1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>CCD Reduction</TITLE>
<META NAME="description" CONTENT="CCD Reduction">
<META NAME="keywords" CONTENT="gcx">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="gcx.css">
<LINK REL="next" HREF="node8.html">
<LINK REL="previous" HREF="node6.html">
<LINK REL="up" HREF="gcx.html">
<LINK REL="next" HREF="node8.html">
</HEAD>
<BODY >
<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html589"
HREF="node8.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html585"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html579"
HREF="node6.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html587"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html590"
HREF="node8.html">Aperture Photometry</A>
<B> Up:</B> <A NAME="tex2html586"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html580"
HREF="node6.html">World Coordinates</A>
<B> <A NAME="tex2html588"
HREF="node1.html">Contents</A></B>
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL CLASS="ChildLinks">
<LI><A NAME="tex2html591"
HREF="node7.html#SECTION00710000000000000000">CCD Camera Response Model</A>
<LI><A NAME="tex2html592"
HREF="node7.html#SECTION00720000000000000000">Bias and Dark Frames</A>
<UL>
<LI><A NAME="tex2html593"
HREF="node7.html#SECTION00720010000000000000">Dark frames</A>
<LI><A NAME="tex2html594"
HREF="node7.html#SECTION00720020000000000000">Noise contribution of bias and dark frames.</A>
<LI><A NAME="tex2html595"
HREF="node7.html#SECTION00721000000000000000">Working without Bias Frames</A>
</UL>
<BR>
<LI><A NAME="tex2html596"
HREF="node7.html#SECTION00730000000000000000">Flat-field Frames</A>
<LI><A NAME="tex2html597"
HREF="node7.html#SECTION00740000000000000000">Reducing the Data Frames</A>
<LI><A NAME="tex2html598"
HREF="node7.html#SECTION00750000000000000000">Frame Combining Methods</A>
<UL>
<LI><A NAME="tex2html599"
HREF="node7.html#SECTION00750010000000000000">Average</A>
<LI><A NAME="tex2html600"
HREF="node7.html#SECTION00750020000000000000">Median</A>
<LI><A NAME="tex2html601"
HREF="node7.html#SECTION00750030000000000000">Mean-Median</A>
<LI><A NAME="tex2html602"
HREF="node7.html#SECTION00750040000000000000">Kappa-Sigma Clipping</A>
</UL>
<BR>
<LI><A NAME="tex2html603"
HREF="node7.html#SECTION00760000000000000000">CCD Reduction with gcx</A>
<UL>
<LI><A NAME="tex2html604"
HREF="node7.html#SECTION00761000000000000000">Loading and Selecting Image Frames</A>
<LI><A NAME="tex2html605"
HREF="node7.html#SECTION00762000000000000000">Creating a Master Bias or Master Dark Frame</A>
<LI><A NAME="tex2html606"
HREF="node7.html#SECTION00763000000000000000">Creating a Bias-Subtracted Master Dark Frame</A>
<LI><A NAME="tex2html607"
HREF="node7.html#SECTION00764000000000000000">Creating a Master Flat Frame</A>
<UL>
<LI><A NAME="tex2html608"
HREF="node7.html#SECTION00764010000000000000">Making a Superflat</A>
</UL>
<LI><A NAME="tex2html609"
HREF="node7.html#SECTION00765000000000000000">Reducing the Data Frames</A>
<LI><A NAME="tex2html610"
HREF="node7.html#SECTION00766000000000000000">Aligning and Stacking Frames</A>
<LI><A NAME="tex2html611"
HREF="node7.html#SECTION00767000000000000000">Running CCD Reductions from the Command Line</A>
</UL></UL>
<!--End of Table of Child-Links-->
<HR>
<H1><A NAME="SECTION00700000000000000000">
CCD Reduction</A>
</H1>
<P>
Ideally, an image taked by a CCD camera through a telescope will give accurate information
about the light flux distribution over a portion of the sky. Unfortunately, this is not
generally the case. Instrument imperfections and the discrete nature of light itself
concur to introduce errors in the measured data. The errors (differences between
the measured values and the ``true'' ones) are the result of several factors, some
random in nature, and some deteministic.
<P>
The goal of the CCD reduction process is to eliminate (or at least minimise) the contribution
of deterministic factors in the errors, in other words to remove the <EM>instrument signature</EM>
from the data.
<P>
A second, but not less important, goal is to preserve information about the noise sources, so that
users of the reduced data can evaluate the random errors of the data.
<P>
We begin this chapter by describing the way the general CCD reduction
process works, and in the process define bias, dark and flat
files. The second part of the chapter is devoted to the practical
implementation of the reduction tasks in the program.
<P>
<H1><A NAME="SECTION00710000000000000000">
CCD Camera Response Model</A>
</H1>
Raw pixel values for a CCD frame can be calculated as
follows:<A NAME="tex2html18"
HREF="footnode.html#foot372"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">1</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
s(x,y) = B(x,y) + t D(x,y) + t G(x, y) I(x, y) + {\rm noise}
\end{equation}
-->
<A NAME="eq:ccd1"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ccd1"></A><IMG
WIDTH="398" HEIGHT="31" BORDER="0"
SRC="img4.png"
ALT="\begin{displaymath}
s(x,y) = B(x,y) + t D(x,y) + t G(x, y) I(x, y) + {\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">1</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="59" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img5.png"
ALT="$B(x,y)$"></SPAN> is the <EM>bias</EM> value of each pixel, <SPAN CLASS="MATH"><IMG
WIDTH="11" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img6.png"
ALT="$t$"></SPAN> is the integration time,
<SPAN CLASS="MATH"><IMG
WIDTH="60" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img7.png"
ALT="$D(x,y)$"></SPAN> is the <EM>dark current</EM>,
<SPAN CLASS="MATH"><IMG
WIDTH="58" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img8.png"
ALT="$G(x,y)$"></SPAN> is the <EM>sensitivity</EM> and <SPAN CLASS="MATH"><IMG
WIDTH="54" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img9.png"
ALT="$I(x,y)$"></SPAN> is the light flux reaching the pixel.
We cannot predict the instantaneous values of the noise component but some statistics
about it can be calculated (Appendix <A HREF="node10.html#ap:noise">A</A>).
<P>
To estimate the flux values reaching the sensor from the raw frame, we need to
estimate <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img11.png"
ALT="$D$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img12.png"
ALT="$G$"></SPAN>. After that, Equation <A HREF="#eq:ccd1">6.1</A> can be solved for <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img13.png"
ALT="$I$"></SPAN>.
<SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img11.png"
ALT="$D$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img12.png"
ALT="$G$"></SPAN> are calculated starting from calibration frames taken
under controlled conditions:
<EM>bias</EM>, <EM>dark</EM> and <EM>flat</EM> frames.
<P>
<H1><A NAME="SECTION00720000000000000000">
Bias and Dark Frames</A>
</H1>
<P>
If we take very short exposures without opening the camera's shutter (<EM>bias frames</EM>
<SPAN CLASS="MATH"><IMG
WIDTH="43" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img14.png"
ALT="$t = 0$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="86" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img15.png"
ALT="$I(x,y)=0$"></SPAN>; Equation (<A HREF="#eq:ccd1">6.1</A>) becomes:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
b(x,y) = B(x,y) + {\rm noise}
\end{equation}
-->
<A NAME="eq:bias"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:bias"></A><IMG
WIDTH="183" HEIGHT="31" BORDER="0"
SRC="img16.png"
ALT="\begin{displaymath}
b(x,y) = B(x,y) + {\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">2</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
To obtain an estimate of <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN>, we simply use <SPAN CLASS="MATH"><IMG
WIDTH="12" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img17.png"
ALT="$b$"></SPAN>:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{B}(x,y) = b(x,y)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="124" HEIGHT="31" BORDER="0"
SRC="img18.png"
ALT="\begin{displaymath}
\widetilde{B}(x,y) = b(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
We use the tilde to denote that we can only estimate <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN>, because of the noise. If we average
several bias frames together we can get arbitrarily close to <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN>, as the relative noise
contribution decreases with the square root of the number of frames averaged.
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{B}(x,y) = \frac{1}{N}\sum_i b_i(x,y)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="178" HEIGHT="51" BORDER="0"
SRC="img19.png"
ALT="\begin{displaymath}
\widetilde{B}(x,y) = \frac{1}{N}\sum_i b_i(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
We will call this the <EM>master bias frame</EM>.
<P>
<H4><A NAME="SECTION00720010000000000000">
Dark frames</A>
</H4> If we now take longer exposures with the shutter closed,
we obtain <EM>dark frames</EM>:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
d(x,y) = B(x,y)+tD(x,y)+{\rm noise}
\end{equation}
-->
<A NAME="eq:dark"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:dark"></A><IMG
WIDTH="268" HEIGHT="31" BORDER="0"
SRC="img20.png"
ALT="\begin{displaymath}
d(x,y) = B(x,y)+tD(x,y)+{\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
From this, we can simply subtract the bias and divide by the exposure time, and we get
our dark current estimate:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{D}(x,y) = \frac{d(x,y) - \widetilde{B}(x,y)}{t_{\rm dark}}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="206" HEIGHT="50" BORDER="0"
SRC="img21.png"
ALT="\begin{displaymath}
\widetilde{D}(x,y) = \frac{d(x,y) - \widetilde{B}(x,y)}{t_{\rm dark}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Of course, to reduce the noise contribution we can also average several dark frames:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{D}(x,y) = \frac{1}{t_{\rm dark}}\frac{1}{M}\sum_i d_i(x,y) - \widetilde{B}(x,y)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="296" HEIGHT="51" BORDER="0"
SRC="img22.png"
ALT="\begin{displaymath}
\widetilde{D}(x,y) = \frac{1}{t_{\rm dark}}\frac{1}{M}\sum_i d_i(x,y) - \widetilde{B}(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
It is convenient to work with a different form of the dark current frame:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{D}'(x,y)=t_{\rm dark}\widetilde{D}(x,y)=\frac{1}{M}\sum_i d_i(x,y) - \widetilde{B}(x,y)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="375" HEIGHT="51" BORDER="0"
SRC="img23.png"
ALT="\begin{displaymath}
\widetilde{D}'(x,y)=t_{\rm dark}\widetilde{D}(x,y)=\frac{1}{M}\sum_i d_i(x,y) - \widetilde{B}(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
which will be called the <EM>bias subtracted master dark frame</EM>.
<P>
If we have a data frame with an integration time of <SPAN CLASS="MATH"><IMG
WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img24.png"
ALT="$t_{\rm data}$"></SPAN>, the first two
terms in (<A HREF="#eq:ccd1">6.1</A>) are estimated by the <EM>master dark</EM> frame <!-- MATH
$\widetilde{D}_M$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="34" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
SRC="img25.png"
ALT="$\widetilde{D}_M$"></SPAN>:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{D}_M(x,y)
=\widetilde{B}(x,y) + t_{\rm data}\widetilde{D}(x,y)=
\widetilde{B}(x,y)+\frac{t_{\rm data}}{t_{\rm dark}}\widetilde{D}'(x,y)
\end{equation}
-->
<A NAME="eq:mdark"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:mdark"></A><IMG
WIDTH="452" HEIGHT="44" BORDER="0"
SRC="img26.png"
ALT="\begin{displaymath}
\widetilde{D}_M(x,y)
=\widetilde{B}(x,y) + t_{\rm data}\wide...
...e{B}(x,y)+\frac{t_{\rm data}}{t_{\rm dark}}\widetilde{D}'(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
<H4><A NAME="SECTION00720020000000000000">
Noise contribution of bias and dark frames.</A>
</H4>
A detailed description of noise sources in CCD cameras is provided in Appendix <A HREF="node10.html#ap:noise">A</A>.
If the dark current contribution is not very large, the <EM>noise</EM> terms of (<A HREF="#eq:bias">6.2</A>) and
(<A HREF="#eq:dark">6.5</A>) are both equal to the camera <EM>read noise</EM>.
<P>
If we use our estimated <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\widetilde{B}$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$\widetilde{D}$"></SPAN> to reduce a data frame with
an integration time of <SPAN CLASS="MATH"><IMG
WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img24.png"
ALT="$t_{\rm data}$"></SPAN>, the bias and dark subtraction will contribute a
noise level of:<A NAME="tex2html19"
HREF="footnode.html#foot453"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">2</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{DB} = N_R\sqrt{\frac{1}{N}+\frac{1}{M}
\left(\frac{t_{\rm data}}{t_{\rm dark}}\right)^2}
\end{equation}
-->
<A NAME="eq:dbnoise"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:dbnoise"></A><IMG
WIDTH="232" HEIGHT="55" BORDER="0"
SRC="img29.png"
ALT="\begin{displaymath}
\sigma_{DB} = N_R\sqrt{\frac{1}{N}+\frac{1}{M}
\left(\frac{t_{\rm data}}{t_{\rm dark}}\right)^2}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img30.png"
ALT="$N_R$"></SPAN> is the camera read noise, <SPAN CLASS="MATH"><IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img31.png"
ALT="$N$"></SPAN> is the number of bias frames averaged, <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img32.png"
ALT="$M$"></SPAN> the number of
dark frames averaged and <SPAN CLASS="MATH"><IMG
WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img33.png"
ALT="$t_{\rm dark}$"></SPAN> the integration time used for the dark frames.
<P>
We generally want to keep the square root in (<A HREF="#eq:dbnoise">6.10</A>) between <SPAN CLASS="MATH"><IMG
WIDTH="30" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img34.png"
ALT="$1/3$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img35.png"
ALT="$1$"></SPAN>.
A value lower than <SPAN CLASS="MATH"><IMG
WIDTH="30" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img34.png"
ALT="$1/3$"></SPAN> will provide a negligible improvement in the overall signal/noise
ratio, while for values larger than 1, this term will dominate the camera read noise and
become significant.
<P>
<H2><A NAME="SECTION00721000000000000000">
Working without Bias Frames</A>
</H2>
It is easy to observe from (<A HREF="#eq:mdark">6.9</A>) that we can obtain our master dark frame by simply
averaging dark frames taken with the same integration time as our data frames. In this
case, we don't need the bias frames at all:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{D}_M(x,y) = \frac{1}{M}\sum_i d_i(x,y)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="198" HEIGHT="51" BORDER="0"
SRC="img36.png"
ALT="\begin{displaymath}
\widetilde{D}_M(x,y) = \frac{1}{M}\sum_i d_i(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">11</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
As a bonus, the noise contribution of the master dark frame is reduced to:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\sigma_{D} = N_R\sqrt{\frac{1}{M}}
\end{equation}
-->
<A NAME="eq:dnoise"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:dnoise"></A><IMG
WIDTH="108" HEIGHT="45" BORDER="0"
SRC="img37.png"
ALT="\begin{displaymath}
\sigma_{D} = N_R\sqrt{\frac{1}{M}}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">12</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
In general, people using large telescopes and <SPAN CLASS="MATH"><IMG
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img38.png"
ALT="$LN_2$"></SPAN> cooled cameras preffer using bias frames,
as they require less time than dark frames; The dark current of these cameras is
very low and stable, and a single set of darks can be used to reduce many
observations. Users of thermoelectrically-cooled cameras, which have more significant
dark currents, are more likely to use dark frames exclussively.
<P>
<H1><A NAME="SECTION00730000000000000000">
Flat-field Frames</A>
</H1>
<P>
With <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img11.png"
ALT="$D$"></SPAN> out of the way, we need a way to estimate <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img12.png"
ALT="$G$"></SPAN> in (<A HREF="#eq:ccd1">6.1</A>) before we can
recover the incident flux. To do this, we apply a flat-field (even)
illumination to
the camera<A NAME="tex2html20"
HREF="footnode.html#foot481"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">3</SPAN></SUP></A>and acquire several <EM>flat-field frames</EM>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
f(x,y)=B(x,y)+t_{\rm flat}D(x,y)+t_{\rm flat}G(x,y)L+{\rm noise}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="403" HEIGHT="31" BORDER="0"
SRC="img39.png"
ALT="\begin{displaymath}
f(x,y)=B(x,y)+t_{\rm flat}D(x,y)+t_{\rm flat}G(x,y)L+{\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">13</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img40.png"
ALT="$L$"></SPAN> is the light flux reaching each pixel, assumed equal across the frame.
<P>
We then calculate a master dark frame for the flat fields <SPAN CLASS="MATH"><IMG
WIDTH="74" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img41.png"
ALT="$D_M^F(x,y)$"></SPAN> and subtract it from the
flats, obtaining:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
f'(x,y)=f(x,y)-D_M^F(x,y)=t_{\rm flat}G(x,y)L+{\rm noise}
\end{equation}
-->
<A NAME="eq:flat1"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:flat1"></A><IMG
WIDTH="394" HEIGHT="31" BORDER="0"
SRC="img42.png"
ALT="\begin{displaymath}
f'(x,y)=f(x,y)-D_M^F(x,y)=t_{\rm flat}G(x,y)L+{\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">14</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Again, to reduce the noise contribution, we usually average several flat frames, to arrive at a
<EM>master flat</EM> frame
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{F}_M(x,y) = \frac{1}{N}\sum_i f'(x,y) = \frac{1}{N}\sum_i f(x,y)-D_M^F(x,y)
\end{equation}
-->
<A NAME="eq:flat2"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:flat2"></A><IMG
WIDTH="406" HEIGHT="51" BORDER="0"
SRC="img43.png"
ALT="\begin{displaymath}
\widetilde{F}_M(x,y) = \frac{1}{N}\sum_i f'(x,y) = \frac{1}{N}\sum_i f(x,y)-D_M^F(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">15</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
If we knew <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img44.png"
ALT="$F$"></SPAN>, we could solve the above equation for <SPAN CLASS="MATH"><IMG
WIDTH="58" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img8.png"
ALT="$G(x,y)$"></SPAN>. However, the aboslute value of
<SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img44.png"
ALT="$F$"></SPAN> is not known, and in many cases can vary between different flats. So, instead of
calibrating the absolute value of <SPAN CLASS="MATH"><IMG
WIDTH="58" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img8.png"
ALT="$G(x,y)$"></SPAN>, we only try to remove it's variation across
the frame. We write:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
G(x,y)=\bar{G}g(x,y)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="138" HEIGHT="31" BORDER="0"
SRC="img45.png"
ALT="\begin{displaymath}
G(x,y)=\bar{G}g(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">16</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where the average of <SPAN CLASS="MATH"><IMG
WIDTH="54" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img46.png"
ALT="$g(x,y)$"></SPAN> across the frame is 1. (<A HREF="#eq:flat2">6.15</A>) becomes:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{F}_M(x,y)=t_{\rm flat}\bar{G}g(x,y)L
\end{equation}
-->
<A NAME="eq:flat3"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:flat3"></A><IMG
WIDTH="191" HEIGHT="31" BORDER="0"
SRC="img47.png"
ALT="\begin{displaymath}
\widetilde{F}_M(x,y)=t_{\rm flat}\bar{G}g(x,y)L
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">17</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
We take the average of <!-- MATH
$\widetilde{F}_M(x,y)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="71" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
SRC="img48.png"
ALT="$\widetilde{F}_M(x,y)$"></SPAN> across the frame:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\bar{F}=\sum_x\sum_yt_{\rm flat}\bar{G}g(x,y)L=t_{\rm flat}\bar{G}L\sum_x\sum_yg(x,y)=
t_{\rm flat}\bar{G}L
\end{equation}
-->
<A NAME="eq:flat4"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:flat4"></A><IMG
WIDTH="445" HEIGHT="49" BORDER="0"
SRC="img49.png"
ALT="\begin{displaymath}
\bar{F}=\sum_x\sum_yt_{\rm flat}\bar{G}g(x,y)L=t_{\rm flat}\bar{G}L\sum_x\sum_yg(x,y)=
t_{\rm flat}\bar{G}L
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">18</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Dividing equation <A HREF="#eq:flat3">6.17</A> by <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img50.png"
ALT="$\bar{F}$"></SPAN>, we obtain:<A NAME="tex2html21"
HREF="footnode.html#foot525"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">4</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\frac{\widetilde{F}_M(x,y)}{\bar{F}}=g(x,y)
\end{equation}
-->
<A NAME="eq:flat5"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:flat5"></A><IMG
WIDTH="139" HEIGHT="47" BORDER="0"
SRC="img51.png"
ALT="\begin{displaymath}
\frac{\widetilde{F}_M(x,y)}{\bar{F}}=g(x,y)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">19</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
<H1><A NAME="SECTION00740000000000000000">
Reducing the Data Frames</A>
</H1>
Armed with our master dark and master flat frames, we can proceed to reduce our data frame.
Starting from:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
s(x,y) = B(x,y) + t_{data} D(x,y) + t_{\rm data} \bar{G} g(x, y) I(x, y)) + {\rm noise}
\end{equation}
-->
<A NAME="eq:ccd2"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ccd2"></A><IMG
WIDTH="468" HEIGHT="31" BORDER="0"
SRC="img52.png"
ALT="\begin{displaymath}
s(x,y) = B(x,y) + t_{data} D(x,y) + t_{\rm data} \bar{G} g(x, y) I(x, y)) + {\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">20</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
we subtract the master dark frame (<A HREF="#eq:mdark">6.9</A>) and divide by the normalised
master flat (<A HREF="#eq:flat5">6.19</A>) and obtain:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\frac{\bar{F}}{\widetilde{F}_M(x,y)}[s(x,y) - \widetilde{D}_M(x,y)] =
t_{\rm data} \bar{G} I(x,y) + {\rm noise}
\end{equation}
-->
<A NAME="eq:ccd3"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ccd3"></A><IMG
WIDTH="396" HEIGHT="51" BORDER="0"
SRC="img53.png"
ALT="\begin{displaymath}
\frac{\bar{F}}{\widetilde{F}_M(x,y)}[s(x,y) - \widetilde{D}_M(x,y)] =
t_{\rm data} \bar{G} I(x,y) + {\rm noise}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">21</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{I}(x,y) = \frac{1}{\bar{G}\cdot t_{\rm data}}\frac{\bar{F}}{\widetilde{F}_M(x,y)}
[s(x,y) - \widetilde{D}_M(x,y)]
\end{equation}
-->
<A NAME="eq:ccd4"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ccd4"></A><IMG
WIDTH="354" HEIGHT="51" BORDER="0"
SRC="img54.png"
ALT="\begin{displaymath}
\widetilde{I}(x,y) = \frac{1}{\bar{G}\cdot t_{\rm data}}\frac{\bar{F}}{\widetilde{F}_M(x,y)}
[s(x,y) - \widetilde{D}_M(x,y)]
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">22</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Or, in terms of the master bias and bias-subtracted master dark frames:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\widetilde{I}(x,y) = \frac{1}{\bar{G}\cdot t_{\rm data}}\frac{\bar{F}}{\widetilde{F}_M(x,y)}
[s(x,y) - \frac{t_{\rm data}}{t_{\rm dark}}\widetilde{D}'(x,y) - \widetilde{B}(x,y)]
\end{equation}
-->
<A NAME="eq:ccd5"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ccd5"></A><IMG
WIDTH="457" HEIGHT="51" BORDER="0"
SRC="img55.png"
ALT="\begin{displaymath}
\widetilde{I}(x,y) = \frac{1}{\bar{G}\cdot t_{\rm data}}\fra...
... data}}{t_{\rm dark}}\widetilde{D}'(x,y) - \widetilde{B}(x,y)]
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">23</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
We have obtained an estimate of the incident light flux up to a constant
(<!-- MATH
$\bar{G}t_{\rm data}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="51" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$\bar{G}t_{\rm data}$"></SPAN>) which represents the average sensitivity of the camera
multiplied by the integration time, which is the best we can do without a reference
source calibrated in absolute units.
<P>
<H1><A NAME="SECTION00750000000000000000"></A><A NAME="sec:combining"></A>
<BR>
Frame Combining Methods
</H1>
<P>
Earlier in this chapter we mentioned that it is useful in many cases to ``average'' several frames
in order to reduce the noise. It turns out that while arithmetic averaging does indeed reduce
the resulting noise, it doesn't go very far in removing the effect of
devinat values that are far from the mean. When combining CCD frames, the most common causes of deviant values are
cosmic ray hits on all frames and unwanted star images on sky flats.
<P>
When combining <SPAN CLASS="MATH"><IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img31.png"
ALT="$N$"></SPAN> CCD frames, we start with <SPAN CLASS="MATH"><IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img31.png"
ALT="$N$"></SPAN> values for each pixel and want to arrive
at a combined pixel value that uses as much as possible of the available information (so that
we obtain the maximum noise reduction), while rejecting any values that are affected by artifacts.
<SMALL>GCX </SMALL>implements four combining methods, described below.
<P>
<H4><A NAME="SECTION00750010000000000000">
Average</A>
</H4>
Average is the ``baseline'' method of frame combining. The values are added together and the
result divided by the number of values (arithmetic mean). For Gaussian-distributed data, averaging
produces the values with the least variance (so it has the maximal <EM>statistical efficiency</EM>).
Averaging is independent of the individual frame scaling, and
computationally efficient.
<P>
The deviant value rejection of averaging is only modest; deviant values are reduced by a factor
of <SPAN CLASS="MATH"><IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img31.png"
ALT="$N$"></SPAN>. For this reason, it is recommended that averaging only be used when we know that deviant
values are not present (for example, when combining frames for which the outlier rejection has
already been done).
<P>
<H4><A NAME="SECTION00750020000000000000">
Median</A>
</H4>
A far more robust method of obtaining a combined value is the median (selecting the values which
has an equal number of values greater and smaller than itself). The median is easily calculated
and very little influenced by deviant values. It requires all frames
to have the same intensity scale.
<P>
On the down side, the median's statistical efficiency for Gaussian distributed values is only
0.65 of average's. Also, when combining integer values, the median does nothing to smooth out the
quantisation effects; the median of any number of integer values is also an integer.
<P>
<H4><A NAME="SECTION00750030000000000000">
Mean-Median</A>
</H4>
<P>
Mean-median is a variant of the median method intended to improve the statistical efficiency
of the median, and get around the quantisation problem. In the mean-median method, we compute the
standard deviation of the pixel values around the median, and discard all the values than are
farther away than a specified number of standard deviations (usually 1.5 or 2).
The remaining values are averaged together.
<P>
Mean-median is fast, and works well for large sets. With small sets, the fact that the deviant
pixels increase the calculated standard deviation limits it's efficiency. It requires all frames
to have the same intensity scale.
<P>
<H4><A NAME="SECTION00750040000000000000">
Kappa-Sigma Clipping</A>
</H4>
<P>
<SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img57.png"
ALT="$\kappa\sigma$"></SPAN>-clipping is the most ellaborate combining method provided by <SMALL>GCX </SMALL>. It starts
by calculating the median and the standard deviation around it. The values with large
deviations relative to the standard deviation are excluded. Then, the mean and standard
deviation of the remaining values are computed. Again, the values that are away for the
mean are excluded, and the process is repeated until there is no change in the mean or the
iteration limit is reached.
<P>
<SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img57.png"
ALT="$\kappa\sigma$"></SPAN>-clipping is very effective at removing cosmic rays and star images from sky
flats, even with a reduced number of frames. It is also capable of removing all the star
images from a number of frames of different fields, leaving only the sky background, which makes
it possible to create a flat frame from the regular data frames (see below for <EM>super-flat</EM>).
<P>
<SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img57.png"
ALT="$\kappa\sigma$"></SPAN>-clipping is the most computationally-intensive method of frame combining.
It requires all frames to have the same intensity scale.
<P>
<H1><A NAME="SECTION00760000000000000000">
CCD Reduction with gcx</A>
</H1>
<P>
Like most tasks in <SMALL>GCX </SMALL>CCD Reductions can be performed either interactively or using
the command-line interface. We'll discuss the interactive way first.
<P>
<H2><A NAME="SECTION00761000000000000000">
Loading and Selecting Image Frames</A>
</H2>
<P>
To open up the CCD reduction dialog, select <EM>Processing/CCD Reduction</EM> or press <B>L</B>.
In the <EM>Image Files</EM> tab, click on <EM>Add</EM> and in the file selector select any number of files
and click <EM>Ok</EM>. The selected files will appear in the file list.
<P>
To display any of the frames in the list, click on it (it will become selected) and then click
<EM>Display</EM>. The image will show in the main window. The loaded files can be viewed in sequence
by clicking <EM>next</EM> or pressing <B>N</B> repeteadly. If for some reson we want to exclude a
frame from being processed, clicking on <EM>Skip</EM> or pressing <B>S</B> will mark it to be skipped.
<P>
Skipped frames appear in the list with their names enclosed in square brackets. If we want
to remove the skip mark, clicking <EM>Unskip</EM> while the frames are selected will accomplish
that. Note that all reduction operations apply to all the frames in the file list that don't have
the skip mark, regardless of which are selected.
<P>
Whenever a frame is selected, a status line at the bottom of the dialog shows the file's name
and any operations already performed on it.<A NAME="tex2html22"
HREF="footnode.html#foot596"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">5</SPAN></SUP></A>
<P>
To revert some frames to their original status, select them and click on <EM>Reload</EM>. Frames
can be completely removed from the list by selecting them and the clicking on <EM>Remove</EM>.
<P>
<H2><A NAME="SECTION00762000000000000000">
Creating a Master Bias or Master Dark Frame</A>
</H2>
<P>
We will create a master bias frame by stacking several bias frames. If
we preffer to work without bias
frames, we can use the same procedure to create a master dark frame.
First clear the file list
(<EM>Select all</EM> then <EM>Remove</EM>) and add the bias frames to be
stacked to the list.
<P>
Then, in the <EM>CCD Reduction</EM> tab, check that all the ``enable'' ticks are off (we don't want
to apply any operation to the bias frames). Same for the <EM>Aligment</EM> tab.
<P>
In the <EM>Stacking</EM> tab, select the desired parameters for the stacking operation (the method
and method parameters). A good initial setting is kappa_sigma, 1.5 sigmas and an iteration limit
of 4. Set background matching to Off, and check ``Enable stacking''.
<P>
Finally, in the <EM>Run</EM> tab type in a file name<A NAME="tex2html23"
HREF="footnode.html#foot606"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">6</SPAN></SUP></A><A NAME="tex2html24"
HREF="footnode.html#foot1240"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">7</SPAN></SUP></A> (for example ``master_bias'') and click <EM>Run</EM>. The progress of the stacking operation
can be followed in the text window. After stacking is complete, the resulting frame is
shown in the main window.
<P>
<H2><A NAME="SECTION00763000000000000000">
Creating a Bias-Subtracted Master Dark Frame</A>
</H2>
<P>
Suppose now that we have a number of dark frames taken with the same integration time
and we want to create a bias subtracted master dark frame from them. We'll use the
master bias frame we just created.
<P>
Like above, clear the frame list and load the dark frames. Then, in the <EM>CCD Reduction</EM> tab
enter the name of the master bias frame we just created (or click on the ``...'' button and select
it in the file selector). The ``enable'' mark for bias subtraction should be on.
<P>
Then make sure that stacking is still enabled, enter an output file name and click on <EM>Run</EM>.
The program will subtract the master bias frame from each of the dark frames, and then combine
the results. As before, the result will be shown in the main window.
<P>
Sometimes we need to scale the bias-subtracted dark frame, so it can be used to reduce data
frames taken with a different integration time. We can also do that now. Suppose our
dark frames used 60 seconds on integration time, and we want to reduce 30-seconds data frames.
We will need out bias-subtracted master dark to be scaled by a factor of 0.5.
In the <EM>CCD Reduction</EM> tab check the ``multiply enable'' box and enter 0.5 in the
multiply entry. Then click on <EM>Run</EM> again,<A NAME="tex2html25"
HREF="footnode.html#foot1241"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">8</SPAN></SUP></A>of course not before changing the output
file name into something meaningful, like ``bmdark-30'' or something similar.
<P>
<H2><A NAME="SECTION00764000000000000000">
Creating a Master Flat Frame</A>
</H2>
<P>
To create a master frame, we need either a master dark frame of suitable integration time for
the flats, or a master bias and suitably scaled bias-subtracted master dark frame.
<P>
Clear the file list and add the flat frames to it. In the <EM>CCD Reduction</EM> tab, set the
bias and dark frame file names,<A NAME="tex2html26"
HREF="footnode.html#foot618"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">9</SPAN></SUP></A> and make sure their ``enable'' boxes are checked.
Go to the <EM>Stacking</EM> tab and enable stacking, set your algorithm and parameters. Except
if you are very sure that the flat frames have the same intensity (such as when using a
known stable light box), enable multiplicative background matching.
Finally, select an output file name, and run the flat generation.
<P>
<H4><A NAME="SECTION00764010000000000000">
Making a Superflat</A>
</H4> If we have enough data frames with a significant sky background and
different fields, they can be combined and the sky background used as a flat. We proceed
the same as for normal flats, except that we select data frames with a good background.
It is recommended that frames with low sky level are excluded from the superflat set.
<P>
We probably want to multiply the frames by a constant to make sure the relatively low level
flat resulting is not affected by quatisation when the frame is saved in an integer format.
<P>
<H2><A NAME="SECTION00765000000000000000">
Reducing the Data Frames</A>
</H2>
<P>
Reducing the data frames should is easy now; load them into the file list, specify the
bias, dark and flat to be used, select an output directory name and click on <EM>Run</EM>.
<P>
<SMALL>GCX </SMALL>will never overwrite the original frames, so we will need to create a second set of
reduced files. However, unless we have some use for the reduces frames, we can avoid saving
them and just run the reduction every time we use the frames. For instance, we can align
and stack the frame, or run aperture photometry on the reduced frames by just specifying
the bias/dark/flats together with the required operation.
<P>
<H2><A NAME="SECTION00766000000000000000">
Aligning and Stacking Frames</A>
</H2>
<P>
When combining data frames, it is often required that they are aligned before their values are
combined. <SMALL>GCX </SMALL>contains an automatic alignment algorithm that works well with frames taken
with the same setup (for instance multiple exposures). In the current version, the alignment
routine only performs image translations (it does not rotate or scale
the images).<A NAME="tex2html27"
HREF="footnode.html#foot624"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">10</SPAN></SUP></A>
<P>
To align frames, they need to be in the file list. Then, in the <EM>Alignment</EM> tab select an
alignment frame file name. This is the frame used as a reference--all others will be shifted
to match this one. Clicking the <EM>Show Alignment Stars</EM> button will detect suitable stars
from the alignment frame and display them in the main
window.<A NAME="tex2html28"
HREF="footnode.html#foot627"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">11</SPAN></SUP></A>
<P>
Clicking on <EM>Run</EM> will perform the actual alignment. Stars are detected from each frame, and
their position matched to the reference frame.<A NAME="tex2html29"
HREF="footnode.html#foot1242"><SUP><SPAN CLASS="arabic">6</SPAN>.<SPAN CLASS="arabic">12</SPAN></SUP></A> The frame will then be translated the appropiate
amount. It is also possible to apply a gaussian smoothing filter here. Usually small FWHMs work
best (0.1-0.5 pixels).
<P>
After the frames are aligned, we can use the <EM>Display</EM> and <EM>Next</EM> buttons in the file list
tab to browse the aligned files. Stars should show well centered inside the alignment star
markings. This is also a good time to exclude any bad frames (such as frames with
tracking problems).
<P>
When satisfied with the aligned frames, we can stack them and produce a final image. Just enable
the stack check box and click on <EM>Run</EM> again.
<P>
<H2><A NAME="SECTION00767000000000000000">
Running CCD Reductions from the Command Line</A>
</H2>
<P>
All CCD reduction operations are also accessible from the command line, which makes it easy
to integrate <SMALL>GCX </SMALL>with other applications. The command-line options are described by calling
<BLOCKQUOTE>
<TT>gcx -help</TT>
</BLOCKQUOTE>
Here we'll provide some examples of use. Let's assume that we have a number of 20-second
data frames, some 20-second dark frames, some 1-sec sky flats, and some bias frames.
We want to reduce the data frames and align and stack them together.
<P>
First, we check that the stacking method and parameters are properly set in the
<EM>CCD Reduction Options</EM> page or the <TT> /.gcxrc</TT> file.
<P>
We combine the bias frames to create a master bias file (<TT>m-bias.fits</TT>):
<BLOCKQUOTE>
<TT>gcx -s -o m-bias bias*</TT>
</BLOCKQUOTE>
Then we combine the dark frames to create the master dark frame for
the data frames (<TT>m-dark-20.fits</TT>):
<BLOCKQUOTE>
<TT>gcx -s -o m-dark-20 dark*</TT>
</BLOCKQUOTE>
We create a bias-subtracted master dark frame and scale it to be used
on the flats (<TT>dark-1s.fits</TT>):
<BLOCKQUOTE>
<TT>gcx -b m-bias -s -M 0.05 -o dark-1s dark*</TT>
</BLOCKQUOTE>
And then the master flat frame (<TT>m-flat.fits</TT>):
<BLOCKQUOTE>
<TT>gcx -b m-bias -d dark-1s -F -o m-flat flat*</TT>
</BLOCKQUOTE>
Assuming that <TT>red</TT> is a directory, we reduce all frames and save them there:
<BLOCKQUOTE>
<TT>gcx -d m-dark-20 -f m-flat -o red data*</TT>
</BLOCKQUOTE>
We align and stack the data files (with a 0.1 pixels FWHM gaussian blur):
<BLOCKQUOTE>
<TT>gcx -a red/data001 -s -G 0.1 -o stack1 red/data*</TT>
</BLOCKQUOTE>
As an alternative, we align and stack directly from the original files, this time without any
blur:
<BLOCKQUOTE>
<TT>gcx -d m-dark-20 -f m-flat -a data001 -s -o stack1 data*</TT>
</BLOCKQUOTE>
The order of the command-line options is not important. CCD reduction operations
are always performed in the order: bias, dark, flat, multiply by a constant, add a constant,
align and gaussian blur, stack. If no extension is provided on the file names, <SMALL>GCX </SMALL>will
append <TT>.fits</TT> or <TT>.fits.gz</TT> automatically on saved image files, and will look
for one of <TT>.fits</TT> or <TT>.fit</TT> with or without a <TT>.gz</TT> suffix.
<P>
<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html589"
HREF="node8.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html585"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html579"
HREF="node6.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html587"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html590"
HREF="node8.html">Aperture Photometry</A>
<B> Up:</B> <A NAME="tex2html586"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html580"
HREF="node6.html">World Coordinates</A>
<B> <A NAME="tex2html588"
HREF="node1.html">Contents</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
root
2005-11-27
</ADDRESS>
</BODY>
</HTML>
|