1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Multi-Frame and All-Sky Reduction</TITLE>
<META NAME="description" CONTENT="Multi-Frame and All-Sky Reduction">
<META NAME="keywords" CONTENT="gcx">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="gcx.css">
<LINK REL="next" HREF="node10.html">
<LINK REL="previous" HREF="node8.html">
<LINK REL="up" HREF="gcx.html">
<LINK REL="next" HREF="node10.html">
</HEAD>
<BODY >
<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html647"
HREF="node10.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html643"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html637"
HREF="node8.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html645"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html648"
HREF="node10.html">Noise Modelling</A>
<B> Up:</B> <A NAME="tex2html644"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html638"
HREF="node8.html">Aperture Photometry</A>
<B> <A NAME="tex2html646"
HREF="node1.html">Contents</A></B>
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL CLASS="ChildLinks">
<LI><A NAME="tex2html649"
HREF="node9.html#SECTION00910000000000000000">Color Transformation Coefficients</A>
<UL>
<LI><A NAME="tex2html650"
HREF="node9.html#SECTION00911000000000000000">Transforming the Stars</A>
</UL>
<BR>
<LI><A NAME="tex2html651"
HREF="node9.html#SECTION00920000000000000000">All-Sky Reduction</A>
<UL>
<LI><A NAME="tex2html652"
HREF="node9.html#SECTION00921000000000000000">Extinction Coefficient Fitting</A>
<LI><A NAME="tex2html653"
HREF="node9.html#SECTION00922000000000000000">Calculating Zero Points</A>
</UL>
<BR>
<LI><A NAME="tex2html654"
HREF="node9.html#SECTION00930000000000000000">Running Multi-Frame Reduction</A>
<UL>
<LI><A NAME="tex2html655"
HREF="node9.html#SECTION00931000000000000000">Specifying Reduction Bands</A>
<LI><A NAME="tex2html656"
HREF="node9.html#SECTION00932000000000000000">Loading Report Files</A>
<UL>
<LI><A NAME="tex2html657"
HREF="node9.html#SECTION00932010000000000000">Frames</A>
<LI><A NAME="tex2html658"
HREF="node9.html#SECTION00932020000000000000">Stars</A>
<LI><A NAME="tex2html659"
HREF="node9.html#SECTION00932030000000000000">Bands</A>
</UL>
<LI><A NAME="tex2html660"
HREF="node9.html#SECTION00933000000000000000">Fitting Individual Zero Points</A>
<LI><A NAME="tex2html661"
HREF="node9.html#SECTION00934000000000000000">Plots</A>
<LI><A NAME="tex2html662"
HREF="node9.html#SECTION00935000000000000000">Fitting Color Transformation Coefficients</A>
<LI><A NAME="tex2html663"
HREF="node9.html#SECTION00936000000000000000">All-Sky Reduction</A>
</UL>
<BR>
<LI><A NAME="tex2html664"
HREF="node9.html#SECTION00940000000000000000">Reporting</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<H1><A NAME="SECTION00900000000000000000"></A><A NAME="ch:multiframe"></A>
<BR>
Multi-Frame and All-Sky Reduction
</H1>
<P>
If we want to determine star colors, calculate transformation
coefficients to transform data to a standard system or obtain
magnitudes of stars for which we don't have standards in the same
field, we must reduce multiple observation frames together.
<P>
People fortunate enough to observe in photometric conditions can use
a number of packages to reduce their data. For low altitude dwellers,
the selection is not that large. For them, <SMALL>GCX </SMALL>implements
multiple-frame
reduction routines that are designed to
work in less than perfect conditions.
<P>
Input data to the multi-frame reduction consists of observation
reports as produced by the aperture photometry routine. For color
coefficient fitting and transformation to a standard system, we need
frames of the target objects taken in enough bands. For
all-sky reductions, the observation reports need to have accurate time
and airmass information (which implies that the original frames need
to have enough information for the airmass determination).
<P>
<H1><A NAME="SECTION00910000000000000000">
Color Transformation Coefficients</A>
</H1>
<P>
To keep notation simple, let's assume that we reduce data taken in B
and V. We'll use <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img10.png"
ALT="$B$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img68.png"
ALT="$V$"></SPAN> for the standard magnitudes, and <SPAN CLASS="MATH"><IMG
WIDTH="12" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img17.png"
ALT="$b$"></SPAN> and
<SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img69.png"
ALT="$v$"></SPAN> for the instrumental magnitudes. The expressions for the standard
magnitudes are:<A NAME="tex2html40"
HREF="footnode.html#foot794"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">1</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
B_j = b_j + Z_k + k_B(B_j-V_j)
\end{equation}
-->
<A NAME="eq:transform"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:transform"></A><IMG
WIDTH="212" HEIGHT="32" BORDER="0"
SRC="img70.png"
ALT="\begin{displaymath}
B_j = b_j + Z_k + k_B(B_j-V_j)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">1</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
V_j = v_j + Z_k + k_V(B_j-V_j)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="208" HEIGHT="32" BORDER="0"
SRC="img71.png"
ALT="\begin{displaymath}
V_j = v_j + Z_k + k_V(B_j-V_j)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">2</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$j$"></SPAN> subscripts go over all individual star observations in a given
band, while the <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img73.png"
ALT="$k$"></SPAN> subscripts iterate over the observation frames.
For standard stars, the <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img74.png"
ALT="$B_j$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img75.png"
ALT="$V_j$"></SPAN> are known while <SPAN CLASS="MATH"><IMG
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img76.png"
ALT="$b_j$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="20" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img77.png"
ALT="$v_j$"></SPAN> are
measured from the frames themselves. We have to fit the zeropoints
<SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img78.png"
ALT="$Z_k$"></SPAN> and the transformation coefficients <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img73.png"
ALT="$k$"></SPAN>. Because we have chosen
to express the transformation coefficients in function of the standard
magnitudes, we can proceed with one band at a time. We'll assume it is
V. The steps are:
<OL>
<LI>Set an starting value of the transformation coefficient. We can
start with 0 without problems, as the coefficients are generally
small numbers.
</LI>
<LI>For each V frame, fit the zeropoint using the robust algorithm
in Appendix <A HREF="node11.html#ap:robust">B</A>, with the difference that the current color
transformation is applied when calculating the residuals, so
Equation <A HREF="node11.html#eq:residuals">B.5</A> becomes:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\rho_j=y_j - \widetilde{Z_k} - k_V (B_j - V_j)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="209" HEIGHT="32" BORDER="0"
SRC="img79.png"
ALT="\begin{displaymath}
\rho_j=y_j - \widetilde{Z_k} - k_V (B_j - V_j)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Note that in this equation, the <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$j$"></SPAN> subscripts iterate over the
stars in frame <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img73.png"
ALT="$k$"></SPAN>.
</LI>
<LI>Now, for all the stars in all the V frames, estimate the
``tilt'' of the residuals, and adjust the transformation coefficient
and zeropoints accordingly. We use the weights from the individual
frames' fits when estimating the tilt:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\theta = \frac{\sum_j\rho_j(B_j-V_j) W'_j}{\sum_j(B_j-V_j)^2 W'_j}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="172" HEIGHT="53" BORDER="0"
SRC="img80.png"
ALT="\begin{displaymath}
\theta = \frac{\sum_j\rho_j(B_j-V_j) W'_j}{\sum_j(B_j-V_j)^2 W'_j}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
k_V = k_V + \theta
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="93" HEIGHT="29" BORDER="0"
SRC="img81.png"
ALT="\begin{displaymath}
k_V = k_V + \theta
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
Z_k = Z_k + \theta\frac{\sum_j(B_j-V_j) W'_j}{\sum_jW'_j}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="214" HEIGHT="53" BORDER="0"
SRC="img82.png"
ALT="\begin{displaymath}
Z_k = Z_k + \theta\frac{\sum_j(B_j-V_j) W'_j}{\sum_jW'_j}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
</LI>
<LI>Iterate the last two steps until the solution converges (the
transformation coefficient doesn't change significantly).
</LI>
</OL>
We have now obtained the transformation coefficient for the V
magnitudes, and also adjusted all the frame zeropoints so that their
dependence on the color of the standard stars in each frame is
eliminated.<A NAME="tex2html41"
HREF="footnode.html#foot817"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">2</SPAN></SUP></A>The above is repeated for each band we want to reduce. Note that we
have obtained the transformation coefficients without assuming any
relation between the zero points of various frames--just differential
photometry.
<P>
We can choose any color index for a given band. For instance, there is
nothing stopping us from calculating a <SPAN CLASS="MATH"><IMG
WIDTH="67" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img83.png"
ALT="$(B-V)$"></SPAN> transformation
coefficient for <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img13.png"
ALT="$I$"></SPAN> or <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img84.png"
ALT="$R$"></SPAN> magnitudes. In fact, if we have more
standards data in B and V, it may prove better to do so. In general,
Equation (<A HREF="#eq:transform">8.1</A>) can be written for any band <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img32.png"
ALT="$M$"></SPAN> as:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
M_j = m_j + Z_k + k_M(C_1^M - C_2^M)\\
\end{equation}
-->
<A NAME="eq:transform2"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:transform2"></A><IMG
WIDTH="247" HEIGHT="32" BORDER="0"
SRC="img85.png"
ALT="\begin{displaymath}
M_j = m_j + Z_k + k_M(C_1^M - C_2^M)\\
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img86.png"
ALT="$C_1^M$"></SPAN> and <SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img87.png"
ALT="$C_2^M$"></SPAN> are any bands for which we have standards
data. We can fit the transformation coefficient <SPAN CLASS="MATH"><IMG
WIDTH="29" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img88.png"
ALT="$k_M$"></SPAN> using only the
<SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img32.png"
ALT="$M$"></SPAN> observations. However, when we want to transform the stars, we
will need observations in <SPAN CLASS="MATH"><IMG
WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img32.png"
ALT="$M$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img86.png"
ALT="$C_1^M$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img87.png"
ALT="$C_2^M$"></SPAN> and all the bands that
these depend on.
<P>
<H2><A NAME="SECTION00911000000000000000">
Transforming the Stars</A>
</H2>
To calculate the transformed standard magnitudes of our target stars,
all we have to do is to write Equation (<A HREF="#eq:transform2">8.7</A>) for each
band, and solve the resulting system of linear equations for the
standard magnitudes. The system is very well behaved (it's matrix is
close to unity) so <SMALL>GCX </SMALL>uses the simple Gauss-Jordan elimination method to
solve it.
<P>
<H1><A NAME="SECTION00920000000000000000">
All-Sky Reduction</A>
</H1>
<P>
When the field of our intended target doesn't contain any suitable
standard stars, we have to determine their magnitudes by comparing to
stars in a different field. To do this, we need to determine a
relation between the zeropoints of different frames.
<P>
Under photometric conditions, we can consider that the <EM>atmospheric
extinction</EM><A NAME="tex2html42"
HREF="footnode.html#foot826"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">3</SPAN></SUP></A>depends only on the thickness of the atmosphere along the light
path. The ratio between the thickness of the atmosphere in the
direction of field and it's thickness towards zenith is called the
<EM>airmass</EM> of the field. The airmass depends on the zenital angle
<EM>z</EM> of the field, and is close to <SPAN CLASS="MATH"><IMG
WIDTH="49" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img89.png"
ALT="$\sec(z)$"></SPAN> when far from the
horison. The formula used by <SMALL>GCX </SMALL>is the following:<A NAME="tex2html43"
HREF="footnode.html#foot1248"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">4</SPAN></SUP></A>
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray}
s = \sec(z) - 1;\\
A=1 + s[0.9981833 - s(0.002875+0.0008083 s)]
\end{eqnarray}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="115" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img90.png"
ALT="$\displaystyle s = \sec(z) - 1;$"></TD>
<TD> </TD>
<TD> </TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="376" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img91.png"
ALT="$\displaystyle A=1 + s[0.9981833 - s(0.002875+0.0008083 s)]$"></TD>
<TD> </TD>
<TD> </TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
The zenital angle of a frame can be determined given it's equatorial
coordinates, the geographical coordinates of the observing site, and time.
<P>
If the extinction is unform in all directions, we can define an <EM> extinction coefficient</EM> <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img92.png"
ALT="$E$"></SPAN>, so that for any frame:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
Z(A) = Z_0 - EA
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="130" HEIGHT="31" BORDER="0"
SRC="img93.png"
ALT="\begin{displaymath}
Z(A) = Z_0 - EA
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img94.png"
ALT="$Z_0$"></SPAN> is the zeropoint outside the atmosphere, and A is the
frame's airmass. If we have two frames with airmasses <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img95.png"
ALT="$A_1$"></SPAN>
and <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img96.png"
ALT="$A_2$"></SPAN>, their zeropoints can be related by:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
Z_2 = Z_1 - E(A_2-A_1)
\end{equation}
-->
<A NAME="eq:ext2"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ext2"></A><IMG
WIDTH="170" HEIGHT="31" BORDER="0"
SRC="img97.png"
ALT="\begin{displaymath}
Z_2 = Z_1 - E(A_2-A_1)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">11</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Under photometric conditions, it is customary to determine the
extinction coefficient by observing the same field at different
airmasses and then fitting E from (<A HREF="#eq:ext2">8.11</A>). This is only
possible when <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img92.png"
ALT="$E$"></SPAN> doesn't change (or changes in a smooth, linear
fashion) over a period of the order of hours.
<P>
Because the <SMALL>GCX </SMALL>all-sky routine is targeted at less-than-perfect
conditions, we will choose another strategy in determining the
extinction coefficient. We use several standard fields located
relatively near our target fields. Then we we try to ``chop'' the
extinction coefficient as much as possible by alternating between the
standard and target fields.<A NAME="tex2html44"
HREF="footnode.html#foot840"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">5</SPAN></SUP></A>
<P>
We end up with a series of observations from different fields, all in
the same general airmass range. By examining the standard fields'
zeropoints variation with time and airmass, we can determine if there
were any ``windows'' during which the extinction was stable.
<P>
Once a stable window was found, we can fit the extinction coefficient
from the observations in that window. It is unlikely that the
observations will span a wide range of airmasses, which will make the
fitted value of the extinction coefficient somewhat imprecise. But
this is offset by the fact that the airmass of the target frames is the
same range, so the contribution of the extinction term is not very
large. As long as the airmass of the standard fields brackets those of
the target fields, we are <EM>interpolating</EM> rather than
extrapolating the extinction.<A NAME="tex2html45"
HREF="footnode.html#foot842"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">6</SPAN></SUP></A>
<P>
<H2><A NAME="SECTION00921000000000000000">
Extinction Coefficient Fitting</A>
</H2>
<P>
Before attempting to fit the extinction coefficient, the zeropoints
and color transformation coefficient of all frames must be fitted. It
is highly recommended to examine plots of the resulting zeropoints
versus time and airmass to see if it's worth trying to do any all-sky
reduction at all (more on this below).
<P>
With these precautions, the program will proceed to fit the extinction
coefficients using a variant of the algorithm described in
Appendix <A HREF="node11.html#ap:robust">B</A>,<A NAME="tex2html46"
HREF="footnode.html#foot845"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">7</SPAN></SUP></A>with the initial weights assigned based on the calculated errors of
the zeropoints. The fitted model is:<A NAME="tex2html47"
HREF="footnode.html#foot846"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">8</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
Z = \bar{Z} + E (A - \bar{A})
\end{equation}
-->
<A NAME="eq:zmodel"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:zmodel"></A><IMG
WIDTH="143" HEIGHT="31" BORDER="0"
SRC="img98.png"
ALT="\begin{displaymath}
Z = \bar{Z} + E (A - \bar{A})
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">12</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img99.png"
ALT="$\bar{A}$"></SPAN> is the mean airmass of the standard frames, while
<SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img100.png"
ALT="$\bar{Z}$"></SPAN> is the zeropoint of a mean airmass frame.
<P>
A different extinction coefficient is fitted for each
band. Frames that are outliers of the fit (their standard error
exceeds the threshold set in <EM>Multi-Frame Photometry
Options/Zeropoint outlier threshold</EM>) are marked as such.
<P>
<H2><A NAME="SECTION00922000000000000000">
Calculating Zero Points</A>
</H2>
<P>
After fitting the extinction coefficient, we can apply
Equation <A HREF="#eq:zmodel">8.12</A> and calculate the zeropoint of any target
frame. The program tries to filter the frames for which such a
determination would likely be in error. It will only calculate a
zeropoint for frames which satisfy the following:
<OL>
<LI>The frame has to be both preceded and succeded in time by
non-outlier standard frames;
</LI>
<LI>The frame's airmass has to be in the same range as the standard
frames from which the extinction coefficient was fitted.
<P>
If <SPAN CLASS="MATH"><IMG
WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img101.png"
ALT="$A_m$"></SPAN> is the minimum and <SPAN CLASS="MATH"><IMG
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img102.png"
ALT="$A_M$"></SPAN> is the maximum standard airmass,
and <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img103.png"
ALT="$r$"></SPAN> is the value of <EM>Multi-Frame Photometry
Options/Airmass range</EM>
the zeropoint is only calculated for frames with airmasses between
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\frac{A_M + A_m}{2} - \frac{r}{2}(A_M - A_m)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="198" HEIGHT="42" BORDER="0"
SRC="img104.png"
ALT="\begin{displaymath}
\frac{A_M + A_m}{2} - \frac{r}{2}(A_M - A_m)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">13</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
and
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">
<!-- MATH
\begin{equation}
\frac{A_M + A_m}{2} + \frac{r}{2}(A_M + A_m)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="199" HEIGHT="42" BORDER="0"
SRC="img105.png"
ALT="\begin{displaymath}
\frac{A_M + A_m}{2} + \frac{r}{2}(A_M + A_m)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">14</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
</LI>
</OL>
<P>
<H1><A NAME="SECTION00930000000000000000">
Running Multi-Frame Reduction</A>
</H1>
<P>
This section is a step-by-step tour of the multi-frame reduction
tool. An realistically-sized example input file is provided in the
distribution data directory (<TT>cygs-aug19.out</TT>). This file was generated by
<SMALL>GCX </SMALL>aperture photometry from 143 frames taken in B, V, R and I in a
single night, all in Cygnus. The standards data is from
Henden sequence files, which were converted into <SMALL>GCX </SMALL>recipies with
the import function.
The file consists of individual aperture photometry reports appended
together.
<P>
<H2><A NAME="SECTION00931000000000000000">
Specifying Reduction Bands</A>
</H2>
<P>
Before we can reduce data, we have to define which color indices are
used for each band. The <EM>Multi-Frame Photometry Options/Bands
setup</EM> option specifies this. It contains a list of specifiers of
the form: <code><band>(<c1>-<c2>)</code> separated by spaces. Each specifier
tells the program to use the color index ``<TT><c1>-<c2></TT>'' to reduce
frames taken in ``<TT>band</TT>''. For example, the default setting:
<DIV ALIGN="CENTER"><BLOCKQUOTE><TT>b(b-v) v(b-v) r(v-r) i(v-i)</TT></BLOCKQUOTE></DIV>
will set the following transformation model:
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray}
B&=&b+Z_B+k_B(B-V)\\
V&=&v+Z_V+k_V(B-V)\\
R&=&r+Z_R+k_R(V-R)\\
I&=&i+Z_I+k_I(V-I)
\end{eqnarray}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img106.png"
ALT="$\displaystyle B$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img107.png"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
WIDTH="162" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img108.png"
ALT="$\displaystyle b+Z_B+k_B(B-V)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">15</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img109.png"
ALT="$\displaystyle V$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img107.png"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
WIDTH="163" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img110.png"
ALT="$\displaystyle v+Z_V+k_V(B-V)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">16</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img111.png"
ALT="$\displaystyle R$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img107.png"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
WIDTH="161" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img112.png"
ALT="$\displaystyle r+Z_R+k_R(V-R)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">17</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img113.png"
ALT="$\displaystyle I$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img107.png"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
WIDTH="147" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img114.png"
ALT="$\displaystyle i+Z_I+k_I(V-I)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">18</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
This model is appropiate if we reduce BV, BVI, BVR or BVRI
data. However, it will have to be changed if for instance we want to
reduce VI data, as using it will require B, V and I observations,
because of the V dependence on B. An appropiate model for VI data
would be:
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray}
V&=&v+Z_V+k_V(V-I)\\
I&=&i+Z_I+k_I(V-I)
\end{eqnarray}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img109.png"
ALT="$\displaystyle V$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img107.png"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
WIDTH="158" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img115.png"
ALT="$\displaystyle v+Z_V+k_V(V-I)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">19</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img113.png"
ALT="$\displaystyle I$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img107.png"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
WIDTH="147" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img114.png"
ALT="$\displaystyle i+Z_I+k_I(V-I)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">20</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
which is specified by setting:
<DIV ALIGN="CENTER"><BLOCKQUOTE><TT>v(v-i) i(v-i)</TT></BLOCKQUOTE></DIV>
in the <EM>Bands setup</EM> option.
<P>
The same option can be used to set initial transformation coefficients
and their errors, by appending ``<TT>=<coeff>/err</TT>'' to each band
specifier like for example:
<BLOCKQUOTE>
<TT>b(b-v)=0.12/0.001 v(b-v)=-0.07/0.02</TT>
</BLOCKQUOTE>
<P>
<H2><A NAME="SECTION00932000000000000000">
Loading Report Files</A>
</H2>
<P>
The data to be reduced can reside in one or more files.
To load data, open the the multi-frame reduction dialog using
<EM>Processing/Multi-frame reduction</EM> or <B>Ctrl-M</B>, and select
<EM>File/Add to Dataset</EM>. Select the file name and press <EM>Ok</EM>.
The data from the frames contained in the file will load, and the
frames will appear in the ``Frames'' tab of the dialog.
<P>
More observations can be added by using <EM>Add to Dataset</EM>
repeteadly.<A NAME="tex2html48"
HREF="footnode.html#foot1251"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">9</SPAN></SUP></A> We'll assume the example file (<TT>cygs-aug19.out</TT>) is loaded for the next
steps.
<P>
<H4><A NAME="SECTION00932010000000000000">
Frames</A>
</H4> The ``Frames'' tab contains a list with all the frames in the
dataset, one per line. It will display increasing amounts of
information as the fit progresses. The columns that are filled up
right after loading the data files should be self-explanatory. The
other columns show:
<TABLE CELLPADDING=3>
<TR><TD ALIGN="LEFT">Zpoint</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The fitted zero point of the frame;</TD>
</TR>
<TR><TD ALIGN="LEFT">Err</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The calculated error of the zero point;</TD>
</TR>
<TR><TD ALIGN="LEFT">Fitted</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The number of standard stars used in the fit;</TD>
</TR>
<TR><TD ALIGN="LEFT">Outliers</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The number of standard stars that are considered
outliers of the fit (have large standard errors);</TD>
</TR>
<TR><TD ALIGN="LEFT">MEU</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The mean error of unit weight for the zeropoint fit of
the frame.</TD>
</TR>
</TABLE>
<P>
Clicking on the column headers will make the program sort the list by
the respective column. Clicking again will reverse the sort order.
One or more frames can be selected in the list. All operations apply
to the selected frames or, if none are selected, to the whole list.
<P>
<H4><A NAME="SECTION00932020000000000000">
Stars</A>
</H4> When a frame line is clicked, the stars from that frame are displayed
in the ``Stars'' tab. Like the frames, the stars can be
sorted on various columns by clicking on the column headers. The
columns of the stars table show:
<TABLE CELLPADDING=3>
<TR><TD ALIGN="LEFT">Name</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The star's name. A star is identified across multiple frame by
it's name;</TD>
</TR>
<TR><TD ALIGN="LEFT">Type</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Star type (standard or target);</TD>
</TR>
<TR><TD ALIGN="LEFT">Band</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The band the magnitudes are in;</TD>
</TR>
<TR><TD ALIGN="LEFT">Smag</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The standard magnitude for the star. If the contents of this
field are calculated by the program, as for target stars, the
magnitude appears in square brackets;</TD>
</TR>
<TR><TD ALIGN="LEFT">Err</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Error of the standard magnitude (either taken from the report
file, or calculated by the program);</TD>
</TR>
<TR><TD ALIGN="LEFT">Imag</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Instrumental magnitude in this observation;</TD>
</TR>
<TR><TD ALIGN="LEFT">Err</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Error of the instrumental magnitude, taken from the report file;</TD>
</TR>
<TR><TD ALIGN="LEFT">Residual</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The residual in the last fit of the frame. Only appears for
standard stars;</TD>
</TR>
<TR><TD ALIGN="LEFT">Std Error</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Standard error of the star (the residual divided by the
estimated error). Only for the standard stars;</TD>
</TR>
<TR><TD ALIGN="LEFT">Outlier</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>''Y'' or ``N'' depending on whether the star has a large
standard error or not;</TD>
</TR>
<TR><TD ALIGN="LEFT">R.A, Dec</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Star catalog position;</TD>
</TR>
<TR><TD ALIGN="LEFT">Flags</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>A list of flags that apply to the star. Some are taken from the
report file, some are added by the fitting routines.</TD>
</TR>
</TABLE>
<P>
<H4><A NAME="SECTION00932030000000000000">
Bands</A>
</H4> The bands tab shows the currently configured bands,
and the various transformation coefficients relating to these
bands. They only show the fitted coefficients as they resulted from
the last fit operation. If only some frames were selected in that
operation, then these values may only apply to those frames.
<P>
<H2><A NAME="SECTION00933000000000000000">
Fitting Individual Zero Points</A>
</H2>
<P>
The simplest type of fit we can do is fit the zeropoints of each frame
individually, without taking the other frames into consideration (like
the last step in the aperture photometry routine). Even though the
report files likely contained the individual fit information, it was
discarded when the report was loaded. We need to perform at least
this step before we can generate any plots for the data.
<P>
There are two variants of this command: one zeroes all the
transformation coefficients before doing the fit (<EM>Fit Zero
Points with Null Coefficients</EM>), while the other will apply the
current transformation coefficients to the standard stars first.
(<EM>Fit Zero Points with Current Coefficients</EM>).
<P>
Make sure the frames you want to fit are selected before applying the
command (if no frames are selected, the command will apply to all
frames).
<P>
After the fit, examine the MEU column, which will show the quality of
the fit (the number should be around 1.0). Since we only fitted the
zeropoint, and not the color coefficients the values are slightly
larger than the best than can be obtained.
<P>
<H2><A NAME="SECTION00934000000000000000">
Plots</A>
</H2>
<P>
<DIV ALIGN="CENTER"><A NAME="fig:v-res-mag-zponly"></A><A NAME="910"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.1:</STRONG>
Residuals vesus standard magnitudes for all frames in the
example data set, after zero point fitting without color
transformation.</CAPTION>
<TR><TD><IMG
WIDTH="523" HEIGHT="380" ALIGN="BOTTOM" BORDER="0"
SRC="img116.png"
ALT="\includegraphics[width=\textwidth]{v-res-mag-zponly}"></TD></TR>
</TABLE>
</DIV>
<P>
At this point, we can generate various plots, which are instrumental
in judging the quality of the data, especially when we consider the more
ellaborate fits. The program generates data file for the <TT>gnuplot</TT>
utility, and will run <TT>gnuplot</TT> directly if the option <EM>File
and Device Options/Gnuplot command</EM> is correctly set.<A NAME="tex2html50"
HREF="footnode.html#foot916"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">10</SPAN></SUP></A> If the <EM>Plot to File</EM> option in the <EM>Plot</EM> menu is
selected, the program will generate a data file instead of running
gnuplot directly.<A NAME="tex2html51"
HREF="footnode.html#foot919"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">11</SPAN></SUP></A>
<P>
Let's select the V frames (click on the band column header twice to
bring the V band at the top, then click on the first V frame, and
finaly shift-click on the last V frame). Now run <EM>Plot/Residuals
vs Magnitude</EM>. A plot should appear that is similar to the
one in Figure <A HREF="#fig:v-res-mag-zponly">8.1</A>.
<P>
<DIV ALIGN="CENTER"><A NAME="fig:aucyg-res-std"></A><A NAME="924"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.2:</STRONG>
Residuals versus standard magnitudes of one AU CYG frame.</CAPTION>
<TR><TD><IMG
WIDTH="524" HEIGHT="380" ALIGN="BOTTOM" BORDER="0"
SRC="img117.png"
ALT="\includegraphics[width=\textwidth]{aucyg-res-std}"></TD></TR>
</TABLE>
</DIV>
<P>
The plot generally has the familiar shape of photon-shot
noise dominated observations, with random errors increasing as the
stars become fainter. An additional feature of this dataset are the
``branches'' going up starting at around mag 12 and 11. These are
caused by saturated standard stars (the standards we used are not
reliable above mag 12.5 or so). If the stars would be saturated in our
observations, the ``branches'' would go downward.<A NAME="tex2html53"
HREF="footnode.html#foot1254"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">12</SPAN></SUP></A>
<P>
<DIV ALIGN="CENTER"><A NAME="fig:aucyg-wres-std"></A><A NAME="930"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.3:</STRONG>
Standard errors versus magnitudes of one AU CYG frame.</CAPTION>
<TR><TD><IMG
WIDTH="523" HEIGHT="380" ALIGN="BOTTOM" BORDER="0"
SRC="img118.png"
ALT="\includegraphics[width=\textwidth]{aucyg-wres-std}"></TD></TR>
</TABLE>
</DIV>
<P>
To investigate the matter further, we select a frame with a large
number of outliers, which is likely to contain such a ``branch''. For
example, let's select aucyg. The <EM>Residuals vs
Magnitude</EM> plot for this frame is shown in
Figure <A HREF="#fig:aucyg-res-std">8.2</A>. The bright stars branching up are
obvious in this plot. However, the importance of the errors is
difficult to judge, as the ``normal'' error changes with the stars'
magnitudes (and fainter stars show similar residuals). The
<EM>Standard Errors vs Magnitude</EM> plot comes handy in this
situation. It is similar to the previous plot, only the residuals are
divided by the expected error of the respective stars. We expect all
stars to show similar standard errors, all within a 6 units wide band
around zero. This plot is shown in Figure <A HREF="#fig:aucyg-wres-std">8.3</A>.
We can clearly see that the relatively large residuals to the right of
the plot are within normal limits (also indicated by the value of the
MEU fit parameter). The ``branch'' is clearly deviant (with standard
errors going up to 30 and more).<A NAME="tex2html55"
HREF="footnode.html#foot937"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">13</SPAN></SUP></A> Fortunately, the robust fitting
algorithm has downweighted the deviant points significantly, so the
``good'' values still spread symetrically around zero.<A NAME="tex2html56"
HREF="footnode.html#foot938"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">14</SPAN></SUP></A>
<P>
<H2><A NAME="SECTION00935000000000000000">
Fitting Color Transformation Coefficients</A>
</H2>
<P>
<DIV ALIGN="CENTER"><A NAME="fig:v-se-color-zponly"></A><A NAME="942"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.4:</STRONG>
Standard errors vs color for the V frames, before
transformation coefficient fitting.</CAPTION>
<TR><TD><IMG
WIDTH="497" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
SRC="img121.png"
ALT="\includegraphics[width=\textwidth]{v-se-color-zponly}"></TD></TR>
</TABLE>
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="fig:v-se-color"></A><A NAME="947"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.5:</STRONG>
Standard errors vs color for the V frames, after
transformation coefficient fitting.</CAPTION>
<TR><TD><IMG
WIDTH="497" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
SRC="img122.png"
ALT="\includegraphics[width=\textwidth]{v-se-color}"></TD></TR>
</TABLE>
</DIV>
<P>
With the V frames selected, let's plot the standard errors again, this
time against the star's color index. For this, select <EM>Plot/Standard Errors
vs Color</EM>. The output should look similar to
Figure <A HREF="#fig:v-se-color-zponly">8.4</A>. Even given the scatter of the
individual observations, the plot shows a clear sloping (making the
residuals proportional to the color index).<A NAME="tex2html59"
HREF="footnode.html#foot952"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">15</SPAN></SUP></A> To remove this slope and
at the same time calculate the color transformation coefficient, we
use <EM>Reduce/Fit Zero Points and Transformation Coefficients</EM>.
After the fit is done, the slope is removed, as shown in
Figure <A HREF="#fig:v-se-color">8.5</A>. The title of the figure shows the
transformation used. In our case, the resulting tranformation
coefficient is 0.062, a rather small figure indicating a good fit
between the filters used and the standard ones. If we check the MEU
fields for each frame, we will see that they have decreased, showing
that the data more closely matches the standard magnitudes after the
color transformation.
<P>
After the fit, the list in the ``Bands'' tab is updated to show the
fitted transformation coefficients and their expected errors. Note
that the error is quite small in our case (0.002),<A NAME="tex2html60"
HREF="footnode.html#foot955"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">16</SPAN></SUP></A> even though the
data seemed to spread a lot. The large number of stars used in the fit
helped reduce the error considerably.
<P>
A good sanity check for the transformation coefficient fit is to run
the same routine on subsets of the initial data set and compare the
resulting transformation coefficients. They should match within the
reported error figures.
<P>
Before proceeding, let's do the transformation coefficient fit for the
whole dataset: <EM>Edit/Unselect All</EM>, then <EM>Reduce/Fit Zero
Points and Transformation Coefficients</EM>.
<P>
<H2><A NAME="SECTION00936000000000000000">
All-Sky Reduction</A>
</H2>
<P>
<DIV ALIGN="CENTER"><A NAME="fig:zp-am-1"></A><A NAME="961"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.6:</STRONG>
Zero points vs airmass for frames with standards data.</CAPTION>
<TR><TD><IMG
WIDTH="537" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
SRC="img125.png"
ALT="\includegraphics[width=\textwidth]{zp-am-1}"></TD></TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER"><A NAME="fig:zp-t-1"></A><A NAME="966"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.7:</STRONG>
Zero points vs time for frames with standards data.</CAPTION>
<TR><TD><IMG
WIDTH="536" HEIGHT="377" ALIGN="BOTTOM" BORDER="0"
SRC="img126.png"
ALT="\includegraphics[width=\textwidth]{zp-t-1}"></TD></TR>
</TABLE>
</DIV>
<P>
The example data set contains BVRI frames for all fields. However,
only some of the fields have R and I standards data. The night was
clear, but conditions were changing. Let's see what we can do about
the R and I frames that need all-sky reduction.
<P>
We can examine the frame zero points versus the airmass, expecting
them to fall on a down-sloping line.<A NAME="tex2html63"
HREF="footnode.html#foot969"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">17</SPAN></SUP></A> Using <EM>Plot/Zeropoints vs Airmass</EM> will produce the plot in
Figure <A HREF="#fig:zp-am-1">8.6</A>, which shows all the bands' zeropoints on the
same graph. We see that most of the frames do indeed lie on
down-sloping lines with a scatter consistent with their expected
errors as shows by the error bars, but there are some outliers. So the
conditions weren't photometric. If we now plot the same zeropoints
against time (<EM>Plot/Zeropoints vs Time</EM>), Figure <A HREF="#fig:zp-t-1">8.7</A> we
can see what has happened: the transparency has improved starting at
MJD 53236.95, to the point where we can use the all-sky method for
frames taken after that point.
<P>
<DIV ALIGN="CENTER"><A NAME="fig:zp-am-2"></A><A NAME="976"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.8:</STRONG>
Zero points vs airmass for all frames, after the extinction fit.</CAPTION>
<TR><TD><IMG
WIDTH="537" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
SRC="img127.png"
ALT="\includegraphics[width=\textwidth]{zp-am-2}"></TD></TR>
</TABLE>
</DIV>
<DIV ALIGN="CENTER"><A NAME="fig:zp-t-2"></A><A NAME="981"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.9:</STRONG>
Zero points vs time for all frames, after the extinction fit.</CAPTION>
<TR><TD><IMG
WIDTH="536" HEIGHT="377" ALIGN="BOTTOM" BORDER="0"
SRC="img128.png"
ALT="\includegraphics[width=\textwidth]{zp-t-2}"></TD></TR>
</TABLE>
</DIV>
<P>
Let's run the all-sky reduction (<EM>Reduce/Fit Extinction and
All-Sky Zero Points</EM>) and generate the plots again. As we can see in
Figures <A HREF="#fig:zp-am-2">8.8</A> and <A HREF="#fig:zp-t-2">8.9</A>, the program has
selected the frames which are bracketed by other ``good'' frames,
<A NAME="tex2html66"
HREF="footnode.html#foot987"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">18</SPAN></SUP></A> and calculated their all-sky zeropoints. The all-sky frames are
shown with different colors. These plots should be carefully
examined and any suspicious frames removed from the all-sky
reduction. In our case however, it seems that the program has made a
good choice of frames.
<P>
The calculated extinction coefficients and their errors are displayed
in the ``Bands'' tab. The errors of the exctinction coefficients are
relatively large. In this case, this is due to the fact that the
frames are taken in a narrow range of airmasses. The same narrow range
of airmasses will however reduce the impact of the errors on the
calculated zeropoints. this can be seen on the graphs, where the error
bars of the all-sky frames, which take the extinction coefficient
errors into account, are of the same order as those of the ``normal''
frames.<A NAME="tex2html67"
HREF="footnode.html#foot988"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">19</SPAN></SUP></A>
<P>
<H1><A NAME="SECTION00940000000000000000">
Reporting</A>
</H1>
<P>
After the fits are done, the complete dataset can be saved in the
native format using <EM>File/Save Dataset</EM>. The native format
preserves all the information in a future-proof fashion, but importing
it into other applications can be a little involved.
<P>
The <TT>-rep-to-table</TT> or <TT>-T</TT> command-line option allows the native format
to be converted into a table with fixed-width columns. The format and
content of the columns are fully programmable by changing the <EM>File
and Device Options/Report converter output format</EM> option. The
following command will convert dataset.out from the native format to a
table (dataset.txt) with the format as set in the option:
<BLOCKQUOTE>
<TT>gcx -T dataset.out <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img65.png"
ALT="$>$"></SPAN>dataset.txt</TT>
</BLOCKQUOTE>
Alternatively, the table format can be specified on the command
line. For example, to create a table with the stars' name, mjd of
observation, and V magnitudes and errors use:
<BLOCKQUOTE>
<TT>gcx -T dataset.out -S ".file.tab_format=name jdate
<SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img66.png"
ALT="$\backslash$"></SPAN>
<BR>
smag 'v' serr 'v'" <SPAN CLASS="MATH"><IMG
WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
SRC="img65.png"
ALT="$>$"></SPAN>dataset.txt</TT>
</BLOCKQUOTE>
The complete format string specification can be found in
Appendix <A HREF="node14.html#ap:repconv">E</A>.
<P>
Finally, it is possible to list the target stars in the AAVSO
format. If a validation file location is set in the <EM>File and
Device Options/Aavso validation file</EM>, it will be searched
for the designation of the stars. The observer code field will be
filled in from the <EM>general Observation Setup Data/Observer code</EM>
option.
<P>
<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html647"
HREF="node10.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html643"
HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html637"
HREF="node8.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html645"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html648"
HREF="node10.html">Noise Modelling</A>
<B> Up:</B> <A NAME="tex2html644"
HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html638"
HREF="node8.html">Aperture Photometry</A>
<B> <A NAME="tex2html646"
HREF="node1.html">Contents</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
root
2005-11-27
</ADDRESS>
</BODY>
</HTML>
|