File: node9.html

package info (click to toggle)
gcx 0.9.8-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 5,052 kB
  • ctags: 3,446
  • sloc: ansic: 37,409; sh: 3,059; perl: 1,453; makefile: 162
file content (1360 lines) | stat: -rw-r--r-- 51,333 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Multi-Frame and All-Sky Reduction</TITLE>
<META NAME="description" CONTENT="Multi-Frame and All-Sky Reduction">
<META NAME="keywords" CONTENT="gcx">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">

<LINK REL="STYLESHEET" HREF="gcx.css">

<LINK REL="next" HREF="node10.html">
<LINK REL="previous" HREF="node8.html">
<LINK REL="up" HREF="gcx.html">
<LINK REL="next" HREF="node10.html">
</HEAD>

<BODY >

<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html647"
  HREF="node10.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="/usr/share/latex2html/icons/next.png"></A> 
<A NAME="tex2html643"
  HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="/usr/share/latex2html/icons/up.png"></A> 
<A NAME="tex2html637"
  HREF="node8.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="/usr/share/latex2html/icons/prev.png"></A> 
<A NAME="tex2html645"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="/usr/share/latex2html/icons/contents.png"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html648"
  HREF="node10.html">Noise Modelling</A>
<B> Up:</B> <A NAME="tex2html644"
  HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html638"
  HREF="node8.html">Aperture Photometry</A>
 &nbsp; <B>  <A NAME="tex2html646"
  HREF="node1.html">Contents</A></B> 
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A>

<UL CLASS="ChildLinks">
<LI><A NAME="tex2html649"
  HREF="node9.html#SECTION00910000000000000000">Color Transformation Coefficients</A>
<UL>
<LI><A NAME="tex2html650"
  HREF="node9.html#SECTION00911000000000000000">Transforming the Stars</A>
</UL>
<BR>
<LI><A NAME="tex2html651"
  HREF="node9.html#SECTION00920000000000000000">All-Sky Reduction</A>
<UL>
<LI><A NAME="tex2html652"
  HREF="node9.html#SECTION00921000000000000000">Extinction Coefficient Fitting</A>
<LI><A NAME="tex2html653"
  HREF="node9.html#SECTION00922000000000000000">Calculating Zero Points</A>
</UL>
<BR>
<LI><A NAME="tex2html654"
  HREF="node9.html#SECTION00930000000000000000">Running Multi-Frame Reduction</A>
<UL>
<LI><A NAME="tex2html655"
  HREF="node9.html#SECTION00931000000000000000">Specifying Reduction Bands</A>
<LI><A NAME="tex2html656"
  HREF="node9.html#SECTION00932000000000000000">Loading Report Files</A>
<UL>
<LI><A NAME="tex2html657"
  HREF="node9.html#SECTION00932010000000000000">Frames</A>
<LI><A NAME="tex2html658"
  HREF="node9.html#SECTION00932020000000000000">Stars</A>
<LI><A NAME="tex2html659"
  HREF="node9.html#SECTION00932030000000000000">Bands</A>
</UL>
<LI><A NAME="tex2html660"
  HREF="node9.html#SECTION00933000000000000000">Fitting Individual Zero Points</A>
<LI><A NAME="tex2html661"
  HREF="node9.html#SECTION00934000000000000000">Plots</A>
<LI><A NAME="tex2html662"
  HREF="node9.html#SECTION00935000000000000000">Fitting Color Transformation Coefficients</A>
<LI><A NAME="tex2html663"
  HREF="node9.html#SECTION00936000000000000000">All-Sky Reduction</A>
</UL>
<BR>
<LI><A NAME="tex2html664"
  HREF="node9.html#SECTION00940000000000000000">Reporting</A>
</UL>
<!--End of Table of Child-Links-->
<HR>

<H1><A NAME="SECTION00900000000000000000"></A><A NAME="ch:multiframe"></A>
<BR>
Multi-Frame and All-Sky Reduction
</H1>

<P>
If we want to determine star colors, calculate transformation
coefficients to transform data to a standard system or obtain 
magnitudes of stars for which we don't have standards in the same
field, we must reduce multiple observation frames together.

<P>
People fortunate enough to observe in photometric conditions can use
a number of packages to reduce their data. For low altitude dwellers,
the selection is not that large. For them, <SMALL>GCX </SMALL>implements
multiple-frame 
reduction routines that are designed to
work in less than perfect conditions. 

<P>
Input data to the multi-frame reduction consists of observation
reports as produced by the aperture photometry routine. For color
coefficient fitting and transformation to a standard system, we need
frames of the target objects taken in enough bands. For
all-sky reductions, the observation reports need to have accurate time
and airmass information (which implies that the original frames need
to have enough information for the airmass determination).

<P>

<H1><A NAME="SECTION00910000000000000000">
Color Transformation Coefficients</A>
</H1>

<P>
To keep notation simple, let's assume that we reduce data taken in B
and V. We'll use <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img10.png"
 ALT="$B$"></SPAN> and <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img68.png"
 ALT="$V$"></SPAN> for the standard magnitudes, and <SPAN CLASS="MATH"><IMG
 WIDTH="12" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img17.png"
 ALT="$b$"></SPAN> and
<SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img69.png"
 ALT="$v$"></SPAN> for the instrumental magnitudes. The expressions for the standard
magnitudes are:<A NAME="tex2html40"
  HREF="footnode.html#foot794"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">1</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
B_j = b_j + Z_k + k_B(B_j-V_j)
\end{equation}
 -->
<A NAME="eq:transform"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:transform"></A><IMG
 WIDTH="212" HEIGHT="32" BORDER="0"
 SRC="img70.png"
 ALT="\begin{displaymath}
B_j = b_j + Z_k + k_B(B_j-V_j)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">1</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
V_j = v_j + Z_k + k_V(B_j-V_j)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="208" HEIGHT="32" BORDER="0"
 SRC="img71.png"
 ALT="\begin{displaymath}
V_j = v_j + Z_k + k_V(B_j-V_j)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">2</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$j$"></SPAN> subscripts go over all individual star observations in a given
band, while the <SPAN CLASS="MATH"><IMG
 WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img73.png"
 ALT="$k$"></SPAN> subscripts iterate over the observation frames.
For standard stars, the <SPAN CLASS="MATH"><IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img74.png"
 ALT="$B_j$"></SPAN> and <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img75.png"
 ALT="$V_j$"></SPAN> are known while <SPAN CLASS="MATH"><IMG
 WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
 SRC="img76.png"
 ALT="$b_j$"></SPAN> and <SPAN CLASS="MATH"><IMG
 WIDTH="20" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img77.png"
 ALT="$v_j$"></SPAN> are
measured from the frames themselves. We have to fit the zeropoints
<SPAN CLASS="MATH"><IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img78.png"
 ALT="$Z_k$"></SPAN> and the transformation coefficients <SPAN CLASS="MATH"><IMG
 WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img73.png"
 ALT="$k$"></SPAN>. Because we have chosen
to express the transformation coefficients in function of the standard
magnitudes, we can proceed with one band at a time. We'll assume it is 
V. The steps are:

<OL>
<LI>Set an starting value of the transformation coefficient. We can
  start with 0 without problems, as the coefficients are generally
  small numbers.
</LI>
<LI>For each V frame, fit the zeropoint using the robust algorithm
  in Appendix&nbsp;<A HREF="node11.html#ap:robust">B</A>, with the difference that the current color
  transformation is applied when calculating the residuals, so
  Equation&nbsp;<A HREF="node11.html#eq:residuals">B.5</A> becomes:
  <BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\rho_j=y_j - \widetilde{Z_k} - k_V (B_j - V_j)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="209" HEIGHT="32" BORDER="0"
 SRC="img79.png"
 ALT="\begin{displaymath}
\rho_j=y_j - \widetilde{Z_k} - k_V (B_j - V_j)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">3</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Note that in this equation, the <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img72.png"
 ALT="$j$"></SPAN> subscripts iterate over the
  stars in frame <SPAN CLASS="MATH"><IMG
 WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img73.png"
 ALT="$k$"></SPAN>.
</LI>
<LI>Now, for all the stars in all the V frames, estimate the
  ``tilt'' of the residuals, and adjust the transformation coefficient
  and zeropoints accordingly. We use the weights from the individual
  frames' fits when estimating the tilt:
  <BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\theta = \frac{\sum_j\rho_j(B_j-V_j) W'_j}{\sum_j(B_j-V_j)^2 W'_j}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="172" HEIGHT="53" BORDER="0"
 SRC="img80.png"
 ALT="\begin{displaymath}
\theta = \frac{\sum_j\rho_j(B_j-V_j) W'_j}{\sum_j(B_j-V_j)^2 W'_j}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">4</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
  <BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
k_V = k_V + \theta
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="93" HEIGHT="29" BORDER="0"
 SRC="img81.png"
 ALT="\begin{displaymath}
k_V = k_V + \theta
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">5</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
  <BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
Z_k = Z_k + \theta\frac{\sum_j(B_j-V_j) W'_j}{\sum_jW'_j}
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="214" HEIGHT="53" BORDER="0"
 SRC="img82.png"
 ALT="\begin{displaymath}
Z_k = Z_k + \theta\frac{\sum_j(B_j-V_j) W'_j}{\sum_jW'_j}
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">6</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
</LI>
<LI>Iterate the last two steps until the solution converges (the
  transformation coefficient doesn't change significantly).
</LI>
</OL>
We have now obtained the transformation coefficient for the V
magnitudes, and also adjusted all the frame zeropoints so that their
dependence on the color of the standard stars in each frame is
eliminated.<A NAME="tex2html41"
  HREF="footnode.html#foot817"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">2</SPAN></SUP></A>The above is repeated for each band we want to reduce. Note that we
have obtained the transformation coefficients without assuming any
relation between the zero points of various frames--just differential 
photometry.

<P>
We can choose any color index for a given band. For instance, there is
nothing stopping us from calculating a <SPAN CLASS="MATH"><IMG
 WIDTH="67" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img83.png"
 ALT="$(B-V)$"></SPAN> transformation
coefficient for <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img13.png"
 ALT="$I$"></SPAN> or <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img84.png"
 ALT="$R$"></SPAN> magnitudes. In fact, if we have more
standards data in B and V, it may prove better to do so. In general,
Equation&nbsp;(<A HREF="#eq:transform">8.1</A>) can be written for any band <SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img32.png"
 ALT="$M$"></SPAN> as:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
M_j = m_j + Z_k + k_M(C_1^M - C_2^M)\\
\end{equation}
 -->
<A NAME="eq:transform2"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:transform2"></A><IMG
 WIDTH="247" HEIGHT="32" BORDER="0"
 SRC="img85.png"
 ALT="\begin{displaymath}
M_j = m_j + Z_k + k_M(C_1^M - C_2^M)\\
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">7</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
 WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img86.png"
 ALT="$C_1^M$"></SPAN> and <SPAN CLASS="MATH"><IMG
 WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img87.png"
 ALT="$C_2^M$"></SPAN> are any bands for which we have standards
data. We can fit the transformation coefficient <SPAN CLASS="MATH"><IMG
 WIDTH="29" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
 SRC="img88.png"
 ALT="$k_M$"></SPAN> using only the
<SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img32.png"
 ALT="$M$"></SPAN> observations. However, when we want to transform the stars, we
will need observations in <SPAN CLASS="MATH"><IMG
 WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img32.png"
 ALT="$M$"></SPAN>, <SPAN CLASS="MATH"><IMG
 WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img86.png"
 ALT="$C_1^M$"></SPAN>, <SPAN CLASS="MATH"><IMG
 WIDTH="33" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img87.png"
 ALT="$C_2^M$"></SPAN> and all the bands that
these depend on. 

<P>

<H2><A NAME="SECTION00911000000000000000">
Transforming the Stars</A>
</H2>
To calculate the transformed standard magnitudes of our target stars,
all we have to do is to write Equation&nbsp;(<A HREF="#eq:transform2">8.7</A>) for each
band, and solve the resulting system of linear equations for the
standard magnitudes. The system is very well behaved (it's matrix is
close to unity) so <SMALL>GCX </SMALL>uses the simple Gauss-Jordan elimination method to
solve it.

<P>

<H1><A NAME="SECTION00920000000000000000">
All-Sky Reduction</A>
</H1>

<P>
When the field of our intended target doesn't contain any suitable
standard stars, we have to determine their magnitudes by comparing to
stars in a different field. To do this, we need to determine a
relation between the zeropoints of different frames.

<P>
Under photometric conditions, we can consider that the <EM>atmospheric
extinction</EM><A NAME="tex2html42"
  HREF="footnode.html#foot826"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">3</SPAN></SUP></A>depends only on the thickness of the atmosphere along the light
path. The ratio between the thickness of the atmosphere in the
direction of field and it's thickness towards zenith is called the
<EM>airmass</EM> of the field. The airmass depends on the zenital angle
<EM>z</EM> of the field, and is close to <SPAN CLASS="MATH"><IMG
 WIDTH="49" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img89.png"
 ALT="$\sec(z)$"></SPAN> when far from the
horison. The formula used by <SMALL>GCX </SMALL>is the following:<A NAME="tex2html43"
  HREF="footnode.html#foot1248"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">4</SPAN></SUP></A>
<BR>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{eqnarray}
s = \sec(z) - 1;\\
A=1 + s[0.9981833 - s(0.002875+0.0008083 s)]
\end{eqnarray}
 -->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="115" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img90.png"
 ALT="$\displaystyle s = \sec(z) - 1;$"></TD>
<TD>&nbsp;</TD>
<TD>&nbsp;</TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">8</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="376" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img91.png"
 ALT="$\displaystyle A=1 + s[0.9981833 - s(0.002875+0.0008083 s)]$"></TD>
<TD>&nbsp;</TD>
<TD>&nbsp;</TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">9</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
The zenital angle of a frame can be determined given it's equatorial
coordinates, the geographical coordinates of the observing site, and time.

<P>
If the extinction is unform in all directions, we can define an <EM>  extinction coefficient</EM> <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img92.png"
 ALT="$E$"></SPAN>, so that for any frame:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
Z(A) = Z_0 - EA
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="130" HEIGHT="31" BORDER="0"
 SRC="img93.png"
 ALT="\begin{displaymath}
Z(A) = Z_0 - EA
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">10</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img94.png"
 ALT="$Z_0$"></SPAN> is the zeropoint outside the atmosphere, and A is the
frame's airmass. If we have two frames with airmasses <SPAN CLASS="MATH"><IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img95.png"
 ALT="$A_1$"></SPAN>
and <SPAN CLASS="MATH"><IMG
 WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img96.png"
 ALT="$A_2$"></SPAN>, their zeropoints can be related by:
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
Z_2 = Z_1 - E(A_2-A_1)
\end{equation}
 -->
<A NAME="eq:ext2"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ext2"></A><IMG
 WIDTH="170" HEIGHT="31" BORDER="0"
 SRC="img97.png"
 ALT="\begin{displaymath}
Z_2 = Z_1 - E(A_2-A_1)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">11</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
Under photometric conditions, it is customary to determine the
extinction coefficient by observing the same field at different
airmasses and then fitting E from (<A HREF="#eq:ext2">8.11</A>). This is only
possible when <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img92.png"
 ALT="$E$"></SPAN> doesn't change (or changes in a smooth, linear
fashion) over a period of the order of hours.

<P>
Because the <SMALL>GCX </SMALL>all-sky routine is targeted at less-than-perfect 
conditions, we will choose another strategy in determining the
extinction coefficient. We use several standard fields located 
relatively near our target fields. Then we we try to ``chop'' the
extinction coefficient as much as possible by alternating between the 
standard and target fields.<A NAME="tex2html44"
  HREF="footnode.html#foot840"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">5</SPAN></SUP></A>
<P>
We end up with a series of observations from different fields, all in
the same general airmass range. By examining the standard fields'
zeropoints variation with time and airmass, we can determine if there
were any ``windows'' during which the extinction was stable.  

<P>
Once a stable window was found, we can fit the extinction coefficient
from the observations in that window. It is unlikely that the
observations will span a wide range of airmasses, which will make the
fitted value of the extinction coefficient somewhat imprecise. But
this is offset by the fact that the airmass of the target frames is the
same range, so the contribution of the extinction term is not very
large. As long as the airmass of the standard fields brackets those of
the target fields, we are <EM>interpolating</EM> rather than
extrapolating the extinction.<A NAME="tex2html45"
  HREF="footnode.html#foot842"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">6</SPAN></SUP></A>
<P>

<H2><A NAME="SECTION00921000000000000000">
Extinction Coefficient Fitting</A>
</H2>

<P>
Before attempting to fit the extinction coefficient, the zeropoints
and color transformation coefficient of all frames must be fitted. It
is highly recommended to examine plots of the resulting zeropoints
versus time and airmass to see if it's worth trying to do any all-sky
reduction at all (more on this below).

<P>
With these precautions, the program will proceed to fit the extinction
coefficients using a variant of the algorithm described in
Appendix&nbsp;<A HREF="node11.html#ap:robust">B</A>,<A NAME="tex2html46"
  HREF="footnode.html#foot845"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">7</SPAN></SUP></A>with the initial weights assigned based on the calculated errors of 
the zeropoints. The fitted model is:<A NAME="tex2html47"
  HREF="footnode.html#foot846"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">8</SPAN></SUP></A>
<BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
Z = \bar{Z} + E (A - \bar{A})
\end{equation}
 -->
<A NAME="eq:zmodel"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:zmodel"></A><IMG
 WIDTH="143" HEIGHT="31" BORDER="0"
 SRC="img98.png"
 ALT="\begin{displaymath}
Z = \bar{Z} + E (A - \bar{A})
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">12</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img99.png"
 ALT="$\bar{A}$"></SPAN> is the mean airmass of the standard frames, while
<SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img100.png"
 ALT="$\bar{Z}$"></SPAN> is the zeropoint of a mean airmass frame.

<P>
A different extinction coefficient is fitted for each
band. Frames that are outliers of the fit (their standard error
exceeds the threshold set in <EM>Multi-Frame Photometry
  Options/Zeropoint outlier threshold</EM>) are marked as such.

<P>

<H2><A NAME="SECTION00922000000000000000">
Calculating Zero Points</A>
</H2>

<P>
After fitting the extinction coefficient, we can apply
Equation&nbsp;<A HREF="#eq:zmodel">8.12</A> and calculate the zeropoint of any target
frame. The program tries to filter the frames for which such a
determination would likely be in error. It will only calculate a
zeropoint for frames which satisfy the following:

<OL>
<LI>The frame has to be both preceded and succeded in time by
  non-outlier standard frames;
</LI>
<LI>The frame's airmass has to be in the same range as the standard
  frames from which the extinction coefficient was fitted. 

<P>
If <SPAN CLASS="MATH"><IMG
 WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img101.png"
 ALT="$A_m$"></SPAN> is the minimum and <SPAN CLASS="MATH"><IMG
 WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img102.png"
 ALT="$A_M$"></SPAN> is the maximum standard airmass,
  and <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img103.png"
 ALT="$r$"></SPAN> is the value of <EM>Multi-Frame Photometry
    Options/Airmass range</EM>
  the zeropoint is only calculated for frames with airmasses between 
  <BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\frac{A_M + A_m}{2} - \frac{r}{2}(A_M - A_m)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="198" HEIGHT="42" BORDER="0"
 SRC="img104.png"
 ALT="\begin{displaymath}
\frac{A_M + A_m}{2} - \frac{r}{2}(A_M - A_m)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">13</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
and 
  <BR>
<DIV ALIGN="RIGHT" CLASS="mathdisplay">

<!-- MATH
 \begin{equation}
\frac{A_M + A_m}{2} + \frac{r}{2}(A_M + A_m)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="199" HEIGHT="42" BORDER="0"
 SRC="img105.png"
 ALT="\begin{displaymath}
\frac{A_M + A_m}{2} + \frac{r}{2}(A_M + A_m)
\end{displaymath}"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">14</SPAN>)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
</LI>
</OL>

<P>

<H1><A NAME="SECTION00930000000000000000">
Running Multi-Frame Reduction</A>
</H1>

<P>
This section is a step-by-step tour of the multi-frame reduction
tool. An realistically-sized example input file is provided in the
distribution data directory (<TT>cygs-aug19.out</TT>). This file was generated by
<SMALL>GCX </SMALL>aperture photometry from 143 frames taken in B, V, R and I in a
single night, all in Cygnus. The standards data is from
Henden sequence files, which were converted into <SMALL>GCX </SMALL>recipies with
the import function.
The file consists of individual aperture photometry reports appended
together.

<P>

<H2><A NAME="SECTION00931000000000000000">
Specifying Reduction Bands</A>
</H2>

<P>
Before we can reduce data, we have to define which color indices are
used for each band. The <EM>Multi-Frame Photometry Options/Bands
  setup</EM> option specifies this. It contains a list of specifiers of
the form: <code>&lt;band&gt;(&lt;c1&gt;-&lt;c2&gt;)</code> separated by spaces. Each specifier
tells the program to use the color index ``<TT>&lt;c1&gt;-&lt;c2&gt;</TT>'' to reduce
frames taken in ``<TT>band</TT>''. For example, the default setting:
<DIV ALIGN="CENTER"><BLOCKQUOTE><TT>b(b-v) v(b-v) r(v-r) i(v-i)</TT></BLOCKQUOTE></DIV>
will set the following transformation model:
<BR>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{eqnarray}
B&=&b+Z_B+k_B(B-V)\\
V&=&v+Z_V+k_V(B-V)\\
R&=&r+Z_R+k_R(V-R)\\
I&=&i+Z_I+k_I(V-I)
\end{eqnarray}
 -->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img106.png"
 ALT="$\displaystyle B$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img107.png"
 ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
 WIDTH="162" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img108.png"
 ALT="$\displaystyle b+Z_B+k_B(B-V)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">15</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img109.png"
 ALT="$\displaystyle V$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img107.png"
 ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
 WIDTH="163" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img110.png"
 ALT="$\displaystyle v+Z_V+k_V(B-V)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">16</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img111.png"
 ALT="$\displaystyle R$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img107.png"
 ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
 WIDTH="161" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img112.png"
 ALT="$\displaystyle r+Z_R+k_R(V-R)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">17</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img113.png"
 ALT="$\displaystyle I$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img107.png"
 ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
 WIDTH="147" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img114.png"
 ALT="$\displaystyle i+Z_I+k_I(V-I)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">18</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
This model is appropiate if we reduce BV, BVI, BVR or BVRI
data. However, it will have to be changed if for instance we want to
reduce VI data, as using it will require B, V and I observations,
because of the V dependence on B. An appropiate model for VI data
would be:
<BR>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{eqnarray}
V&=&v+Z_V+k_V(V-I)\\
I&=&i+Z_I+k_I(V-I)
\end{eqnarray}
 -->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img109.png"
 ALT="$\displaystyle V$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img107.png"
 ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
 WIDTH="158" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img115.png"
 ALT="$\displaystyle v+Z_V+k_V(V-I)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">19</SPAN>)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP WIDTH="50%" ALIGN="RIGHT"><IMG
 WIDTH="13" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img113.png"
 ALT="$\displaystyle I$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img107.png"
 ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" WIDTH="50%" NOWRAP><IMG
 WIDTH="147" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img114.png"
 ALT="$\displaystyle i+Z_I+k_I(V-I)$"></TD>
<TD CLASS="eqno" WIDTH=10 ALIGN="RIGHT">
(<SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">20</SPAN>)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
which is specified by setting:
<DIV ALIGN="CENTER"><BLOCKQUOTE><TT>v(v-i) i(v-i)</TT></BLOCKQUOTE></DIV>
in the <EM>Bands setup</EM> option.

<P>
The same option can be used to set initial transformation coefficients
and their errors, by appending ``<TT>=&lt;coeff&gt;/err</TT>'' to each band
specifier like for example:
<BLOCKQUOTE>
<TT>b(b-v)=0.12/0.001 v(b-v)=-0.07/0.02</TT>
</BLOCKQUOTE>

<P>

<H2><A NAME="SECTION00932000000000000000">
Loading Report Files</A>
</H2>

<P>
The data to be reduced can reside in one or more files. 
To load data, open the the multi-frame reduction dialog using 
<EM>Processing/Multi-frame reduction</EM> or <B>Ctrl-M</B>, and select
<EM>File/Add to Dataset</EM>. Select the file name and press <EM>Ok</EM>.
The data from the frames contained in the file will load, and the
frames will appear in the ``Frames'' tab of the dialog.

<P>
More observations can be added by using <EM>Add to Dataset</EM>
repeteadly.<A NAME="tex2html48"
  HREF="footnode.html#foot1251"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">9</SPAN></SUP></A> We'll assume the example file (<TT>cygs-aug19.out</TT>) is loaded for the next
steps.

<P>

<H4><A NAME="SECTION00932010000000000000">
Frames</A>
</H4> The ``Frames'' tab contains a list with all the frames in the
dataset, one per line. It will display increasing amounts of
information as the fit progresses. The columns that are filled up 
right after loading the data files should be self-explanatory. The
other columns show:
<TABLE CELLPADDING=3>
<TR><TD ALIGN="LEFT">Zpoint</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The fitted zero point of the frame;</TD>
</TR>
<TR><TD ALIGN="LEFT">Err</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The calculated error of the zero point;</TD>
</TR>
<TR><TD ALIGN="LEFT">Fitted</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The number of standard stars used in the fit;</TD>
</TR>
<TR><TD ALIGN="LEFT">Outliers</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The number of standard stars that are considered 
outliers of the fit (have large standard errors);</TD>
</TR>
<TR><TD ALIGN="LEFT">MEU</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The mean error of unit weight for the zeropoint fit of
the frame.</TD>
</TR>
</TABLE>

<P>
Clicking on the column headers will make the program sort the list by
the respective column. Clicking again will reverse the sort order. 
One or more frames can be selected in the list. All operations apply
to the selected frames or, if none are selected, to the whole list.

<P>

<H4><A NAME="SECTION00932020000000000000">
Stars</A>
</H4> When a frame line is clicked, the stars from that frame are displayed
in the ``Stars'' tab. Like the frames, the stars can be
sorted on various columns by clicking on the column headers. The
columns of the stars table show:
<TABLE CELLPADDING=3>
<TR><TD ALIGN="LEFT">Name</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The star's name. A star is identified across multiple frame by
it's name;</TD>
</TR>
<TR><TD ALIGN="LEFT">Type</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Star type (standard or target);</TD>
</TR>
<TR><TD ALIGN="LEFT">Band</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The band the magnitudes are in;</TD>
</TR>
<TR><TD ALIGN="LEFT">Smag</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The standard magnitude for the star. If the contents of this
field are calculated by the program, as for target stars, the
magnitude appears in square brackets;</TD>
</TR>
<TR><TD ALIGN="LEFT">Err</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Error of the standard magnitude (either taken from the report
file, or calculated by the program);</TD>
</TR>
<TR><TD ALIGN="LEFT">Imag</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Instrumental magnitude in this observation;</TD>
</TR>
<TR><TD ALIGN="LEFT">Err</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Error of the instrumental magnitude, taken from the report file;</TD>
</TR>
<TR><TD ALIGN="LEFT">Residual</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>The residual in the last fit of the frame. Only appears for
standard stars;</TD>
</TR>
<TR><TD ALIGN="LEFT">Std Error</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Standard error of the star (the residual divided by the
estimated error). Only for the standard stars;</TD>
</TR>
<TR><TD ALIGN="LEFT">Outlier</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>''Y'' or ``N'' depending on whether the star has a large
standard error or not;</TD>
</TR>
<TR><TD ALIGN="LEFT">R.A, Dec</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>Star catalog position;</TD>
</TR>
<TR><TD ALIGN="LEFT">Flags</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=255>A list of flags that apply to the star. Some are taken from the
report file, some are added by the fitting routines.</TD>
</TR>
</TABLE>

<P>

<H4><A NAME="SECTION00932030000000000000">
Bands</A>
</H4> The bands tab shows the currently configured bands,
and the various transformation coefficients relating to these
bands. They only show the fitted coefficients as they resulted from
the last fit operation. If only some frames were selected in that
operation, then these values may only apply to those frames. 

<P>

<H2><A NAME="SECTION00933000000000000000">
Fitting Individual Zero Points</A>
</H2>

<P>
The simplest type of fit we can do is fit the zeropoints of each frame
individually, without taking the other frames into consideration (like
the last step in the aperture photometry routine). Even though the
report files likely contained the individual fit information, it was
discarded when the report was loaded. We need to perform at least
this step before we can generate any plots for the data.

<P>
There are two variants of this command: one zeroes all the
transformation coefficients before doing the fit (<EM>Fit Zero
  Points with Null Coefficients</EM>), while the other will apply the
current transformation coefficients to the standard stars first.
(<EM>Fit Zero Points with Current Coefficients</EM>).

<P>
Make sure the frames you want to fit are selected before applying the
command (if no frames are selected, the command will apply to all
frames).

<P>
After the fit, examine the MEU column, which will show the quality of
the fit (the number should be around 1.0). Since we only fitted the
zeropoint, and not the color coefficients the values are slightly
larger than the best than can be obtained.

<P>

<H2><A NAME="SECTION00934000000000000000">
Plots</A>
</H2>

<P>

<DIV ALIGN="CENTER"><A NAME="fig:v-res-mag-zponly"></A><A NAME="910"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.1:</STRONG>
Residuals vesus standard magnitudes for all frames in the
  example data set, after zero point fitting without color
  transformation.</CAPTION>
<TR><TD><IMG
 WIDTH="523" HEIGHT="380" ALIGN="BOTTOM" BORDER="0"
 SRC="img116.png"
 ALT="\includegraphics[width=\textwidth]{v-res-mag-zponly}"></TD></TR>
</TABLE>
</DIV>

<P>
At this point, we can generate various plots, which are instrumental
in judging the quality of the data, especially when we consider the more
ellaborate fits. The program generates data file for the <TT>gnuplot</TT>
utility, and will run <TT>gnuplot</TT> directly if the option <EM>File
  and Device Options/Gnuplot command</EM> is correctly set.<A NAME="tex2html50"
  HREF="footnode.html#foot916"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">10</SPAN></SUP></A> If the <EM>Plot to File</EM> option in the <EM>Plot</EM> menu is 
selected, the program will generate a data file instead of running 
gnuplot directly.<A NAME="tex2html51"
  HREF="footnode.html#foot919"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">11</SPAN></SUP></A>
<P>
Let's select the V frames (click on the band column header twice to
bring the V band at the top, then click on the first V frame, and
finaly shift-click on the last V frame). Now run <EM>Plot/Residuals
  vs Magnitude</EM>. A plot should appear that is similar to the
one in Figure&nbsp;<A HREF="#fig:v-res-mag-zponly">8.1</A>.

<P>

<DIV ALIGN="CENTER"><A NAME="fig:aucyg-res-std"></A><A NAME="924"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.2:</STRONG>
Residuals versus standard magnitudes of one AU CYG frame.</CAPTION>
<TR><TD><IMG
 WIDTH="524" HEIGHT="380" ALIGN="BOTTOM" BORDER="0"
 SRC="img117.png"
 ALT="\includegraphics[width=\textwidth]{aucyg-res-std}"></TD></TR>
</TABLE>
</DIV>

<P>
The plot generally has the familiar shape of photon-shot
noise dominated observations, with random errors increasing as the
stars become fainter. An additional feature of this dataset are the 
``branches'' going up starting at around mag 12 and 11. These are
caused by saturated standard stars (the standards we used are not
reliable above mag 12.5 or so). If the stars would be saturated in our
observations, the ``branches'' would go downward.<A NAME="tex2html53"
  HREF="footnode.html#foot1254"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">12</SPAN></SUP></A>
<P>

<DIV ALIGN="CENTER"><A NAME="fig:aucyg-wres-std"></A><A NAME="930"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.3:</STRONG>
Standard errors versus magnitudes of one AU CYG frame.</CAPTION>
<TR><TD><IMG
 WIDTH="523" HEIGHT="380" ALIGN="BOTTOM" BORDER="0"
 SRC="img118.png"
 ALT="\includegraphics[width=\textwidth]{aucyg-wres-std}"></TD></TR>
</TABLE>
</DIV>

<P>
To investigate the matter further, we select a frame with a large
number of outliers, which is likely to contain such a ``branch''. For
example, let's select aucyg. The <EM>Residuals vs
  Magnitude</EM> plot for this frame is shown in
Figure&nbsp;<A HREF="#fig:aucyg-res-std">8.2</A>. The bright stars branching up are
obvious in this plot. However, the importance of the errors is
difficult to judge, as the ``normal'' error changes with the stars'
magnitudes (and fainter stars show similar residuals). The
<EM>Standard Errors vs Magnitude</EM> plot comes handy in this
situation. It is similar to the previous plot, only the residuals are
divided by the expected error of the respective stars. We expect all
stars to show similar standard errors, all within a 6 units wide band
around zero. This plot is shown in Figure&nbsp;<A HREF="#fig:aucyg-wres-std">8.3</A>.
We can clearly see that the relatively large residuals to the right of
the plot are within normal limits (also indicated by the value of the 
MEU fit parameter). The ``branch'' is clearly deviant (with standard
errors going up to 30 and more).<A NAME="tex2html55"
  HREF="footnode.html#foot937"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">13</SPAN></SUP></A> Fortunately, the robust fitting
algorithm has downweighted the deviant points significantly, so the
``good'' values still spread symetrically around zero.<A NAME="tex2html56"
  HREF="footnode.html#foot938"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">14</SPAN></SUP></A>
<P>

<H2><A NAME="SECTION00935000000000000000">
Fitting Color Transformation Coefficients</A>
</H2>

<P>

<DIV ALIGN="CENTER"><A NAME="fig:v-se-color-zponly"></A><A NAME="942"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.4:</STRONG>
Standard errors vs color for the V frames, before
  transformation coefficient fitting.</CAPTION>
<TR><TD><IMG
 WIDTH="497" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
 SRC="img121.png"
 ALT="\includegraphics[width=\textwidth]{v-se-color-zponly}"></TD></TR>
</TABLE>
</DIV>

<P>

<DIV ALIGN="CENTER"><A NAME="fig:v-se-color"></A><A NAME="947"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.5:</STRONG>
Standard errors vs color for the V frames, after
  transformation coefficient fitting.</CAPTION>
<TR><TD><IMG
 WIDTH="497" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
 SRC="img122.png"
 ALT="\includegraphics[width=\textwidth]{v-se-color}"></TD></TR>
</TABLE>
</DIV>

<P>
With the V frames selected, let's plot the standard errors again, this
time against the star's color index. For this, select <EM>Plot/Standard Errors
vs Color</EM>. The output should look similar to
Figure&nbsp;<A HREF="#fig:v-se-color-zponly">8.4</A>. Even given the scatter of the
individual observations, the plot shows a clear sloping (making the
residuals proportional to the color index).<A NAME="tex2html59"
  HREF="footnode.html#foot952"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">15</SPAN></SUP></A> To remove this slope and 
at the same time calculate the color transformation coefficient, we
use <EM>Reduce/Fit Zero Points and Transformation Coefficients</EM>. 
After the fit is done, the slope is removed, as shown in 
Figure&nbsp;<A HREF="#fig:v-se-color">8.5</A>. The title of the figure shows the
transformation used. In our case, the resulting tranformation
coefficient is 0.062, a rather small figure indicating a good fit
between the filters used and the standard ones. If we check the MEU 
fields for each frame, we will see that they have decreased, showing 
that the data more closely matches the standard magnitudes after the
color transformation.

<P>
After the fit, the list in the ``Bands'' tab is updated to show the
fitted transformation coefficients and their expected errors. Note
that the error is quite small in our case (0.002),<A NAME="tex2html60"
  HREF="footnode.html#foot955"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">16</SPAN></SUP></A> even though the
data seemed to spread a lot. The large number of stars used in the fit
helped reduce the error considerably.

<P>
A good sanity check for the transformation coefficient fit is to run
the same routine on subsets of the initial data set and compare the 
resulting transformation coefficients. They should match within the
reported error figures.

<P>
Before proceeding, let's do the transformation coefficient fit for the
whole dataset: <EM>Edit/Unselect All</EM>, then <EM>Reduce/Fit Zero 
Points and Transformation Coefficients</EM>. 

<P>

<H2><A NAME="SECTION00936000000000000000">
All-Sky Reduction</A>
</H2>

<P>

<DIV ALIGN="CENTER"><A NAME="fig:zp-am-1"></A><A NAME="961"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.6:</STRONG>
Zero points vs airmass for frames with standards data.</CAPTION>
<TR><TD><IMG
 WIDTH="537" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
 SRC="img125.png"
 ALT="\includegraphics[width=\textwidth]{zp-am-1}"></TD></TR>
</TABLE>
</DIV>

<DIV ALIGN="CENTER"><A NAME="fig:zp-t-1"></A><A NAME="966"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.7:</STRONG>
Zero points vs time for frames with standards data.</CAPTION>
<TR><TD><IMG
 WIDTH="536" HEIGHT="377" ALIGN="BOTTOM" BORDER="0"
 SRC="img126.png"
 ALT="\includegraphics[width=\textwidth]{zp-t-1}"></TD></TR>
</TABLE>
</DIV>

<P>
The example data set contains BVRI frames for all fields. However,
only some of the fields have R and I standards data. The night was
clear, but conditions were changing. Let's see what we can do about
the R and I frames that need all-sky reduction.

<P>
We can examine the frame zero points versus the airmass, expecting
them to fall on a down-sloping line.<A NAME="tex2html63"
  HREF="footnode.html#foot969"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">17</SPAN></SUP></A> Using <EM>Plot/Zeropoints vs Airmass</EM> will produce the plot in
Figure&nbsp;<A HREF="#fig:zp-am-1">8.6</A>, which shows all the bands' zeropoints on the
same graph. We see that most of the frames do indeed lie on
down-sloping lines with a scatter consistent with their expected
errors as shows by the error bars, but there are some outliers. So the
conditions weren't photometric. If we now plot the same zeropoints
against time (<EM>Plot/Zeropoints vs Time</EM>), Figure&nbsp;<A HREF="#fig:zp-t-1">8.7</A> we
can see what has happened: the transparency has improved starting at
MJD 53236.95, to the point where we can use the all-sky method for
frames taken after that point. 

<P>

<DIV ALIGN="CENTER"><A NAME="fig:zp-am-2"></A><A NAME="976"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.8:</STRONG>
Zero points vs airmass for all frames, after the extinction fit.</CAPTION>
<TR><TD><IMG
 WIDTH="537" HEIGHT="375" ALIGN="BOTTOM" BORDER="0"
 SRC="img127.png"
 ALT="\includegraphics[width=\textwidth]{zp-am-2}"></TD></TR>
</TABLE>
</DIV>

<DIV ALIGN="CENTER"><A NAME="fig:zp-t-2"></A><A NAME="981"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.9:</STRONG>
Zero points vs time for all frames, after the extinction fit.</CAPTION>
<TR><TD><IMG
 WIDTH="536" HEIGHT="377" ALIGN="BOTTOM" BORDER="0"
 SRC="img128.png"
 ALT="\includegraphics[width=\textwidth]{zp-t-2}"></TD></TR>
</TABLE>
</DIV>

<P>
Let's run the all-sky reduction (<EM>Reduce/Fit Extinction and
  All-Sky Zero Points</EM>) and generate the plots again. As we can see in 
Figures&nbsp;<A HREF="#fig:zp-am-2">8.8</A> and&nbsp;<A HREF="#fig:zp-t-2">8.9</A>, the program has
  selected the frames which are bracketed by other ``good'' frames,
<A NAME="tex2html66"
  HREF="footnode.html#foot987"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">18</SPAN></SUP></A> and calculated their all-sky zeropoints. The all-sky frames are
  shown with different colors. These plots should be carefully
  examined and any suspicious frames removed from the all-sky
  reduction. In our case however, it seems that the program has made a
  good choice of frames. 

<P>
The calculated extinction coefficients and their errors are displayed
in the ``Bands'' tab. The errors of the exctinction coefficients are
relatively large. In this case, this is due to the fact that the
frames are taken in a narrow range of airmasses. The same narrow range
of airmasses will however reduce the impact of the errors on the
calculated zeropoints. this can be seen on the graphs, where the error
bars of the all-sky frames, which take the extinction coefficient
errors into account, are of the same order as those of the ``normal''
frames.<A NAME="tex2html67"
  HREF="footnode.html#foot988"><SUP><SPAN CLASS="arabic">8</SPAN>.<SPAN CLASS="arabic">19</SPAN></SUP></A>
<P>

<H1><A NAME="SECTION00940000000000000000">
Reporting</A>
</H1>

<P>
After the fits are done, the complete dataset can be saved in the
native format using <EM>File/Save Dataset</EM>. The native format
preserves all the information in a future-proof fashion, but importing
it into other applications can be a little involved.

<P>
The <TT>-rep-to-table</TT> or <TT>-T</TT> command-line option allows the native format
to be converted into a table with fixed-width columns. The format and 
content of the columns are fully programmable by changing the <EM>File
and Device Options/Report converter output format</EM> option. The
following command will convert dataset.out from the native format to a
table (dataset.txt) with the format as set in the option:
<BLOCKQUOTE>
<TT>gcx -T dataset.out <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img65.png"
 ALT="$&gt;$"></SPAN>dataset.txt</TT>
</BLOCKQUOTE>
Alternatively, the table format can be specified on the command
line. For example, to create a table with the stars' name, mjd of
observation, and V magnitudes and errors use:
<BLOCKQUOTE>
<TT>gcx -T dataset.out -S ".file.tab_format=name jdate
  <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img66.png"
 ALT="$\backslash$"></SPAN>
<BR>
smag 'v' serr 'v'" <SPAN CLASS="MATH"><IMG
 WIDTH="18" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="img65.png"
 ALT="$&gt;$"></SPAN>dataset.txt</TT>
</BLOCKQUOTE>
The complete format string specification can be found in
Appendix&nbsp;<A HREF="node14.html#ap:repconv">E</A>.

<P>
Finally, it is possible to list the target stars in the AAVSO
format. If a validation file location is set in the <EM>File and
  Device Options/Aavso validation file</EM>, it will be searched 
for the designation of the stars. The observer code field will be
filled in from the <EM>general Observation Setup Data/Observer code</EM>
option.

<P>

<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html647"
  HREF="node10.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="/usr/share/latex2html/icons/next.png"></A> 
<A NAME="tex2html643"
  HREF="gcx.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="/usr/share/latex2html/icons/up.png"></A> 
<A NAME="tex2html637"
  HREF="node8.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="/usr/share/latex2html/icons/prev.png"></A> 
<A NAME="tex2html645"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="/usr/share/latex2html/icons/contents.png"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html648"
  HREF="node10.html">Noise Modelling</A>
<B> Up:</B> <A NAME="tex2html644"
  HREF="gcx.html">GCX User's Manual</A>
<B> Previous:</B> <A NAME="tex2html638"
  HREF="node8.html">Aperture Photometry</A>
 &nbsp; <B>  <A NAME="tex2html646"
  HREF="node1.html">Contents</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
root
2005-11-27
</ADDRESS>
</BODY>
</HTML>