1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Noise Modelling</TITLE>
<META NAME="description" CONTENT="Noise Modelling">
<META NAME="keywords" CONTENT="gcx">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="gcx.css">
<LINK REL="next" HREF="node11.html">
<LINK REL="previous" HREF="node9.html">
<LINK REL="up" HREF="gcx.html">
<LINK REL="next" HREF="node11.html">
</HEAD>
<BODY >
<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html675"
HREF="node11.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html671"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html665"
HREF="node9.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html673"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html676"
HREF="node11.html">Robust Averaging</A>
<B> Up:</B> <A NAME="tex2html672"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html666"
HREF="node9.html">Multi-Frame and All-Sky Reduction</A>
<B> <A NAME="tex2html674"
HREF="node1.html">Contents</A></B>
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL CLASS="ChildLinks">
<LI><UL>
<LI><UL>
<LI><UL>
<LI><A NAME="tex2html677"
HREF="node10.html#SECTION001000010000000000000">Precision and Accuracy.</A>
<LI><A NAME="tex2html678"
HREF="node10.html#SECTION001000020000000000000">Noise</A>
</UL>
</UL>
</UL>
<BR>
<LI><A NAME="tex2html679"
HREF="node10.html#SECTION001010000000000000000">CCD Noise Sources</A>
<LI><A NAME="tex2html680"
HREF="node10.html#SECTION001020000000000000000">Noise of a Pixel Value</A>
<LI><A NAME="tex2html681"
HREF="node10.html#SECTION001030000000000000000">Dark Frame Subtraction</A>
<LI><A NAME="tex2html682"
HREF="node10.html#SECTION001040000000000000000">Flat Fielding</A>
<LI><A NAME="tex2html683"
HREF="node10.html#SECTION001050000000000000000">Instrumental Magnitude Error of a Star</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<H1><A NAME="SECTION001000000000000000000"></A><A NAME="ap:noise"></A>
<BR>
Noise Modelling
</H1>
<P>
The issue of noise modelling is essential in any photometric endeavour. Measurement values
are next to meaningless if they aren't acompanied by a measure of ther uncertainty.
<P>
One can assume that the noise and error modelling only applies to deriving an error figure.
This in true only in extremely simple cases. In general, the noise estimates will also affect
the actual values. For instance, suppose that we use several standards to calibrate a field.
From the noise estimate, we know that one of the standards has a large probable error. Then,
we choose to exclude (or downweight) that value from the solution--this will change the
calibration, and directly affect the result (not just it's noise estimate).
<P>
<H4><A NAME="SECTION001000010000000000000">
Precision and Accuracy.</A>
</H4> The precision of a measurement denotes the degree to
which different measurements of the same value will yield the same result; it measures the
repeatability of the measurement process. A precise measurement has a small <EM>random error</EM>.
<P>
The accuracy of a measurement denotes the degree to which a measurement result will represent
the true value. The accuracy includes the <EM>random error</EM> of the measurement, as well as
the <EM>systematic error</EM>.
<P>
Random errors are in a way the worst kind. We have to accept them and take into account, but
they cannot be calculated out. We can try to use better equipment, or more telescope time
and reduce them. On the other hand, since random errors are, well, random in nature (they
don't correlate to anything), we can in principle reduce them to an aribitrarily low level
by averaging a lerge number of measurements.
<P>
Systematic errors on the other hand can usually be eliminated (or at least reduced) by
calibration. Systematic errors are not that different from random errors. They differ
fundamentally in the fact the they depend on <EM>something</EM>. Of course, even random
errors ultimately depend on something. But that something changes incontrollably, and
in a time frame that is short compared to the measurement time scale.
<P>
A systematic error can turn into a random error if we have no control over the thing that
the error depends on, or we don't have something to calibrate against. We could treat this
error as ``random'' and try to average many measurements to reduce it, but we have to make
sure that the something that the error depends on has had a change to vary between the
measurements we average, or we won't get very far.
<P>
<H4><A NAME="SECTION001000020000000000000">
Noise</A>
</H4> is the ``randomest'' source of random errors. We have no way to
calibrate out noise, but it's features are well understood and relatively easy to model.
One doesn't have a good excuse not to model noise reasonably well.
<P>
We will generally talk about ``noise'' when estimating random errors that derive from
an electrical or optical noise source. Once these are combine with
other error sources (like for instance
expected errors of the standards), we will use the term ``error''. Of course, there are two
ways of understanding an error value. If we know what the true value should be, we can talk
about and <EM>actual error</EM>. If we just consider what error level we can expect, we talk
about an estimated, or <EM>expected error</EM>.
<P>
<H1><A NAME="SECTION001010000000000000000">
CCD Noise Sources</A>
</H1>
<P>
There are several noise sources in a CCD sensor. We will see that in the end they can
usually be modeled with just two parameters, but we list the main noise contributors
for reference.
<OL>
<LI><EM>Photon shot noise</EM> is the noise associated with the random arrival of photons
at any detector. Shot noise exists because of the discrete nature of light and
electrical charge. The time between photon arrivals is goverened by Poisson
statistics. For a phase-insensitive detector, such as a CCD,
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ph} = \sqrt{S_{\rm ph}}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="91" HEIGHT="36" BORDER="0"
SRC="img129.png"
ALT="\begin{displaymath}
\sigma_{\rm ph} = \sqrt{S_{\rm ph}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">1</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img130.png"
ALT="$S_{\rm ph}$"></SPAN> is the signal expressed in electrons. Shot noise is sometimes called
``Poisson noise''.
</LI>
<LI><EM>Output amplifier noise</EM> originates in the output amplifier of the sensor.
It consists of two components: thermal (white) noise and flicker noise. Thermal noise
is independent of frequency and has a mild temperature dependence (is proportional to
the square root of the absolute temperature). It fundamentally originates in the thermal
movement of atoms. Flicker noise (or <SPAN CLASS="MATH"><IMG
WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img131.png"
ALT="$1/f$"></SPAN> noise) is strongly dependent on frequency.
It originates in the existance of long-lived states in the silicon crystal (most notably
``traps'' at the silicon-oxide interface).
<P>
For a given readout configuration and speed, these noise sources contribute a constant
level, that is also independant of the signal level, usually called the <EM>readout noise</EM>.
The effect of read noise can be reduced by increasing the
time in which the sensor is read out. There is a limit to that, as
flicker noise will begin to kick in. For some cameras, one has the option of trading readout
speed for a decrease in readout noise.
<P>
</LI>
<LI><EM>Camera noise.</EM> Thermal and flicker noise are also generated in
the camera electronics. the noise level will be independent on the signal.
While the camera designer needs to make a distiction between the
various noise sources, for a given camera, noise originating in the camera and the ccd
amplifier are indistinguishable.
<P>
</LI>
<LI><EM>Dark current noise.</EM> Even in the absence of light, electron-hole pairs are generated
inside the sensor. The rate of generation depends exponentially on temperature (typically
doubles every 6-7 degrees). The thermally generated electrons cannot be separated from
photo-generated photons, and obey the same Poisson statistic, so
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm dark} = \sqrt{S_{\rm dark}}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="113" HEIGHT="30" BORDER="0"
SRC="img132.png"
ALT="\begin{displaymath}
\sigma_{\rm dark} = \sqrt{S_{\rm dark}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">2</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
We can subtract the average
dark signal, but the shot noise associated with it remains. The level of the dark current
noise depends on temperature and integration time.
<P>
</LI>
<LI><EM>Clock noise.</EM> Fast changing clocks on the ccd can also generate spurious charge.
This charge also has a shot noise component associated. However, one cannot read the sensor
without clocking it, so clock noise cannot be discerned from readout noise. The clock noise
is fairly constant for a given camera and readout speed, and independent of the signal level.
</LI>
</OL>
<P>
Examining the above list, we see that some noise sources are independent of the signal level.
They are: the output amplifier noise, camera noise and clock noise. They can be combined in
a single equivalent noise source. The level of this source is called <EM>readout noise</EM>, and
is a characteristic of the camera. It can be expressed in electrons, or in the camera output
units (ADU).
<P>
The rest of the noise sources are all shot noise sources. The resulting value will be:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm shot} = \sqrt{\sigma_{\rm ph}^2 + \sigma_{\rm dark}^2}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="159" HEIGHT="36" BORDER="0"
SRC="img133.png"
ALT="\begin{displaymath}
\sigma_{\rm shot} = \sqrt{\sigma_{\rm ph}^2 + \sigma_{\rm dark}^2}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm shot} = \sqrt{S_{\rm ph} + S_{\rm dark}} = \sqrt{S}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="209" HEIGHT="36" BORDER="0"
SRC="img134.png"
ALT="\begin{displaymath}
\sigma_{\rm shot} = \sqrt{S_{\rm ph} + S_{\rm dark}} = \sqrt{S}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img135.png"
ALT="$S$"></SPAN> is the total signal from the sensor above bias, expressed in electrons. So to calculate the
shot noise component, we just need to know how many ADUs/electron the camera produces. This
is a constant value, or one of a few constant values for cameras that have different gain
settings. We will use <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img136.png"
ALT="$A$"></SPAN> to denote this value.
<P>
<H1><A NAME="SECTION001020000000000000000">
Noise of a Pixel Value</A>
</H1>
We will now try to model the level of noise in a pixel value. The result of reading one pixel
(excluding noise) is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
s = s_b + A ( S_d + S_p)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="150" HEIGHT="32" BORDER="0"
SRC="img137.png"
ALT="\begin{displaymath}
s = s_b + A ( S_d + S_p)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img138.png"
ALT="$s_b$"></SPAN> is a fixed bias introduced by the camera electronics, <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img139.png"
ALT="$S_d$"></SPAN> is the number of
dark electrons, and <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img140.png"
ALT="$S_p$"></SPAN> is the number of photo-generated electrons (which is the number
of photons incident on the pixel multiplied by the sensor's quantum efficiency).
<P>
Now let's calculate the noise associated with this value.
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma^2 = \sigma_r^2 + A^2 (S_d + S_p) = \sigma_r^2 + A(s - s_b)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="304" HEIGHT="32" BORDER="0"
SRC="img141.png"
ALT="\begin{displaymath}
\sigma^2 = \sigma_r^2 + A^2 (S_d + S_p) = \sigma_r^2 + A(s - s_b)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Where <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img142.png"
ALT="$\sigma_r$"></SPAN> is the readout noise expressed in ADU, and <SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img135.png"
ALT="$S$"></SPAN> is the total signal
expressed in electrons. Note that we cannot calculate
the noise if we don't know the bias value. The bias can be determined by reading
frames with zero exposure time (bias frames). These will contribute some read noise though.
By averaging several bias frames, the noise contribution can be reduced. Another approach is
to take the average across a bias frame and use that value for the noise calculation of all
pixels. Except for very non-uniform sensors this approach works well. <SMALL>GCX </SMALL>supports both
ways.
<P>
Note that a bias frame will only contain readout noise. By calculating the standard
deviation of pixels across the difference between two bias frames we obtain <SPAN CLASS="MATH"><IMG
WIDTH="28" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
SRC="img143.png"
ALT="$\sqrt{2}$"></SPAN> times the
readout noise.
<P>
<H1><A NAME="SECTION001030000000000000000">
Dark Frame Subtraction</A>
</H1>
<P>
A common situation is when one subtracts a dark frame, but doesn't use bias frames.
The noise associated with the dark frame is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_d^2 = \sigma_r^2 + A^2 S_d
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="118" HEIGHT="31" BORDER="0"
SRC="img144.png"
ALT="\begin{displaymath}
\sigma_d^2 = \sigma_r^2 + A^2 S_d
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The resulting pixel noise after dark frame subtraction will be:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ds}^2 = 2\sigma_r^2 + A^2 (2 S_d + S_p)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="193" HEIGHT="32" BORDER="0"
SRC="img145.png"
ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = 2\sigma_r^2 + A^2 (2 S_d + S_p)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
while the signal will be
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
s_{\rm ds} = AS_p
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="74" HEIGHT="32" BORDER="0"
SRC="img146.png"
ALT="\begin{displaymath}
s_{\rm ds} = AS_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Using just the camera noise parameters, we cannot determine the noise anymore.
We have to keep track of the dark subtraction and it's noise effects. We however
rewrite the dark-subtracted noise equation as follows:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ds}^2 = \left(\sqrt{2\sigma_r^2 + 2 A^2 S_d}\right)^2 + A^2 S_p
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="248" HEIGHT="48" BORDER="0"
SRC="img147.png"
ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = \left(\sqrt{2\sigma_r^2 + 2 A^2 S_d}\right)^2 + A^2 S_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
If we use the notation <!-- MATH
$\sigma_r' = \sqrt{2\sigma_r^2 + 2 A^2 S_d}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="157" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img148.png"
ALT="$\sigma_r' = \sqrt{2\sigma_r^2 + 2 A^2 S_d}$"></SPAN>, we get:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ds}^2 = \sigma_r'^2 + A^2 S_p
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="127" HEIGHT="32" BORDER="0"
SRC="img149.png"
ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = \sigma_r'^2 + A^2 S_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">11</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
This is identical in form to the simple pixel noise equation, except that the true
camera readout noise is replaced by the equivalent read noise <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img150.png"
ALT="$\sigma_r'$"></SPAN>. What's more, the
bias is no longer an issue, as it doesn't appeear in the signal equation anymore. We can
derive the pixel noise from the signal directly, as:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ds}^2 = \sigma_r'^2 + As_{\rm ds}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="123" HEIGHT="31" BORDER="0"
SRC="img151.png"
ALT="\begin{displaymath}
\sigma_{\rm ds}^2 = \sigma_r'^2 + As_{\rm ds}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">12</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The same parameters, <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img150.png"
ALT="$\sigma_r'$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img136.png"
ALT="$A$"></SPAN> are sufficient to describe the noise in the
dark-subtracted frame.
<P>
<H1><A NAME="SECTION001040000000000000000">
Flat Fielding</A>
</H1>
<P>
To flat-field a frame, we divide the dark-subtracted pixel value <SPAN CLASS="MATH"><IMG
WIDTH="26" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img152.png"
ALT="$s_{\rm ds}$"></SPAN> by the flat field
value <SPAN CLASS="MATH"><IMG
WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img153.png"
ALT="$f$"></SPAN>. The noise of the flat field is <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img154.png"
ALT="$\sigma_f$"></SPAN>. The resulting signal value is
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
s_{\rm ff} = \frac{1}{f}AS_p
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="85" HEIGHT="45" BORDER="0"
SRC="img155.png"
ALT="\begin{displaymath}
s_{\rm ff} = \frac{1}{f}AS_p
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">13</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
If we neglect second-order noise terms, the noise of the flat-fielded, dark subtracted pixel
is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ff}^2 = f \sigma_r'^2 + A^2 S_p + \left(\frac{\sigma_f}{f}AS_p\right)^2
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="239" HEIGHT="49" BORDER="0"
SRC="img156.png"
ALT="\begin{displaymath}
\sigma_{\rm ff}^2 = f \sigma_r'^2 + A^2 S_p + \left(\frac{\sigma_f}{f}AS_p\right)^2
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">14</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm ff}^2 = f^2 \sigma_r'^2 + A f s_{\rm ff} + \left(\sigma_f s_{\rm ff}\right)^2
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="222" HEIGHT="32" BORDER="0"
SRC="img157.png"
ALT="\begin{displaymath}
\sigma_{\rm ff}^2 = f^2 \sigma_r'^2 + A f s_{\rm ff} + \left(\sigma_f s_{\rm ff}\right)^2
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">15</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The problem with this result is that f is not constant across the frame. So in general, the noise
of a flat-fielded frame cannot be described by a small number of parameters. In many cases though,
<SPAN CLASS="MATH"><IMG
WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img153.png"
ALT="$f$"></SPAN> doesn't vary too much across the frame. We can then use it's average value, <SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
SRC="img158.png"
ALT="$\widetilde{f}$"></SPAN>
for the noise calculation. This is the approach taken by the program.
<P>
We can identify the previous noise parameters, <!-- MATH
$\sigma_r'' =
\widetilde{f}\sigma_r'$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="74" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
SRC="img159.png"
ALT="$\sigma_r'' =
\widetilde{f}\sigma_r'$"></SPAN> and <!-- MATH
$A' = A\widetilde{f}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="70" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
SRC="img160.png"
ALT="$A' = A\widetilde{f}$"></SPAN>. For specifing the
effect of the flat-fielding, we introduce a new parameter,
<SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img154.png"
ALT="$\sigma_f$"></SPAN>.
<P>
Without reducing generality, we can arrange for <!-- MATH
$\widetilde{f} = 1$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="47" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
SRC="img161.png"
ALT="$\widetilde{f} = 1$"></SPAN>. This means that the
average values on the frames don't change with the flatfielding operation, and is a common
choice.
<P>
In this case, <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img142.png"
ALT="$\sigma_r$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img136.png"
ALT="$A$"></SPAN> aren't affected by the flatfielding operation, while the
third noise parameter becomes <!-- MATH
$\sigma_f/\widetilde{f}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
SRC="img162.png"
ALT="$\sigma_f/\widetilde{f}$"></SPAN>, which is the reciprocal of the SNR of
the flat field.
<P>
<SMALL>GCX </SMALL>models the noise of each pixel in the frame by four parameters: <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img142.png"
ALT="$\sigma_r$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img136.png"
ALT="$A$"></SPAN>,
<!-- MATH
$\sigma_f/\widetilde{f}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
SRC="img162.png"
ALT="$\sigma_f/\widetilde{f}$"></SPAN> and <!-- MATH
$\widetilde{s_b}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img163.png"
ALT="$\widetilde{s_b}$"></SPAN>. The noise function <SPAN CLASS="MATH"><IMG
WIDTH="37" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img164.png"
ALT="$n(s)$"></SPAN> of each pixel
is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
n^2(s) = \sigma^2 = \sigma_r^2 + A |(s-\widetilde{s_b})| +
\left(\frac{\sigma_f}{\widetilde{f}}\right)^2(s-\widetilde{s_b})^2
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="367" HEIGHT="58" BORDER="0"
SRC="img165.png"
ALT="\begin{displaymath}
n^2(s) = \sigma^2 = \sigma_r^2 + A \vert(s-\widetilde{s_b})\...
...t(\frac{\sigma_f}{\widetilde{f}}\right)^2(s-\widetilde{s_b})^2
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">16</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img142.png"
ALT="$\sigma_r$"></SPAN> comes from the <TT>RDNOISE</TT> field in the frame header. <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img136.png"
ALT="$A$"></SPAN> is the
reciprocal of the value of the <TT>ELADU</TT> field. <!-- MATH
$\sigma_f/\widetilde{f}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
SRC="img162.png"
ALT="$\sigma_f/\widetilde{f}$"></SPAN> comes from
<TT>FLNOISE</TT>, while <!-- MATH
$\widetilde{s_b}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img163.png"
ALT="$\widetilde{s_b}$"></SPAN> comes from <TT>DCBIAS</TT>.
<P>
Every time frames are processed
(dark and bias subtracted, flatfielded, scaled etc), the noise parameters are updated.
<P>
<H1><A NAME="SECTION001050000000000000000">
Instrumental Magnitude Error of a Star</A>
</H1>
<P>
Once we know the noise of each pixel, deriving the expected error of an instrumental magnitude
is straightforward. Let <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img166.png"
ALT="$N_b$"></SPAN> be the number of pixels in the sky annulus, and <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img167.png"
ALT="$s_i$"></SPAN> the level
of each pixel. The noise of the sky estimate is:<A NAME="tex2html68"
HREF="footnode.html#foot1103"><SUP>A.<SPAN CLASS="arabic">1</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_b^2 = \frac{1}{N_b}\sum_{i=1}^{N_b}n^2(s_i)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="137" HEIGHT="59" BORDER="0"
SRC="img168.png"
ALT="\begin{displaymath}
\sigma_b^2 = \frac{1}{N_b}\sum_{i=1}^{N_b}n^2(s_i)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">17</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Now let <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img169.png"
ALT="$N_s$"></SPAN> be the number of pixels in the central aperture. The noise from these pixels is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_s^2 = \sum_{i=1}^{N_s}n^2(s_i)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="109" HEIGHT="58" BORDER="0"
SRC="img170.png"
ALT="\begin{displaymath}
\sigma_s^2 = \sum_{i=1}^{N_s}n^2(s_i)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">18</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The total noise after sky subtraction will be:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_n^2 = \sigma_s^2 + N_s \sigma_b^2.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="122" HEIGHT="31" BORDER="0"
SRC="img171.png"
ALT="\begin{displaymath}
\sigma_n^2 = \sigma_s^2 + N_s \sigma_b^2.
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">19</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The program keeps track and reports separately the photon shot noise, the sky noise,
the read noise contribution and the scintillation noise.
<P>
Scintillation is an atmospheric effect, which results in a random variation of the
received flux from a star. We use the following formula for scintillation noise:
<P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{\rm sc} = 0.09 F \frac{A^{1.75}}{D^\frac{2}{3}\sqrt{2t}}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="145" HEIGHT="51" BORDER="0"
SRC="img172.png"
ALT="\begin{displaymath}
\sigma_{\rm sc} = 0.09 F \frac{A^{1.75}}{D^\frac{2}{3}\sqrt{2t}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">20</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Where <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img44.png"
ALT="$F$"></SPAN> is the total flux received from the star, <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img136.png"
ALT="$A$"></SPAN> is the airmass of the observation,
<SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img11.png"
ALT="$D$"></SPAN> is the telescope aperture in cm, and <SPAN CLASS="MATH"><IMG
WIDTH="11" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img6.png"
ALT="$t$"></SPAN> is the integration time. Scintillation varies
widely over time, so the above is just an estimate.
<P>
Finally, we can calculate the expected error of the instrumental magnitude as
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\epsilon_i = 2.51188 \log\left(1 + \frac{\sqrt{\sigma_n^2 + \sigma_{\rm sc}^2}}{F}\right).
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="264" HEIGHT="54" BORDER="0"
SRC="img173.png"
ALT="\begin{displaymath}
\epsilon_i = 2.51188 \log\left(1 + \frac{\sqrt{\sigma_n^2 + \sigma_{\rm sc}^2}}{F}\right).
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(A.<SPAN CLASS="arabic">21</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html675"
HREF="node11.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html671"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html665"
HREF="node9.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html673"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html676"
HREF="node11.html">Robust Averaging</A>
<B> Up:</B> <A NAME="tex2html672"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html666"
HREF="node9.html">Multi-Frame and All-Sky Reduction</A>
<B> <A NAME="tex2html674"
HREF="node1.html">Contents</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
root
2005-11-27
</ADDRESS>
</BODY>
</HTML>
|