1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Robust Averaging</TITLE>
<META NAME="description" CONTENT="Robust Averaging">
<META NAME="keywords" CONTENT="gcx">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="gcx.css">
<LINK REL="next" HREF="node12.html">
<LINK REL="previous" HREF="node10.html">
<LINK REL="up" HREF="gcx.html">
<LINK REL="next" HREF="node12.html">
</HEAD>
<BODY >
<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html694"
HREF="node12.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html690"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html684"
HREF="node10.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html692"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html695"
HREF="node12.html">Native Star Files</A>
<B> Up:</B> <A NAME="tex2html691"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html685"
HREF="node10.html">Noise Modelling</A>
<B> <A NAME="tex2html693"
HREF="node1.html">Contents</A></B>
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION001100000000000000000"></A><A NAME="ap:robust"></A>
<BR>
Robust Averaging
</H1>
<P>
A robust averaging algorithm is implemented by <SMALL>GCX </SMALL>and used in
several places, most notably for zeropoint fitting by the aperture
photometry and multiframe reduction routines.
The algorithm calculates the robust average of a number of values
(for the zeropoint routines, these are the differences between the
standard and instrumental magnitudes of standard stars).
<P>
The data used consists of the values we want to calculate, and
the estimated error of each value. For fitting frame zeropoints
they are:
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray}
y_k = S_k - I_k\\
\epsilon^2_k = \epsilon_{ik}^2 + \epsilon_{sk}^2
\end{eqnarray}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="100" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img174.png"
ALT="$\displaystyle y_k = S_k - I_k$"></TD>
<TD> </TD>
<TD> </TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">1</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="105" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img175.png"
ALT="$\displaystyle \epsilon^2_k = \epsilon_{ik}^2 + \epsilon_{sk}^2$"></TD>
<TD> </TD>
<TD> </TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">2</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img135.png"
ALT="$S$"></SPAN> is the standard magnitude, <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img13.png"
ALT="$I$"></SPAN> is the instrumental magnitude,
<SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img176.png"
ALT="$\epsilon_i$"></SPAN> is the estimated error of the instrumental magnitude,
<SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img177.png"
ALT="$\epsilon_s$"></SPAN> is the error of the standard magnitude of each star.
Each star is assigned a <EM>natural weight</EM>, calculated as
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
W_k = \frac{1}{\epsilon_k^2}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="64" HEIGHT="47" BORDER="0"
SRC="img178.png"
ALT="\begin{displaymath}
W_k = \frac{1}{\epsilon_k^2}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
We start with a very robust estimate of the average:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{Z}={\rm median}(y_k)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="119" HEIGHT="31" BORDER="0"
SRC="img179.png"
ALT="\begin{displaymath}
\widetilde{Z}={\rm median}(y_k)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
and calculate the <EM>residuals</EM> of each value:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\rho_k=y_k - \widetilde{Z}
\end{equation}
-->
<A NAME="eq:residuals"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:residuals"></A><IMG
WIDTH="92" HEIGHT="30" BORDER="0"
SRC="img180.png"
ALT="\begin{displaymath}
\rho_k=y_k - \widetilde{Z}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
and the <EM>standard errors</EM>:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\rho'_k=(y_k - \widetilde{Z})\sqrt{W_k}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="146" HEIGHT="31" BORDER="0"
SRC="img181.png"
ALT="\begin{displaymath}
\rho'_k=(y_k - \widetilde{Z})\sqrt{W_k}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The expected value of each standard error is 1. We can identify
possible outliers by their large standard errors. A simple way to
treat outliers is to just exclude from the fit any value that has a
standard error larger than a certain threshold. This has the
disadvantage that small changes in the values can cause large jumps in
the solution if an outlier just crosses the threshold. Instead, we
adjust the weights of the data points to reduce the outliers'
contribution to the solution:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
W'_k = \frac{W_k}{1 + \left({\rho'_k}\over{\alpha}\right)^\beta}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="125" HEIGHT="62" BORDER="0"
SRC="img182.png"
ALT="\begin{displaymath}
W'_k = \frac{W_k}{1 + \left({\rho'_k}\over{\alpha}\right)^\beta}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The weighting function reduces the weight of values that have residuals <SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img183.png"
ALT="$\alpha$"></SPAN> times larger
than expected to one half. Of course values with even larger residuals are downweighted even
more. The parameter <SPAN CLASS="MATH"><IMG
WIDTH="15" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img184.png"
ALT="$\beta$"></SPAN> tunes the ``sharpness'' of the weighting
function.<A NAME="tex2html69"
HREF="footnode.html#foot1264"><SUP>B.<SPAN CLASS="arabic">1</SPAN></SUP></A>A new estimate of the average is produced by:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{Z}=\sum_k(y_k-\widetilde{Z})W'_k
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="147" HEIGHT="48" BORDER="0"
SRC="img185.png"
ALT="\begin{displaymath}
\widetilde{Z}=\sum_k(y_k-\widetilde{Z})W'_k
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The residual calculation, weighting and average estimating are
iterated until the estimate doesn't change.
<P>
Finally, the error for the estimated parameters is calculated.
the error of the zero point is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\epsilon_{\rm zp}^2 = \frac{\sum\rho_k^2W'_k}{\sum W'_k}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="107" HEIGHT="50" BORDER="0"
SRC="img186.png"
ALT="\begin{displaymath}
\epsilon_{\rm zp}^2 = \frac{\sum\rho_k^2W'_k}{\sum W'_k}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
and the <EM>mean error of unit weight</EM> is:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
{\rm me1}^2 = \frac{\sum\rho_k^2W'_k}{N-1}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="126" HEIGHT="46" BORDER="0"
SRC="img187.png"
ALT="\begin{displaymath}
{\rm me1}^2 = \frac{\sum\rho_k^2W'_k}{N-1}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(B.<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img31.png"
ALT="$N$"></SPAN> is the number of standard stars. The mean error of unit weight
is 1 in the ideal case (when all the errors are estimated correctly). A significantly
larger value should raise doubts about the error estimates.
<P>
<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html694"
HREF="node12.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html690"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html684"
HREF="node10.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html692"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html695"
HREF="node12.html">Native Star Files</A>
<B> Up:</B> <A NAME="tex2html691"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html685"
HREF="node10.html">Noise Modelling</A>
<B> <A NAME="tex2html693"
HREF="node1.html">Contents</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
root
2005-11-27
</ADDRESS>
</BODY>
</HTML>
|