File: node10.html

package info (click to toggle)
gcx 0.9.11-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 5,072 kB
  • ctags: 3,445
  • sloc: ansic: 37,434; sh: 3,060; perl: 1,453; makefile: 162
file content (942 lines) | stat: -rw-r--r-- 32,574 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Noise Modelling</TITLE>
<META NAME="description" CONTENT="Noise Modelling">
<META NAME="keywords" CONTENT="gcx">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">

<LINK REL="STYLESHEET" HREF="gcx.css">

<LINK REL="next" HREF="node11.html">
<LINK REL="previous" HREF="node9.html">
<LINK REL="up" HREF="gcx.html">
<LINK REL="next" HREF="node11.html">
</HEAD>

<BODY >

<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html675"
  HREF="node11.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="/usr/share/latex2html/icons/next.png"></A> 
<A NAME="tex2html671"
  HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="/usr/share/latex2html/icons/up.png"></A> 
<A NAME="tex2html665"
  HREF="node9.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="/usr/share/latex2html/icons/prev.png"></A> 
<A NAME="tex2html673"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="/usr/share/latex2html/icons/contents.png"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html676"
  HREF="node11.html">Robust Averaging</A>
<B> Up:</B> <A NAME="tex2html672"
  HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html666"
  HREF="node9.html">Multi-Frame and All-Sky Reduction</A>
 &nbsp; <B>  <A NAME="tex2html674"
  HREF="node1.html">Contents</A></B> 
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>

<UL CLASS="ChildLinks">
<LI><UL>
<LI><UL>
<LI><UL>
<LI><A NAME="tex2html677"
  HREF="node10.html#SECTION001000010000000000000">Precision and Accuracy.</A>
<LI><A NAME="tex2html678"
  HREF="node10.html#SECTION001000020000000000000">Noise</A>
</UL>
</UL>
</UL>
<BR>
<LI><A NAME="tex2html679"
  HREF="node10.html#SECTION001010000000000000000">CCD Noise Sources</A>
<LI><A NAME="tex2html680"
  HREF="node10.html#SECTION001020000000000000000">Noise of a Pixel Value</A>
<LI><A NAME="tex2html681"
  HREF="node10.html#SECTION001030000000000000000">Dark Frame Subtraction</A>
<LI><A NAME="tex2html682"
  HREF="node10.html#SECTION001040000000000000000">Flat Fielding</A>
<LI><A NAME="tex2html683"
  HREF="node10.html#SECTION001050000000000000000">Instrumental Magnitude Error of a Star</A>
</UL>
<!--End of Table of Child-Links-->
<HR>

<H1><A NAME="SECTION001000000000000000000"></A><A NAME="ap:noise"></A>
<BR>
Noise Modelling
</H1>

<P>
The issue of noise modelling is essential in any photometric endeavour. Measurement values 
are next to meaningless if they aren't acompanied by a measure of ther uncertainty. 

<P>
One can assume that the noise and error modelling only applies to deriving an error figure. 
This in true only in extremely simple cases. In general, the noise estimates will also affect 
the actual values. For instance, suppose that we use several standards to calibrate a field. 
From the noise estimate, we know that one of the standards has a large probable error. Then, 
we choose to exclude (or downweight) that value from the solution--this will change the
calibration, and directly affect the result (not just it's noise estimate).

<P>

<H4><A NAME="SECTION001000010000000000000">
Precision and Accuracy.</A>
</H4> The precision of a measurement denotes the degree to 
which different measurements of the same value will yield the same result; it measures the 
repeatability of the measurement process. A precise measurement has a small <EM>random error</EM>.

<P>
The accuracy of a measurement denotes the degree to which a measurement result will represent 
the true value. The accuracy includes the <EM>random error</EM> of the measurement, as well as 
the <EM>systematic error</EM>.

<P>
Random errors are in a way the worst kind. We have to accept them and take into account, but 
they cannot be calculated out. We can try to use better equipment, or more telescope time
and reduce them. On the other hand, since random errors are, well, random in nature (they 
don't correlate to anything), we can in principle reduce them to an aribitrarily low level 
by averaging a lerge number of measurements.

<P>
Systematic errors on the other hand can usually be eliminated (or at least reduced) by 
calibration. Systematic errors are not that different from random errors. They differ
fundamentally in the fact the they depend on <EM>something</EM>. Of course, even random
errors ultimately depend on something. But that something changes incontrollably, and 
in a time frame that is short compared to the measurement time scale.

<P>
A systematic error can turn into a random error if we have no control over the thing that 
the error depends on, or we don't have something to calibrate against. We could treat this 
error as ``random'' and try to average many measurements to reduce it, but we have to make 
sure that the something that the error depends on has had a change to vary between the 
measurements we average, or we won't get very far.

<P>

<H4><A NAME="SECTION001000020000000000000">
Noise</A>
</H4> is the ``randomest'' source of random errors. We have no way to 
calibrate out noise, but it's features are well understood and relatively easy to model.
One doesn't have a good excuse not to model noise reasonably well.

<P>
We will generally talk about ``noise'' when estimating random errors that derive from 
an electrical or optical noise source. Once these are combine with
other error  sources (like for instance 
expected errors of the standards), we will use the term ``error''. Of course, there are two
ways of understanding an error value. If we know what the true value should be, we can talk 
about and <EM>actual error</EM>. If we just consider what error level we can expect, we talk 
about an estimated, or <EM>expected error</EM>.

<P>

<H1><A NAME="SECTION001010000000000000000">
CCD Noise Sources</A>
</H1>

<P>
There are several noise sources in a CCD sensor. We will see that in the end they can 
usually be modeled with just two parameters, but we list the main noise contributors 
for reference.

<OL>
<LI><EM>Photon shot noise</EM> is the noise associated with the random arrival of photons 
at any detector. Shot noise exists because of the discrete nature of light and 
electrical charge. The time between photon arrivals is goverened by Poisson 
statistics. For a phase-insensitive detector, such as a CCD, 
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ph} = \sqrt{S_{\rm ph}}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="91" HEIGHT="36" BORDER="0"
 SRC="img129.png"
 ALT="\begin{displaymath}
\sigma_{\rm ph} = \sqrt{S_{\rm ph}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">1</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
 WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img130.png"
 ALT="$S_{\rm ph}$"></SPAN> is the signal expressed in electrons. Shot noise is sometimes called 
``Poisson noise''.
</LI>
<LI><EM>Output amplifier noise</EM> originates in the output amplifier of the sensor. 
It consists of two components: thermal (white) noise and flicker noise. Thermal noise 
is independent of frequency and has a mild temperature dependence (is proportional to 
the square root of the absolute temperature). It fundamentally originates in the thermal 
movement of atoms. Flicker noise (or <SPAN CLASS="MATH"><IMG
 WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img131.png"
 ALT="$1/f$"></SPAN> noise) is strongly dependent on frequency. 
It originates in the existance of long-lived states in the silicon crystal (most notably
``traps'' at the silicon-oxide interface). 

<P>
For a given readout configuration and speed, these noise sources contribute a constant 
level, that is also independant of the signal level, usually called the <EM>readout noise</EM>. 
The effect of read noise can be reduced by increasing the 
time in which the sensor is read out. There is a limit to that, as
flicker noise will begin to kick in. For some cameras, one has the option of trading readout
speed for a decrease in readout noise.

<P>
</LI>
<LI><EM>Camera noise.</EM> Thermal and flicker noise are also generated in
the camera electronics. the noise level will be independent on the signal. 
While the camera designer needs to make a distiction between the 
various noise sources, for a given camera, noise originating in the camera and the ccd 
amplifier are indistinguishable.

<P>
</LI>
<LI><EM>Dark current noise.</EM> Even in the absence of light, electron-hole pairs are generated 
inside the sensor. The rate of generation depends exponentially on temperature (typically
doubles every 6-7 degrees). The thermally generated electrons cannot be separated from
photo-generated photons, and obey the same Poisson statistic, so
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm dark} = \sqrt{S_{\rm dark}}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="113" HEIGHT="30" BORDER="0"
 SRC="img132.png"
 ALT="\begin{displaymath}
\sigma_{\rm dark} = \sqrt{S_{\rm dark}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">2</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
We can subtract the average 
dark signal, but the shot noise associated with it remains. The level of the dark current 
noise depends on temperature and integration time.

<P>
</LI>
<LI><EM>Clock noise.</EM> Fast changing clocks on the ccd can also generate spurious charge. 
This charge also has a shot noise component associated. However, one cannot read the sensor 
without clocking it, so clock noise cannot be discerned from readout noise. The clock noise 
is fairly constant for a given camera and readout speed, and independent of the signal level.
</LI>
</OL>

<P>
Examining the above list, we see that some noise sources are independent of the signal level. 
They are: the output amplifier noise, camera noise and clock noise. They can be combined in
a single equivalent noise source. The level of this source is called <EM>readout noise</EM>, and
is a characteristic of the camera. It can be expressed in electrons, or in the camera output
units (ADU). 

<P>
The rest of the noise sources are all shot noise sources. The resulting value will be:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm shot} = \sqrt{\sigma_{\rm ph}^2 + \sigma_{\rm dark}^2}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="159" HEIGHT="36" BORDER="0"
 SRC="img133.png"
 ALT="\begin{displaymath}
\sigma_{\rm shot} = \sqrt{\sigma_{\rm ph}^2 + \sigma_{\rm dark}^2}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm shot} = \sqrt{S_{\rm ph} + S_{\rm dark}} = \sqrt{S}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="209" HEIGHT="36" BORDER="0"
 SRC="img134.png"
 ALT="\begin{displaymath}
\sigma_{\rm shot} = \sqrt{S_{\rm ph} + S_{\rm dark}} = \sqrt{S}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<SPAN CLASS="MATH"><IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img135.png"
 ALT="$S$"></SPAN> is the total signal from the sensor above bias, expressed in electrons. So to calculate the 
shot noise component, we just need to know how many ADUs/electron the camera produces. This
is a constant value, or one of a few constant values for cameras that have different gain
settings. We will use <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img136.png"
 ALT="$A$"></SPAN> to denote this value. 

<P>

<H1><A NAME="SECTION001020000000000000000">
Noise of a Pixel Value</A>
</H1>
We will now try to model the level of noise in a pixel value. The result of reading one pixel 
(excluding noise) is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
s = s_b + A ( S_d + S_p)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="150" HEIGHT="32" BORDER="0"
 SRC="img137.png"
 ALT="\begin{displaymath}
s = s_b + A ( S_d + S_p)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
 WIDTH="19" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img138.png"
 ALT="$s_b$"></SPAN> is a fixed bias introduced by the camera electronics, <SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img139.png"
 ALT="$S_d$"></SPAN> is the number of 
dark electrons, and <SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img140.png"
 ALT="$S_p$"></SPAN> is the number of photo-generated electrons (which is the number 
of photons incident on the pixel multiplied by the sensor's quantum efficiency).

<P>
Now let's calculate the noise associated with this value.
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma^2 = \sigma_r^2 + A^2 (S_d + S_p) = \sigma_r^2 + A(s - s_b)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="304" HEIGHT="32" BORDER="0"
 SRC="img141.png"
 ALT="\begin{displaymath}
\sigma^2 = \sigma_r^2 + A^2 (S_d + S_p) = \sigma_r^2 + A(s - s_b)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Where <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img142.png"
 ALT="$\sigma_r$"></SPAN> is the readout noise expressed in ADU, and <SPAN CLASS="MATH"><IMG
 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img135.png"
 ALT="$S$"></SPAN> is the total signal
expressed in electrons. Note that we cannot calculate 
the noise if we don't know the bias value. The bias can be determined by reading 
frames with zero exposure time (bias frames). These will contribute some read noise though. 
By averaging several bias frames, the noise contribution can be reduced. Another approach is 
to take the average across a bias frame and use that value for the noise calculation of all
pixels. Except for very non-uniform sensors this approach works well. <SMALL>GCX </SMALL>supports both 
ways.

<P>
Note that a bias frame will only contain readout noise. By calculating the standard 
deviation of pixels across the difference between two bias frames we obtain <SPAN CLASS="MATH"><IMG
 WIDTH="28" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
 SRC="img143.png"
 ALT="$\sqrt{2}$"></SPAN> times the
readout noise.

<P>

<H1><A NAME="SECTION001030000000000000000">
Dark Frame Subtraction</A>
</H1>

<P>
A common situation is when one subtracts a dark frame, but doesn't use bias frames. 
The noise associated with the dark frame is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_d^2 = \sigma_r^2 + A^2 S_d
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="118" HEIGHT="31" BORDER="0"
 SRC="img144.png"
 ALT="\begin{displaymath}
\sigma_d^2 = \sigma_r^2 + A^2 S_d
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The resulting pixel noise after dark frame subtraction will be:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ds}^2 = 2\sigma_r^2 + A^2 (2 S_d + S_p)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="193" HEIGHT="32" BORDER="0"
 SRC="img145.png"
 ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = 2\sigma_r^2 + A^2 (2 S_d + S_p)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
while the signal will be
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
s_{\rm ds} = AS_p
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="74" HEIGHT="32" BORDER="0"
 SRC="img146.png"
 ALT="\begin{displaymath}
s_{\rm ds} = AS_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Using just the camera noise parameters, we cannot determine the noise anymore. 
We have to keep track of the dark subtraction and it's noise effects. We however
rewrite the dark-subtracted noise equation as follows:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ds}^2 = \left(\sqrt{2\sigma_r^2 + 2 A^2 S_d}\right)^2 + A^2 S_p
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="248" HEIGHT="48" BORDER="0"
 SRC="img147.png"
 ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = \left(\sqrt{2\sigma_r^2 + 2 A^2 S_d}\right)^2 + A^2 S_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
If we use the notation <!-- MATH
 $\sigma_r' = \sqrt{2\sigma_r^2 + 2 A^2 S_d}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="157" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img148.png"
 ALT="$\sigma_r' = \sqrt{2\sigma_r^2 + 2 A^2 S_d}$"></SPAN>, we get: 
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ds}^2 = \sigma_r'^2 + A^2 S_p
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="127" HEIGHT="32" BORDER="0"
 SRC="img149.png"
 ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = \sigma_r'^2 + A^2 S_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">11</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
This is identical in form to the simple pixel noise equation, except that the true 
camera readout noise is replaced by the equivalent read noise <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img150.png"
 ALT="$\sigma_r'$"></SPAN>. What's more, the
bias is no longer an issue, as it doesn't appeear in the signal equation anymore. We can 
derive the pixel noise from the signal directly, as:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ds}^2 = \sigma_r'^2 + As_{\rm ds}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="123" HEIGHT="31" BORDER="0"
 SRC="img151.png"
 ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = \sigma_r'^2 + As_{\rm ds}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">12</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The same parameters, <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img150.png"
 ALT="$\sigma_r'$"></SPAN> and <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img136.png"
 ALT="$A$"></SPAN> are sufficient to describe the noise in the 
dark-subtracted frame.

<P>

<H1><A NAME="SECTION001040000000000000000">
Flat Fielding</A>
</H1>

<P>
To flat-field a frame, we divide the dark-subtracted pixel value <SPAN CLASS="MATH"><IMG
 WIDTH="26" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img152.png"
 ALT="$s_{\rm ds}$"></SPAN> by the flat field
value <SPAN CLASS="MATH"><IMG
 WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
 SRC="img153.png"
 ALT="$f$"></SPAN>. The noise of the flat field is <SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img154.png"
 ALT="$\sigma_f$"></SPAN>. The resulting signal value is
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
s_{\rm ff} = \frac{1}{f}AS_p
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="85" HEIGHT="45" BORDER="0"
 SRC="img155.png"
 ALT="\begin{displaymath}
s_{\rm ff} = \frac{1}{f}AS_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">13</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
If we neglect second-order noise terms, the noise of the flat-fielded, dark subtracted pixel 
is: 
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ff}^2 = f \sigma_r'^2 + A^2 S_p + \left(\frac{\sigma_f}{f}AS_p\right)^2
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="239" HEIGHT="49" BORDER="0"
 SRC="img156.png"
 ALT="\begin{displaymath}
\sigma_{\rm ff}^2 = f \sigma_r'^2 + A^2 S_p + \left(\frac{\sigma_f}{f}AS_p\right)^2
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">14</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm ff}^2 = f^2 \sigma_r'^2 + A f s_{\rm ff} + \left(\sigma_f s_{\rm ff}\right)^2
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="222" HEIGHT="32" BORDER="0"
 SRC="img157.png"
 ALT="\begin{displaymath}
\sigma_{\rm ff}^2 = f^2 \sigma_r'^2 + A f s_{\rm ff} + \left(\sigma_f s_{\rm ff}\right)^2
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">15</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The problem with this result is that f is not constant across the frame. So in general, the noise
of a flat-fielded frame cannot be described by a small number of parameters. In many cases though, 
<SPAN CLASS="MATH"><IMG
 WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
 SRC="img153.png"
 ALT="$f$"></SPAN> doesn't vary too much across the frame. We can then use it's average value, <SPAN CLASS="MATH"><IMG
 WIDTH="16" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img158.png"
 ALT="$\widetilde{f}$"></SPAN> 
for the noise calculation. This is the approach taken by the program.

<P>
We can identify the previous noise parameters, <!-- MATH
 $\sigma_r'' = 
\widetilde{f}\sigma_r'$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="74" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img159.png"
 ALT="$\sigma_r'' =
\widetilde{f}\sigma_r'$"></SPAN> and <!-- MATH
 $A' = A\widetilde{f}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="70" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img160.png"
 ALT="$A' = A\widetilde{f}$"></SPAN>. For specifing the
effect of the flat-fielding, we introduce a new parameter, 
<SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img154.png"
 ALT="$\sigma_f$"></SPAN>.

<P>
Without reducing generality, we can arrange for <!-- MATH
 $\widetilde{f} = 1$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="47" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img161.png"
 ALT="$\widetilde{f} = 1$"></SPAN>. This means that the 
average values on the frames don't change with the flatfielding operation, and is a common 
choice.

<P>
In this case, <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img142.png"
 ALT="$\sigma_r$"></SPAN> and <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img136.png"
 ALT="$A$"></SPAN> aren't affected by the flatfielding operation, while the 
third noise parameter becomes <!-- MATH
 $\sigma_f/\widetilde{f}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="43" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img162.png"
 ALT="$\sigma_f/\widetilde{f}$"></SPAN>, which is the reciprocal of the SNR of 
the flat field.

<P>
<SMALL>GCX </SMALL>models the noise of each pixel in the frame by four parameters: <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img142.png"
 ALT="$\sigma_r$"></SPAN>, <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img136.png"
 ALT="$A$"></SPAN>, 
<!-- MATH
 $\sigma_f/\widetilde{f}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="43" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img162.png"
 ALT="$\sigma_f/\widetilde{f}$"></SPAN> and <!-- MATH
 $\widetilde{s_b}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
 SRC="img163.png"
 ALT="$\widetilde{s_b}$"></SPAN>. The noise function <SPAN CLASS="MATH"><IMG
 WIDTH="37" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img164.png"
 ALT="$n(s)$"></SPAN> of each pixel 
is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
n^2(s) = \sigma^2 = \sigma_r^2 + A |(s-\widetilde{s_b})| + 
\left(\frac{\sigma_f}{\widetilde{f}}\right)^2(s-\widetilde{s_b})^2
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="367" HEIGHT="58" BORDER="0"
 SRC="img165.png"
 ALT="\begin{displaymath}
n^2(s) = \sigma^2 = \sigma_r^2 + A \vert(s-\widetilde{s_b})\...
...t(\frac{\sigma_f}{\widetilde{f}}\right)^2(s-\widetilde{s_b})^2
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">16</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img142.png"
 ALT="$\sigma_r$"></SPAN> comes from the <TT>RDNOISE</TT> field in the frame header. <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img136.png"
 ALT="$A$"></SPAN> is the
reciprocal of the value of the <TT>ELADU</TT> field. <!-- MATH
 $\sigma_f/\widetilde{f}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="43" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img162.png"
 ALT="$\sigma_f/\widetilde{f}$"></SPAN> comes from
<TT>FLNOISE</TT>, while <!-- MATH
 $\widetilde{s_b}$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
 SRC="img163.png"
 ALT="$\widetilde{s_b}$"></SPAN> comes from <TT>DCBIAS</TT>. 

<P>
Every time frames are processed 
(dark and bias subtracted, flatfielded, scaled etc), the noise parameters are updated.

<P>

<H1><A NAME="SECTION001050000000000000000">
Instrumental Magnitude Error of a Star</A>
</H1>

<P>
Once we know the noise of each pixel, deriving the expected error of an instrumental magnitude 
is straightforward. Let <SPAN CLASS="MATH"><IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img166.png"
 ALT="$N_b$"></SPAN> be the number of pixels in the sky annulus, and <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img167.png"
 ALT="$s_i$"></SPAN> the level
of each pixel. The noise of the sky estimate is:<A NAME="tex2html68"
  HREF="footnode.html#foot1103"><SUP>A.<SPAN CLASS="arabic">1</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_b^2 = \frac{1}{N_b}\sum_{i=1}^{N_b}n^2(s_i)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="137" HEIGHT="59" BORDER="0"
 SRC="img168.png"
 ALT="\begin{displaymath}
\sigma_b^2 = \frac{1}{N_b}\sum_{i=1}^{N_b}n^2(s_i)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">17</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Now let <SPAN CLASS="MATH"><IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img169.png"
 ALT="$N_s$"></SPAN> be the number of pixels in the central aperture. The noise from these pixels is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_s^2 = \sum_{i=1}^{N_s}n^2(s_i)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="109" HEIGHT="58" BORDER="0"
 SRC="img170.png"
 ALT="\begin{displaymath}
\sigma_s^2 = \sum_{i=1}^{N_s}n^2(s_i)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">18</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The total noise after sky subtraction will be:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_n^2 = \sigma_s^2 + N_s \sigma_b^2.
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="122" HEIGHT="31" BORDER="0"
 SRC="img171.png"
 ALT="\begin{displaymath}
\sigma_n^2 = \sigma_s^2 + N_s \sigma_b^2.
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">19</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The program keeps track and reports separately the photon shot noise, the sky noise, 
the read noise contribution and the scintillation noise.

<P>
Scintillation is an atmospheric effect, which results in a random variation of the
received flux from a star. We use the following formula for scintillation noise:

<P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\sigma_{\rm sc} = 0.09 F \frac{A^{1.75}}{D^\frac{2}{3}\sqrt{2t}}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="145" HEIGHT="51" BORDER="0"
 SRC="img172.png"
 ALT="\begin{displaymath}
\sigma_{\rm sc} = 0.09 F \frac{A^{1.75}}{D^\frac{2}{3}\sqrt{2t}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">20</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Where <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img44.png"
 ALT="$F$"></SPAN> is the total flux received from the star, <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img136.png"
 ALT="$A$"></SPAN> is the airmass of the observation, 
<SPAN CLASS="MATH"><IMG
 WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img11.png"
 ALT="$D$"></SPAN> is the telescope aperture in cm, and <SPAN CLASS="MATH"><IMG
 WIDTH="11" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img6.png"
 ALT="$t$"></SPAN> is the integration time. Scintillation varies
widely over time, so the above is just an estimate.

<P>
Finally, we can calculate the expected error of the instrumental magnitude as
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\epsilon_i = 2.51188 \log\left(1 + \frac{\sqrt{\sigma_n^2 + \sigma_{\rm sc}^2}}{F}\right).
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="264" HEIGHT="54" BORDER="0"
 SRC="img173.png"
 ALT="\begin{displaymath}
\epsilon_i = 2.51188 \log\left(1 + \frac{\sqrt{\sigma_n^2 + \sigma_{\rm sc}^2}}{F}\right).
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">21</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>

<P>

<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html675"
  HREF="node11.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="/usr/share/latex2html/icons/next.png"></A> 
<A NAME="tex2html671"
  HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="/usr/share/latex2html/icons/up.png"></A> 
<A NAME="tex2html665"
  HREF="node9.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="/usr/share/latex2html/icons/prev.png"></A> 
<A NAME="tex2html673"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="/usr/share/latex2html/icons/contents.png"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html676"
  HREF="node11.html">Robust Averaging</A>
<B> Up:</B> <A NAME="tex2html672"
  HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html666"
  HREF="node9.html">Multi-Frame and All-Sky Reduction</A>
 &nbsp; <B>  <A NAME="tex2html674"
  HREF="node1.html">Contents</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
root
2005-11-27
</ADDRESS>
</BODY>
</HTML>