

Transfers control.

@subsubheading  Exceptional Situations::

Whether or not @b{loop-finish} is @i{fbound} in the
@i{global environment} is @i{implementation-dependent};
however, the restrictions on redefinition and @i{shadowing} of
@b{loop-finish} are the same as for @i{symbols} in the @t{COMMON-LISP} @i{package}
which are @i{fbound} in the @i{global environment}.
The consequences of attempting to use @b{loop-finish} outside
of @b{loop} are undefined.

@subsubheading  See Also::

@ref{loop}
,
@ref{The LOOP Facility}

@subsubheading  Notes::

@c end of including dict-iteration

@c %**end of chapter