File: gdalwarpkernel_opencl.c

package info (click to toggle)
gdal 1.10.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,320 kB
  • ctags: 74,726
  • sloc: cpp: 677,199; ansic: 162,820; python: 13,816; cs: 11,163; sh: 10,446; java: 5,279; perl: 4,429; php: 2,971; xml: 1,500; yacc: 934; makefile: 494; sql: 112
file content (2543 lines) | stat: -rw-r--r-- 100,615 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
/******************************************************************************
 * $Id: gdalwarpkernel_opencl.c 25069 2012-10-07 14:13:39Z rouault $
 *
 * Project:  OpenCL Image Reprojector
 * Purpose:  Implementation of the GDALWarpKernel reprojector in OpenCL.
 * Author:   Seth Price, seth@pricepages.org
 *
 ******************************************************************************
 * Copyright (c) 2010, Seth Price <seth@pricepages.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 ****************************************************************************/

#if defined(HAVE_OPENCL)

/* The following line may be uncommented for increased debugging traces and profiling */
/* #define DEBUG_OPENCL 1 */

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <float.h>
#include "cpl_string.h"
#include "gdalwarpkernel_opencl.h"

CPL_CVSID("$Id: gdalwarpkernel_opencl.c 25069 2012-10-07 14:13:39Z rouault $");

#define handleErr(err) if((err) != CL_SUCCESS) { \
    CPLError(CE_Failure, CPLE_AppDefined, "Error at file %s line %d: %s", __FILE__, __LINE__, getCLErrorString(err)); \
    return err; \
}

#define handleErrRetNULL(err) if((err) != CL_SUCCESS) { \
    (*clErr) = err; \
    CPLError(CE_Failure, CPLE_AppDefined, "Error at file %s line %d: %s", __FILE__, __LINE__, getCLErrorString(err)); \
    return NULL; \
}

#define handleErrGoto(err, goto_label) if((err) != CL_SUCCESS) { \
    (*clErr) = err; \
    CPLError(CE_Failure, CPLE_AppDefined, "Error at file %s line %d: %s", __FILE__, __LINE__, getCLErrorString(err)); \
    goto goto_label; \
}

#define freeCLMem(clMem, fallBackMem)  do { \
    if ((clMem) != NULL) { \
        handleErr(err = clReleaseMemObject(clMem)); \
        clMem = NULL; \
        fallBackMem = NULL; \
    } else if ((fallBackMem) != NULL) { \
        CPLFree(fallBackMem); \
        fallBackMem = NULL; \
    } \
} while(0)

static const char* getCLErrorString(cl_int err)
{
    switch (err)
    {
        case CL_SUCCESS:
            return("CL_SUCCESS");
            break;
        case CL_DEVICE_NOT_FOUND:
            return("CL_DEVICE_NOT_FOUND");
            break;
        case CL_DEVICE_NOT_AVAILABLE:
            return("CL_DEVICE_NOT_AVAILABLE");
            break;
        case CL_COMPILER_NOT_AVAILABLE:
            return("CL_COMPILER_NOT_AVAILABLE");
            break;
        case CL_MEM_OBJECT_ALLOCATION_FAILURE:
            return("CL_MEM_OBJECT_ALLOCATION_FAILURE");
            break;
        case CL_OUT_OF_RESOURCES:
            return("CL_OUT_OF_RESOURCES");
            break;
        case CL_OUT_OF_HOST_MEMORY:
            return("CL_OUT_OF_HOST_MEMORY");
            break;
        case CL_PROFILING_INFO_NOT_AVAILABLE:
            return("CL_PROFILING_INFO_NOT_AVAILABLE");
            break;
        case CL_MEM_COPY_OVERLAP:
            return("CL_MEM_COPY_OVERLAP");
            break;
        case CL_IMAGE_FORMAT_MISMATCH:
            return("CL_IMAGE_FORMAT_MISMATCH");
            break;
        case CL_IMAGE_FORMAT_NOT_SUPPORTED:
            return("CL_IMAGE_FORMAT_NOT_SUPPORTED");
            break;
        case CL_BUILD_PROGRAM_FAILURE:
            return("CL_BUILD_PROGRAM_FAILURE");
            break;
        case CL_MAP_FAILURE:
            return("CL_MAP_FAILURE");
            break;
        case CL_INVALID_VALUE:
            return("CL_INVALID_VALUE");
            break;
        case CL_INVALID_DEVICE_TYPE:
            return("CL_INVALID_DEVICE_TYPE");
            break;
        case CL_INVALID_PLATFORM:
            return("CL_INVALID_PLATFORM");
            break;
        case CL_INVALID_DEVICE:
            return("CL_INVALID_DEVICE");
            break;
        case CL_INVALID_CONTEXT:
            return("CL_INVALID_CONTEXT");
            break;
        case CL_INVALID_QUEUE_PROPERTIES:
            return("CL_INVALID_QUEUE_PROPERTIES");
            break;
        case CL_INVALID_COMMAND_QUEUE:
            return("CL_INVALID_COMMAND_QUEUE");
            break;
        case CL_INVALID_HOST_PTR:
            return("CL_INVALID_HOST_PTR");
            break;
        case CL_INVALID_MEM_OBJECT:
            return("CL_INVALID_MEM_OBJECT");
            break;
        case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
            return("CL_INVALID_IMAGE_FORMAT_DESCRIPTOR");
            break;
        case CL_INVALID_IMAGE_SIZE:
            return("CL_INVALID_IMAGE_SIZE");
            break;
        case CL_INVALID_SAMPLER:
            return("CL_INVALID_SAMPLER");
            break;
        case CL_INVALID_BINARY:
            return("CL_INVALID_BINARY");
            break;
        case CL_INVALID_BUILD_OPTIONS:
            return("CL_INVALID_BUILD_OPTIONS");
            break;
        case CL_INVALID_PROGRAM:
            return("CL_INVALID_PROGRAM");
            break;
        case CL_INVALID_PROGRAM_EXECUTABLE:
            return("CL_INVALID_PROGRAM_EXECUTABLE");
            break;
        case CL_INVALID_KERNEL_NAME:
            return("CL_INVALID_KERNEL_NAME");
            break;
        case CL_INVALID_KERNEL_DEFINITION:
            return("CL_INVALID_KERNEL_DEFINITION");
            break;
        case CL_INVALID_KERNEL:
            return("CL_INVALID_KERNEL");
            break;
        case CL_INVALID_ARG_INDEX:
            return("CL_INVALID_ARG_INDEX");
            break;
        case CL_INVALID_ARG_VALUE:
            return("CL_INVALID_ARG_VALUE");
            break;
        case CL_INVALID_ARG_SIZE:
            return("CL_INVALID_ARG_SIZE");
            break;
        case CL_INVALID_KERNEL_ARGS:
            return("CL_INVALID_KERNEL_ARGS");
            break;
        case CL_INVALID_WORK_DIMENSION:
            return("CL_INVALID_WORK_DIMENSION");
            break;
        case CL_INVALID_WORK_GROUP_SIZE:
            return("CL_INVALID_WORK_GROUP_SIZE");
            break;
        case CL_INVALID_WORK_ITEM_SIZE:
            return("CL_INVALID_WORK_ITEM_SIZE");
            break;
        case CL_INVALID_GLOBAL_OFFSET:
            return("CL_INVALID_GLOBAL_OFFSET");
            break;
        case CL_INVALID_EVENT_WAIT_LIST:
            return("CL_INVALID_EVENT_WAIT_LIST");
            break;
        case CL_INVALID_EVENT:
            return("CL_INVALID_EVENT");
            break;
        case CL_INVALID_OPERATION:
            return("CL_INVALID_OPERATION");
            break;
        case CL_INVALID_GL_OBJECT:
            return("CL_INVALID_GL_OBJECT");
            break;
        case CL_INVALID_BUFFER_SIZE:
            return("CL_INVALID_BUFFER_SIZE");
            break;
        case CL_INVALID_MIP_LEVEL:
            return("CL_INVALID_MIP_LEVEL");
            break;
        case CL_INVALID_GLOBAL_WORK_SIZE:
            return("CL_INVALID_GLOBAL_WORK_SIZE");
            break;
    }

    return "unknown_error";
}

static const char* getCLDataTypeString( cl_channel_type dataType )
{
    switch( dataType )
    {
        case CL_SNORM_INT8: return "CL_SNORM_INT8";
        case CL_SNORM_INT16: return "CL_SNORM_INT16";
        case CL_UNORM_INT8: return "CL_UNORM_INT8";
        case CL_UNORM_INT16: return "CL_UNORM_INT16";
#if 0
        case CL_UNORM_SHORT_565: return "CL_UNORM_SHORT_565";
        case CL_UNORM_SHORT_555: return "CL_UNORM_SHORT_555";
        case CL_UNORM_INT_101010: return "CL_UNORM_INT_101010";
        case CL_SIGNED_INT8: return "CL_SIGNED_INT8";
        case CL_SIGNED_INT16: return "CL_SIGNED_INT16";
        case CL_SIGNED_INT32: return "CL_SIGNED_INT32";
        case CL_UNSIGNED_INT8: return "CL_UNSIGNED_INT8";
        case CL_UNSIGNED_INT16: return "CL_UNSIGNED_INT16";
        case CL_UNSIGNED_INT32: return "CL_UNSIGNED_INT32";
        case CL_HALF_FLOAT: return "CL_HALF_FLOAT";
#endif
        case CL_FLOAT: return "CL_FLOAT";
        default: return "unknown";
    }
}

/*
 Finds an appropirate OpenCL device. If the user specifies a preference, the
 code for it should be here (but not currently supported). For debugging, it's
 always easier to use CL_DEVICE_TYPE_CPU because then printf() can be called
 from the kernel. If debugging is on, we can print the name and stats about the
 device we're using.
 */
cl_device_id get_device(OCLVendor *peVendor)
{
    cl_int err = 0;
    cl_device_id device = NULL;
    size_t returned_size = 0;
    cl_char vendor_name[1024] = {0};
    cl_char device_name[1024] = {0};
    
    cl_platform_id platforms[10];
    cl_uint num_platforms;

    err = clGetPlatformIDs( 10, platforms, &num_platforms );
    if( err != CL_SUCCESS || num_platforms == 0 )
        return NULL;

    // Find the GPU CL device, this is what we really want
    // If there is no GPU device is CL capable, fall back to CPU
    err = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 1, &device, NULL);
    if (err != CL_SUCCESS)
    {
        // Find the CPU CL device, as a fallback
        err = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_CPU, 1, &device, NULL);
        if( err != CL_SUCCESS || device == 0 )
            return NULL;
    }
    
    // Get some information about the returned device
    err = clGetDeviceInfo(device, CL_DEVICE_VENDOR, sizeof(vendor_name), 
                          vendor_name, &returned_size);
    err |= clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_name), 
                           device_name, &returned_size);
    assert(err == CL_SUCCESS);
    CPLDebug( "OpenCL", "Connected to %s %s.", vendor_name, device_name);

    if (strncmp((const char*)vendor_name, "Advanced Micro Devices", strlen("Advanced Micro Devices")) == 0)
        *peVendor = VENDOR_AMD;
    else if (strncmp((const char*)vendor_name, "Intel(R) Corporation", strlen("Intel(R) Corporation")) == 0)
        *peVendor = VENDOR_INTEL;
    else
        *peVendor = VENDOR_OTHER;

    return device;
}

/*
 Given that not all OpenCL devices support the same image formats, we need to
 make do with what we have. This leads to wasted space, but as OpenCL matures
 I hope it'll get better.
 */
cl_int set_supported_formats(struct oclWarper *warper,
                             cl_channel_order minOrderSize,
                             cl_channel_order *chosenOrder,
                             unsigned int *chosenSize,
                             cl_channel_type dataType )
{
    cl_image_format *fmtBuf = (cl_image_format *)calloc(256, sizeof(cl_image_format));
    cl_uint numRet;
    int i;
    int extraSpace = 9999;
    cl_int err;
    int bFound = FALSE;
    
    //Find what we *can* handle
    handleErr(err = clGetSupportedImageFormats(warper->context,
                                               CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                               CL_MEM_OBJECT_IMAGE2D,
                                               256, fmtBuf, &numRet));
    for (i = 0; i < numRet; ++i) {
        int thisOrderSize = 0;
        switch (fmtBuf[i].image_channel_order)
        {
            //Only support formats which use the channels in order (x,y,z,w)
          case CL_R:
          case CL_INTENSITY:
          case CL_LUMINANCE:
            thisOrderSize = 1;
            break;
          case CL_RG:
            thisOrderSize = 2;
            break;
          case CL_RGB:
            thisOrderSize = 3;
            break;
          case CL_RGBA:
            thisOrderSize = 4;
            break;
        }
        
        //Choose an order with the least wasted space
        if (fmtBuf[i].image_channel_data_type == dataType &&
            minOrderSize <= thisOrderSize &&
            extraSpace > thisOrderSize - minOrderSize ) {
			
            //Set the vector size, order, & remember wasted space
            (*chosenSize) = thisOrderSize;
            (*chosenOrder) = fmtBuf[i].image_channel_order;
            extraSpace = thisOrderSize - minOrderSize;
            bFound = TRUE;
        }
    }
    
    free(fmtBuf);
    
    if( !bFound )
    {
        CPLDebug("OpenCL",
                 "Cannot find supported format for dataType = %s and minOrderSize = %d",
                 getCLDataTypeString(dataType), (int)minOrderSize);
    }
    return (bFound) ? CL_SUCCESS : CL_INVALID_OPERATION;
}

/*
 Allocate some pinned memory that we can use as an intermediate buffer. We're
 using the pinned memory to assemble the data before transferring it to the
 device. The reason we're using pinned RAM is because the transfer speed from
 host RAM to device RAM is faster than non-pinned. The disadvantage is that
 pinned RAM is a scarce OS resource. I'm making the assumption that the user
 has as much pinned host RAM available as total device RAM because device RAM
 tends to be similarly scarce. However, if the pinned memory fails we fall back
 to using a regular memory allocation.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int alloc_pinned_mem(struct oclWarper *warper, int imgNum, size_t dataSz,
                        void **wrkPtr, cl_mem *wrkCL)
{
	cl_int err = CL_SUCCESS;
    wrkCL[imgNum] = clCreateBuffer(warper->context,
                                   CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
                                   dataSz, NULL, &err);

    if (err == CL_SUCCESS) {
        wrkPtr[imgNum] = (void *)clEnqueueMapBuffer(warper->queue, wrkCL[imgNum],
                                                    CL_FALSE, CL_MAP_WRITE,
                                                    0, dataSz, 0, NULL, NULL, &err);
        handleErr(err);
    } else {
        wrkCL[imgNum] = NULL;
#ifdef DEBUG_OPENCL
        CPLDebug("OpenCL", "Using fallback non-pinned memory!");
#endif
        //Fallback to regular allocation
        wrkPtr[imgNum] = (void *)VSIMalloc(dataSz);
        
        if (wrkPtr[imgNum] == NULL)
            handleErr(err = CL_OUT_OF_HOST_MEMORY);
    }
    
    return CL_SUCCESS;
}

/*
 Allocates the working host memory for all bands of the image in the warper
 structure. This includes both the source image buffers and the destination
 buffers. This memory is located on the host, so we can assemble the image.
 Reasons for buffering it like this include reading each row from disk and
 de-interleaving bands and parts of bands. Then they can be copied to the device
 as a single operation fit for use as an OpenCL memory object.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int alloc_working_arr(struct oclWarper *warper,
                         size_t ptrSz, size_t dataSz, size_t *fmtSz)
{
	cl_int err = CL_SUCCESS;
    int i, b;
    size_t srcDataSz1, dstDataSz1, srcDataSz4, dstDataSz4;
    const int numBands = warper->numBands;
    
    //Find the best channel order for this format
    err = set_supported_formats(warper, 1,
                                &(warper->imgChOrder1), &(warper->imgChSize1),
                                warper->imageFormat);
    handleErr(err);
    if(warper->useVec) {
        err = set_supported_formats(warper, 4,
                                    &(warper->imgChOrder4), &(warper->imgChSize4),
                                    warper->imageFormat);
        handleErr(err);
    }
    
    //Alloc space for pointers to the main image data
    warper->realWork.v = (void **)VSICalloc(ptrSz, warper->numImages);
    warper->dstRealWork.v = (void **)VSICalloc(ptrSz, warper->numImages);
    if (warper->realWork.v == NULL || warper->dstRealWork.v == NULL)
        handleErr(err = CL_OUT_OF_HOST_MEMORY);
    
    if (warper->imagWorkCL != NULL) {
        //Alloc space for pointers to the extra channel, if it exists
        warper->imagWork.v = (void **)VSICalloc(ptrSz, warper->numImages);
        warper->dstImagWork.v = (void **)VSICalloc(ptrSz, warper->numImages);
        if (warper->imagWork.v == NULL || warper->dstImagWork.v == NULL)
            handleErr(err = CL_OUT_OF_HOST_MEMORY);
    } else {
        warper->imagWork.v = NULL;
        warper->dstImagWork.v = NULL;
    }
    
    //Calc the sizes we need
    srcDataSz1 = dataSz * warper->srcWidth * warper->srcHeight * warper->imgChSize1;
    dstDataSz1 = dataSz * warper->dstWidth * warper->dstHeight;
    srcDataSz4 = dataSz * warper->srcWidth * warper->srcHeight * warper->imgChSize4;
    dstDataSz4 = dataSz * warper->dstWidth * warper->dstHeight * 4;
    
    //Allocate pinned memory for each band's image
    for (b = 0, i = 0; b < numBands && i < warper->numImages; ++i) {
        if(warper->useVec && b < numBands - numBands % 4) {
            handleErr(err = alloc_pinned_mem(warper, i, srcDataSz4,
                                             warper->realWork.v,
                                             warper->realWorkCL));
            
            handleErr(err = alloc_pinned_mem(warper, i, dstDataSz4,
                                             warper->dstRealWork.v,
                                             warper->dstRealWorkCL));
            b += 4;
        } else {
            handleErr(err = alloc_pinned_mem(warper, i, srcDataSz1,
                                             warper->realWork.v,
                                             warper->realWorkCL));
            
            handleErr(err = alloc_pinned_mem(warper, i, dstDataSz1,
                                             warper->dstRealWork.v,
                                             warper->dstRealWorkCL));
            ++b;
        }
    }
    
    if (warper->imagWorkCL != NULL) {
        //Allocate pinned memory for each band's extra channel, if exists
        for (b = 0, i = 0; b < numBands && i < warper->numImages; ++i) {
            if(warper->useVec && b < numBands - numBands % 4) {
                handleErr(err = alloc_pinned_mem(warper, i, srcDataSz4,
                                                 warper->imagWork.v,
                                                 warper->imagWorkCL));
                
                handleErr(err = alloc_pinned_mem(warper, i, dstDataSz4,
                                                 warper->dstImagWork.v,
                                                 warper->dstImagWorkCL));
                b += 4;
            } else {
                handleErr(err = alloc_pinned_mem(warper, i, srcDataSz1,
                                                 warper->imagWork.v,
                                                 warper->imagWorkCL));
                
                handleErr(err = alloc_pinned_mem(warper, i, dstDataSz1,
                                                 warper->dstImagWork.v,
                                                 warper->dstImagWorkCL));
                ++b;
            }
        }
    }
    
    return CL_SUCCESS;
}

/*
 Assemble and create the kernel. For optimization, portabilaty, and
 implimentation limitation reasons, the program is actually assembled from
 several strings, then compiled with as many invariants as possible defined by
 the preprocessor. There is also quite a bit of error-catching code in here
 because the kernel is where many bugs show up.
 
 Returns CL_SUCCESS on success and other CL_* errors in the error buffer when
 something goes wrong.
 */
cl_kernel get_kernel(struct oclWarper *warper, char useVec,
                     double dfXScale, double dfYScale, double dfXFilter, double dfYFilter,
                     int nXRadius, int nYRadius, int nFiltInitX, int nFiltInitY,
                     cl_int *clErr )
{
	cl_program program;
    cl_kernel kernel;
	cl_int err = CL_SUCCESS;
    char *buffer = (char *)CPLCalloc(128000, sizeof(char));
    char *progBuf = (char *)CPLCalloc(128000, sizeof(char));
    float dstMinVal, dstMaxVal;
    
    const char *outType;
    const char *dUseVec = "";
    const char *dVecf = "float";
    const char *kernGenFuncs =
// ********************* General Funcs ********************
"#ifdef USE_CLAMP_TO_DST_FLOAT\n"
"void clampToDst(float fReal,\n"
                "__global outType *dstPtr,\n"
                "unsigned int iDstOffset,\n"
                "__constant float *fDstNoDataReal,\n"
                "int bandNum)\n"
"{\n"
    "dstPtr[iDstOffset] = fReal;\n"
"}\n"
"#else\n"
"void clampToDst(float fReal,\n"
                "__global outType *dstPtr,\n"
                "unsigned int iDstOffset,\n"
                "__constant float *fDstNoDataReal,\n"
                "int bandNum)\n"
"{\n"
	"fReal *= dstMaxVal;\n"
    
    "if (fReal < dstMinVal)\n"
        "dstPtr[iDstOffset] = (outType)dstMinVal;\n"
    "else if (fReal > dstMaxVal)\n"
        "dstPtr[iDstOffset] = (outType)dstMaxVal;\n"
    "else\n"
        "dstPtr[iDstOffset] = (dstMinVal < 0) ? (outType)floor(fReal + 0.5f) : (outType)(fReal + 0.5f);\n"
    
    "if (useDstNoDataReal && bandNum >= 0 &&\n"
        "fDstNoDataReal[bandNum] == dstPtr[iDstOffset])\n"
    "{\n"
        "if (dstPtr[iDstOffset] == dstMinVal)\n"
            "dstPtr[iDstOffset] = dstMinVal + 1;\n"
        "else\n"
            "dstPtr[iDstOffset] --;\n"
    "}\n"
"}\n"
"#endif\n"

"void setPixel(__global outType *dstReal,\n"
              "__global outType *dstImag,\n"
              "__global float *dstDensity,\n"
              "__global int *nDstValid,\n"
              "__constant float *fDstNoDataReal,\n"
              "const int bandNum,\n"
              "vecf fDensity, vecf fReal, vecf fImag)\n"
"{\n"
    "unsigned int iDstOffset = get_global_id(1)*iDstWidth + get_global_id(0);\n"

"#ifdef USE_VEC\n"
    "if (fDensity.x < 0.00001f && fDensity.y < 0.00001f &&\n"
        "fDensity.z < 0.00001f && fDensity.w < 0.00001f ) {\n"
    
        "fReal = 0.0f;\n"
        "fImag = 0.0f;\n"
    
    "} else if (fDensity.x < 0.9999f || fDensity.y < 0.9999f ||\n"
               "fDensity.z < 0.9999f || fDensity.w < 0.9999f ) {\n"
        "vecf fDstReal, fDstImag;\n"
        "float fDstDensity;\n"
    
        "fDstReal.x = dstReal[iDstOffset];\n"
        "fDstReal.y = dstReal[iDstOffset+iDstHeight*iDstWidth];\n"
        "fDstReal.z = dstReal[iDstOffset+iDstHeight*iDstWidth*2];\n"
        "fDstReal.w = dstReal[iDstOffset+iDstHeight*iDstWidth*3];\n"
        "if (useImag) {\n"
            "fDstImag.x = dstImag[iDstOffset];\n"
            "fDstImag.y = dstImag[iDstOffset+iDstHeight*iDstWidth];\n"
            "fDstImag.z = dstImag[iDstOffset+iDstHeight*iDstWidth*2];\n"
            "fDstImag.w = dstImag[iDstOffset+iDstHeight*iDstWidth*3];\n"
        "}\n"
"#else\n"
    "if (fDensity < 0.00001f) {\n"
    
        "fReal = 0.0f;\n"
        "fImag = 0.0f;\n"
    
    "} else if (fDensity < 0.9999f) {\n"
        "vecf fDstReal, fDstImag;\n"
        "float fDstDensity;\n"
    
        "fDstReal = dstReal[iDstOffset];\n"
        "if (useImag)\n"
            "fDstImag = dstImag[iDstOffset];\n"
"#endif\n"
    
        "if (useDstDensity)\n"
            "fDstDensity = dstDensity[iDstOffset];\n"
        "else if (useDstValid &&\n"
                 "!((nDstValid[iDstOffset>>5] & (0x01 << (iDstOffset & 0x1f))) ))\n"
            "fDstDensity = 0.0f;\n"
        "else\n"
            "fDstDensity = 1.0f;\n"
        
        "vecf fDstInfluence = (1.0f - fDensity) * fDstDensity;\n"
        
        // Density should be checked for <= 0.0 & handled by the calling function
        "fReal = (fReal * fDensity + fDstReal * fDstInfluence) / (fDensity + fDstInfluence);\n"
        "if (useImag)\n"
            "fImag = (fImag * fDensity + fDstImag * fDstInfluence) / (fDensity + fDstInfluence);\n"
    "}\n"
    
"#ifdef USE_VEC\n"
    "clampToDst(fReal.x, dstReal, iDstOffset, fDstNoDataReal, bandNum);\n"
    "clampToDst(fReal.y, dstReal, iDstOffset+iDstHeight*iDstWidth, fDstNoDataReal, bandNum);\n"
    "clampToDst(fReal.z, dstReal, iDstOffset+iDstHeight*iDstWidth*2, fDstNoDataReal, bandNum);\n"
    "clampToDst(fReal.w, dstReal, iDstOffset+iDstHeight*iDstWidth*3, fDstNoDataReal, bandNum);\n"
    "if (useImag) {\n"
        "clampToDst(fImag.x, dstImag, iDstOffset, fDstNoDataReal, -1);\n"
        "clampToDst(fImag.y, dstImag, iDstOffset+iDstHeight*iDstWidth, fDstNoDataReal, -1);\n"
        "clampToDst(fImag.z, dstImag, iDstOffset+iDstHeight*iDstWidth*2, fDstNoDataReal, -1);\n"
        "clampToDst(fImag.w, dstImag, iDstOffset+iDstHeight*iDstWidth*3, fDstNoDataReal, -1);\n"
    "}\n"
"#else\n"
    "clampToDst(fReal, dstReal, iDstOffset, fDstNoDataReal, bandNum);\n"
    "if (useImag)\n"
        "clampToDst(fImag, dstImag, iDstOffset, fDstNoDataReal, -1);\n"
"#endif\n"
"}\n"

"int getPixel(__read_only image2d_t srcReal,\n"
             "__read_only image2d_t srcImag,\n"
             "__global float *fUnifiedSrcDensity,\n"
             "__global int *nUnifiedSrcValid,\n"
             "__constant char *useBandSrcValid,\n"
             "__global int *nBandSrcValid,\n"
             "const int2 iSrc,\n"
             "int bandNum,\n"
             "vecf *fDensity, vecf *fReal, vecf *fImag)\n"
"{\n"
    "int iSrcOffset = 0, iBandValidLen = 0, iSrcOffsetMask = 0;\n"
    "int bHasValid = FALSE;\n"
    
    // Clamp the src offset values if needed
    "if(useUnifiedSrcDensity || useUnifiedSrcValid || useUseBandSrcValid){\n"
        "int iSrcX = iSrc.x;\n"
        "int iSrcY = iSrc.y;\n"
        
        // Needed because the offset isn't clamped in OpenCL hardware
        "if(iSrcX < 0)\n"
            "iSrcX = 0;\n"
        "else if(iSrcX >= iSrcWidth)\n"
            "iSrcX = iSrcWidth - 1;\n"
            
        "if(iSrcY < 0)\n"
            "iSrcY = 0;\n"
        "else if(iSrcY >= iSrcHeight)\n"
            "iSrcY = iSrcHeight - 1;\n"
            
        "iSrcOffset = iSrcY*iSrcWidth + iSrcX;\n"
        "iBandValidLen = 1 + ((iSrcWidth*iSrcHeight)>>5);\n"
        "iSrcOffsetMask = (0x01 << (iSrcOffset & 0x1f));\n"
    "}\n"
    
    "if (useUnifiedSrcValid &&\n"
        "!((nUnifiedSrcValid[iSrcOffset>>5] & iSrcOffsetMask) ) )\n"
        "return FALSE;\n"
    
"#ifdef USE_VEC\n"
    "if (!useUseBandSrcValid || !useBandSrcValid[bandNum] ||\n"
        "((nBandSrcValid[(iSrcOffset>>5)+iBandValidLen*bandNum    ] & iSrcOffsetMask)) )\n"
        "bHasValid = TRUE;\n"
    
    "if (!useUseBandSrcValid || !useBandSrcValid[bandNum+1] ||\n"
        "((nBandSrcValid[(iSrcOffset>>5)+iBandValidLen*(1+bandNum)] & iSrcOffsetMask)) )\n"
        "bHasValid = TRUE;\n"
    
    "if (!useUseBandSrcValid || !useBandSrcValid[bandNum+2] ||\n"
        "((nBandSrcValid[(iSrcOffset>>5)+iBandValidLen*(2+bandNum)] & iSrcOffsetMask)) )\n"
        "bHasValid = TRUE;\n"
    
    "if (!useUseBandSrcValid || !useBandSrcValid[bandNum+3] ||\n"
        "((nBandSrcValid[(iSrcOffset>>5)+iBandValidLen*(3+bandNum)] & iSrcOffsetMask)) )\n"
        "bHasValid = TRUE;\n"
"#else\n"
    "if (!useUseBandSrcValid || !useBandSrcValid[bandNum] ||\n"
        "((nBandSrcValid[(iSrcOffset>>5)+iBandValidLen*bandNum    ] & iSrcOffsetMask)) )\n"
        "bHasValid = TRUE;\n"
"#endif\n"
    
    "if (!bHasValid)\n"
        "return FALSE;\n"
    
    "const sampler_t samp =  CLK_NORMALIZED_COORDS_FALSE |\n"
                            "CLK_ADDRESS_CLAMP_TO_EDGE |\n"
                            "CLK_FILTER_NEAREST;\n"
    
"#ifdef USE_VEC\n"
    "(*fReal) = read_imagef(srcReal, samp, iSrc);\n"
    "if (useImag)\n"
        "(*fImag) = read_imagef(srcImag, samp, iSrc);\n"
"#else\n"
    "(*fReal) = read_imagef(srcReal, samp, iSrc).x;\n"
    "if (useImag)\n"
        "(*fImag) = read_imagef(srcImag, samp, iSrc).x;\n"
"#endif\n"
    
    "if (useUnifiedSrcDensity) {\n"
        "(*fDensity) = fUnifiedSrcDensity[iSrcOffset];\n"
    "} else {\n"
        "(*fDensity) = 1.0f;\n"
        "return TRUE;\n"
    "}\n"
    
"#ifdef USE_VEC\n"
    "return  (*fDensity).x > 0.0000001f || (*fDensity).y > 0.0000001f ||\n"
            "(*fDensity).z > 0.0000001f || (*fDensity).w > 0.0000001f;\n"
"#else\n"
    "return (*fDensity) > 0.0000001f;\n"
"#endif\n"
"}\n"

"int isValid(__global float *fUnifiedSrcDensity,\n"
            "__global int *nUnifiedSrcValid,\n"
            "float2 fSrcCoords )\n"
"{\n"
    "if (fSrcCoords.x < 0.0f || fSrcCoords.y < 0.0f)\n"
        "return FALSE;\n"
    
    "int iSrcX = (int) (fSrcCoords.x - 0.5f);\n"
    "int iSrcY = (int) (fSrcCoords.y - 0.5f);\n"
    
    "if( iSrcX < 0 || iSrcX >= iSrcWidth || iSrcY < 0 || iSrcY >= iSrcHeight )\n"
        "return FALSE;\n"
    
    "int iSrcOffset = iSrcX + iSrcY * iSrcWidth;\n"
    
    "if (useUnifiedSrcDensity && fUnifiedSrcDensity[iSrcOffset] < 0.00001f)\n"
        "return FALSE;\n"
    
    "if (useUnifiedSrcValid &&\n"
        "!(nUnifiedSrcValid[iSrcOffset>>5] & (0x01 << (iSrcOffset & 0x1f))) )\n"
        "return FALSE;\n"
    
    "return TRUE;\n"
"}\n"

"float2 getSrcCoords(__read_only image2d_t srcCoords)\n"
"{\n"
    // Find an appropriate place to sample the coordinates so we're still
    // accurate after linear interpolation.
    "int nDstX = get_global_id(0);\n"
    "int nDstY = get_global_id(1);\n"
    "float2  fDst = (float2)((0.5f * (float)iCoordMult + nDstX) /\n"
                                "(float)((ceil((iDstWidth  - 1) / (float)iCoordMult) + 1) * iCoordMult), \n"
                            "(0.5f * (float)iCoordMult + nDstY) /\n"
                                "(float)((ceil((iDstHeight - 1) / (float)iCoordMult) + 1) * iCoordMult));\n"
    
    // Check & return when the thread group overruns the image size
    "if (nDstX >= iDstWidth || nDstY >= iDstHeight)\n"
        "return (float2)(-99.0f, -99.0f);\n"

    "const sampler_t samp =  CLK_NORMALIZED_COORDS_TRUE |\n"
                            "CLK_ADDRESS_CLAMP_TO_EDGE |\n"
                            "CLK_FILTER_LINEAR;\n"

    "float4  fSrcCoords = read_imagef(srcCoords,samp,fDst);\n"
    
    "return (float2)(fSrcCoords.x, fSrcCoords.y);\n"
"}\n";
    
    const char *kernBilinear =
// ************************ Bilinear ************************
"__kernel void resamp(__read_only image2d_t srcCoords,\n"
                    "__read_only image2d_t srcReal,\n"
                    "__read_only image2d_t srcImag,\n"
                    "__global float *fUnifiedSrcDensity,\n"
                    "__global int *nUnifiedSrcValid,\n"
                    "__constant char *useBandSrcValid,\n"
                    "__global int *nBandSrcValid,\n"
                    "__global outType *dstReal,\n"
                    "__global outType *dstImag,\n"
                    "__constant float *fDstNoDataReal,\n"
                    "__global float *dstDensity,\n"
                    "__global int *nDstValid,\n"
                    "const int bandNum)\n"
"{\n"
    "int i;\n"
    "float2  fSrc = getSrcCoords(srcCoords);\n"
    "if (!isValid(fUnifiedSrcDensity, nUnifiedSrcValid, fSrc))\n"
        "return;\n"

    "int     iSrcX = (int) floor(fSrc.x - 0.5f);\n"
    "int     iSrcY = (int) floor(fSrc.y - 0.5f);\n"
    "float   fRatioX = 1.5f - (fSrc.x - iSrcX);\n"
    "float   fRatioY = 1.5f - (fSrc.y - iSrcY);\n"
    "vecf    fReal, fImag, fDens;\n"
    "vecf    fAccumulatorReal = 0.0f, fAccumulatorImag = 0.0f;\n"
    "vecf    fAccumulatorDensity = 0.0f;\n"
    "float   fAccumulatorDivisor = 0.0f;\n"
    
    "if ( iSrcY >= 0 && iSrcY < iSrcHeight ) {\n"
        "float fMult1 = fRatioX * fRatioY;\n"
        "float fMult2 = (1.0f-fRatioX) * fRatioY;\n"
    
		// Upper Left Pixel
		"if ( iSrcX >= 0 && iSrcX < iSrcWidth\n"
			 "&& getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
						"useBandSrcValid, nBandSrcValid, (int2)(iSrcX, iSrcY),\n"
						"bandNum, &fDens, &fReal, &fImag))\n"
		"{\n"
			"fAccumulatorDivisor += fMult1;\n"
			"fAccumulatorReal += fReal * fMult1;\n"
			"fAccumulatorImag += fImag * fMult1;\n"
			"fAccumulatorDensity += fDens * fMult1;\n"
		"}\n"
	
		// Upper Right Pixel
		"if ( iSrcX+1 >= 0 && iSrcX+1 < iSrcWidth\n"
			"&& getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
						"useBandSrcValid, nBandSrcValid, (int2)(iSrcX+1, iSrcY),\n"
						"bandNum, &fDens, &fReal, &fImag))\n"
		"{\n"
			"fAccumulatorDivisor += fMult2;\n"
			"fAccumulatorReal += fReal * fMult2;\n"
			"fAccumulatorImag += fImag * fMult2;\n"
			"fAccumulatorDensity += fDens * fMult2;\n"
		"}\n"
    "}\n"
    
    "if ( iSrcY+1 >= 0 && iSrcY+1 < iSrcHeight ) {\n"
        "float fMult1 = fRatioX * (1.0f-fRatioY);\n"
        "float fMult2 = (1.0f-fRatioX) * (1.0f-fRatioY);\n"
    
        // Lower Left Pixel
		"if ( iSrcX >= 0 && iSrcX < iSrcWidth\n"
			"&& getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
						"useBandSrcValid, nBandSrcValid, (int2)(iSrcX, iSrcY+1),\n"
						"bandNum, &fDens, &fReal, &fImag))\n"
		"{\n"
			"fAccumulatorDivisor += fMult1;\n"
			"fAccumulatorReal += fReal * fMult1;\n"
			"fAccumulatorImag += fImag * fMult1;\n"
			"fAccumulatorDensity += fDens * fMult1;\n"
		"}\n"
	
		// Lower Right Pixel
		"if ( iSrcX+1 >= 0 && iSrcX+1 < iSrcWidth\n"
			"&& getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
						"useBandSrcValid, nBandSrcValid, (int2)(iSrcX+1, iSrcY+1),\n"
						"bandNum, &fDens, &fReal, &fImag))\n"
		"{\n"
			"fAccumulatorDivisor += fMult2;\n"
			"fAccumulatorReal += fReal * fMult2;\n"
			"fAccumulatorImag += fImag * fMult2;\n"
			"fAccumulatorDensity += fDens * fMult2;\n"
		"}\n"
    "}\n"
    
    // Compute and save final pixel
    "if ( fAccumulatorDivisor < 0.00001f ) {\n"
        "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
                "0.0f, 0.0f, 0.0f );\n"
    "} else if ( fAccumulatorDivisor < 0.99999f || fAccumulatorDivisor > 1.00001f ) {\n"
        "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
                "fAccumulatorDensity / fAccumulatorDivisor,\n"
                "fAccumulatorReal / fAccumulatorDivisor,\n"
"#if useImag != 0\n"
                "fAccumulatorImag / fAccumulatorDivisor );\n"
"#else\n"
                "0.0f );\n"
"#endif\n"
    "} else {\n"
        "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
                "fAccumulatorDensity, fAccumulatorReal, fAccumulatorImag );\n"
    "}\n"
"}\n";
    
    const char *kernCubic =
// ************************ Cubic ************************
"vecf cubicConvolution(float dist1, float dist2, float dist3,\n"
                       "vecf f0, vecf f1, vecf f2, vecf f3)\n"
"{\n"
    "return   (  -f0 +    f1  - f2 + f3) * dist3\n"
           "+ (2.0f*(f0 - f1) + f2 - f3) * dist2\n"
           "+ (  -f0          + f2     ) * dist1\n"
           "+             f1;\n"
"}\n"

// ************************ Cubic ************************
"__kernel void resamp(__read_only image2d_t srcCoords,\n"
                     "__read_only image2d_t srcReal,\n"
                     "__read_only image2d_t srcImag,\n"
                     "__global float *fUnifiedSrcDensity,\n"
                     "__global int *nUnifiedSrcValid,\n"
                     "__constant char *useBandSrcValid,\n"
                     "__global int *nBandSrcValid,\n"
                     "__global outType *dstReal,\n"
                     "__global outType *dstImag,\n"
                     "__constant float *fDstNoDataReal,\n"
                     "__global float *dstDensity,\n"
                     "__global int *nDstValid,\n"
                     "const int bandNum)\n"
"{\n"
    "int i;\n"
    "float2  fSrc = getSrcCoords(srcCoords);\n"
    
    "if (!isValid(fUnifiedSrcDensity, nUnifiedSrcValid, fSrc))\n"
        "return;\n"
    
    "int     iSrcX = (int) floor( fSrc.x - 0.5f );\n"
    "int     iSrcY = (int) floor( fSrc.y - 0.5f );\n"
    "float   fDeltaX = fSrc.x - 0.5f - (float)iSrcX;\n"
    "float   fDeltaY = fSrc.y - 0.5f - (float)iSrcY;\n"
    "float   fDeltaX2 = fDeltaX * fDeltaX;\n"
    "float   fDeltaY2 = fDeltaY * fDeltaY;\n"
    "float   fDeltaX3 = fDeltaX2 * fDeltaX;\n"
    "float   fDeltaY3 = fDeltaY2 * fDeltaY;\n"
    "vecf    afReal[4], afDens[4];\n"
"#if useImag != 0\n"
    "vecf    afImag[4];\n"
"#else\n"
    "vecf    fImag = 0.0f;\n"
"#endif\n"
    
    // Loop over rows
    "for (i = -1; i < 3; ++i)\n"
    "{\n"
        "vecf    fReal1 = 0.0f, fReal2 = 0.0f, fReal3 = 0.0f, fReal4 = 0.0f;\n"
        "vecf    fDens1 = 0.0f, fDens2 = 0.0f, fDens3 = 0.0f, fDens4 = 0.0f;\n"
        "int hasPx;\n"
"#if useImag != 0\n"
        "vecf    fImag1 = 0.0f, fImag2 = 0.0f, fImag3 = 0.0f, fImag4 = 0.0f;\n"
        
        //Get all the pixels for this row
        "hasPx  = getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                        "useBandSrcValid, nBandSrcValid, (int2)(iSrcX-1, iSrcY+i),\n"
                        "bandNum, &fDens1, &fReal1, &fImag1);\n"
        
        "hasPx |= getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                        "useBandSrcValid, nBandSrcValid, (int2)(iSrcX  , iSrcY+i),\n"
                        "bandNum, &fDens2, &fReal2, &fImag2);\n"
        
        "hasPx |= getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                        "useBandSrcValid, nBandSrcValid, (int2)(iSrcX+1, iSrcY+i),\n"
                        "bandNum, &fDens3, &fReal3, &fImag3);\n"
        
        "hasPx |= getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                        "useBandSrcValid, nBandSrcValid, (int2)(iSrcX+2, iSrcY+i),\n"
                        "bandNum, &fDens4, &fReal4, &fImag4);\n"
"#else\n"
        //Get all the pixels for this row
        "hasPx  = getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                "useBandSrcValid, nBandSrcValid, (int2)(iSrcX-1, iSrcY+i),\n"
                "bandNum, &fDens1, &fReal1, &fImag);\n"
        
        "hasPx |= getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                "useBandSrcValid, nBandSrcValid, (int2)(iSrcX  , iSrcY+i),\n"
                "bandNum, &fDens2, &fReal2, &fImag);\n"
        
        "hasPx |= getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                "useBandSrcValid, nBandSrcValid, (int2)(iSrcX+1, iSrcY+i),\n"
                "bandNum, &fDens3, &fReal3, &fImag);\n"
        
        "hasPx |= getPixel(srcReal, srcImag, fUnifiedSrcDensity, nUnifiedSrcValid,\n"
                "useBandSrcValid, nBandSrcValid, (int2)(iSrcX+2, iSrcY+i),\n"
                "bandNum, &fDens4, &fReal4, &fImag);\n"
"#endif\n"
        
        // Shortcut if no px
        "if (!hasPx) {\n"
            "afDens[i+1] = 0.0f;\n"
            "afReal[i+1] = 0.0f;\n"
"#if useImag != 0\n"
            "afImag[i+1] = 0.0f;\n"
"#endif\n"
            "continue;\n"
        "}\n"
        
        // Process this row
        "afDens[i+1] = cubicConvolution(fDeltaX, fDeltaX2, fDeltaX3, fDens1, fDens2, fDens3, fDens4);\n"
        "afReal[i+1] = cubicConvolution(fDeltaX, fDeltaX2, fDeltaX3, fReal1, fReal2, fReal3, fReal4);\n"
"#if useImag != 0\n"
        "afImag[i+1] = cubicConvolution(fDeltaX, fDeltaX2, fDeltaX3, fImag1, fImag2, fImag3, fImag4);\n"
"#endif\n"
    "}\n"
    
    // Compute and save final pixel
    "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
             "cubicConvolution(fDeltaY, fDeltaY2, fDeltaY3, afDens[0], afDens[1], afDens[2], afDens[3]),\n"
             "cubicConvolution(fDeltaY, fDeltaY2, fDeltaY3, afReal[0], afReal[1], afReal[2], afReal[3]),\n"
"#if useImag != 0\n"
             "cubicConvolution(fDeltaY, fDeltaY2, fDeltaY3, afImag[0], afImag[1], afImag[2], afImag[3]) );\n"
"#else\n"
             "fImag );\n"
"#endif\n"
"}\n";

    const char *kernResampler =
// ************************ LanczosSinc ************************

"float lanczosSinc( float fX, float fR )\n"
"{\n"
    "if ( fX > fR || fX < -fR)\n"
        "return 0.0f;\n"
    "if ( fX == 0.0f )\n"
        "return 1.0f;\n"
    
    "float fPIX = PI * fX;\n"
    "return ( sin(fPIX) / fPIX ) * ( sin(fPIX / fR) * fR / fPIX );\n"
"}\n"

// ************************ Bicubic Spline ************************

"float bSpline( float x )\n"
"{\n"
    "float xp2 = x + 2.0f;\n"
    "float xp1 = x + 1.0f;\n"
    "float xm1 = x - 1.0f;\n"
    "float xp2c = xp2 * xp2 * xp2;\n"
    
    "return (((xp2 > 0.0f)?((xp1 > 0.0f)?((x > 0.0f)?((xm1 > 0.0f)?\n"
                                                     "-4.0f * xm1*xm1*xm1:0.0f) +\n"
                                         "6.0f * x*x*x:0.0f) +\n"
                           "-4.0f * xp1*xp1*xp1:0.0f) +\n"
             "xp2c:0.0f) ) * 0.166666666666666666666f;\n"
"}\n"

// ************************ General Resampler ************************

"__kernel void resamp(__read_only image2d_t srcCoords,\n"
                     "__read_only image2d_t srcReal,\n"
                     "__read_only image2d_t srcImag,\n"
                     "__global float *fUnifiedSrcDensity,\n"
                     "__global int *nUnifiedSrcValid,\n"
                     "__constant char *useBandSrcValid,\n"
                     "__global int *nBandSrcValid,\n"
                     "__global outType *dstReal,\n"
                     "__global outType *dstImag,\n"
                     "__constant float *fDstNoDataReal,\n"
                     "__global float *dstDensity,\n"
                     "__global int *nDstValid,\n"
                     "const int bandNum)\n"
"{\n"
    "float2  fSrc = getSrcCoords(srcCoords);\n"
    
    "if (!isValid(fUnifiedSrcDensity, nUnifiedSrcValid, fSrc))\n"
        "return;\n"
    
    "int     iSrcX = floor( fSrc.x - 0.5f );\n"
    "int     iSrcY = floor( fSrc.y - 0.5f );\n"
    "float   fDeltaX = fSrc.x - 0.5f - (float)iSrcX;\n"
    "float   fDeltaY = fSrc.y - 0.5f - (float)iSrcY;\n"
    
    "vecf  fAccumulatorReal = 0.0f, fAccumulatorImag = 0.0f;\n"
    "vecf  fAccumulatorDensity = 0.0f;\n"
    "float fAccumulatorWeight = 0.0f;\n"
    "int   i, j;\n"

    // Loop over pixel rows in the kernel
    "for ( j = nFiltInitY; j <= nYRadius; ++j )\n"
    "{\n"
        "float   fWeight1;\n"
        "int2 iSrc = (int2)(0, iSrcY + j);\n"
        
        // Skip sampling over edge of image
        "if ( iSrc.y < 0 || iSrc.y >= iSrcHeight )\n"
            "continue;\n"
    
        // Select the resampling algorithm
        "if ( doCubicSpline )\n"
            // Calculate the Y weight
            "fWeight1 = ( fYScale < 1.0f ) ?\n"
                "bSpline(((float)j) * fYScale) * fYScale :\n"
                "bSpline(((float)j) - fDeltaY);\n"
        "else\n"
            "fWeight1 = ( fYScale < 1.0f ) ?\n"
                "lanczosSinc(j * fYScale, fYFilter) * fYScale :\n"
                "lanczosSinc(j - fDeltaY, fYFilter);\n"
        
        // Iterate over pixels in row
        "for ( i = nFiltInitX; i <= nXRadius; ++i )\n"
        "{\n"
            "float fWeight2;\n"
            "vecf fDensity = 0.0f, fReal, fImag;\n"
            "iSrc.x = iSrcX + i;\n"
            
            // Skip sampling at edge of image
            // Skip sampling when invalid pixel
            "if ( iSrc.x < 0 || iSrc.x >= iSrcWidth || \n"
                  "!getPixel(srcReal, srcImag, fUnifiedSrcDensity,\n"
                            "nUnifiedSrcValid, useBandSrcValid, nBandSrcValid,\n"
                            "iSrc, bandNum, &fDensity, &fReal, &fImag) )\n"
                "continue;\n"
    
            // Choose among possible algorithms
            "if ( doCubicSpline )\n"
                // Calculate & save the X weight
                "fWeight2 = fWeight1 * ((fXScale < 1.0f ) ?\n"
                    "bSpline((float)i * fXScale) * fXScale :\n"
                    "bSpline(fDeltaX - (float)i));\n"
            "else\n"
                // Calculate & save the X weight
                "fWeight2 = fWeight1 * ((fXScale < 1.0f ) ?\n"
                    "lanczosSinc(i * fXScale, fXFilter) * fXScale :\n"
                    "lanczosSinc(i - fDeltaX, fXFilter));\n"
            
            // Accumulate!
            "fAccumulatorReal += fReal * fWeight2;\n"
            "fAccumulatorImag += fImag * fWeight2;\n"
            "fAccumulatorDensity += fDensity * fWeight2;\n"
            "fAccumulatorWeight += fWeight2;\n"
        "}\n"
    "}\n"

    "if ( fAccumulatorWeight < 0.000001f ) {\n"
        "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
                 "0.0f, 0.0f, 0.0f);\n"
    "} else if ( fAccumulatorWeight < 0.99999f || fAccumulatorWeight > 1.00001f ) {\n"
        // Calculate the output taking into account weighting
        "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
                 "fAccumulatorDensity / fAccumulatorWeight,\n"
                 "fAccumulatorReal / fAccumulatorWeight,\n"
"#if useImag != 0\n"
                 "fAccumulatorImag / fAccumulatorWeight );\n"
"#else\n"
                 "0.0f );\n"
"#endif\n"
    "} else {\n"
        "setPixel(dstReal, dstImag, dstDensity, nDstValid, fDstNoDataReal, bandNum,\n"
                 "fAccumulatorDensity, fAccumulatorReal, fAccumulatorImag);\n"
    "}\n"
"}\n";
    
    //Defines based on image format
    switch (warper->imageFormat) {
        case CL_FLOAT:
            dstMinVal = -FLT_MAX;
            dstMaxVal = FLT_MAX;
            outType = "float";
            break;
        case CL_SNORM_INT8:
            dstMinVal = -128.0;
            dstMaxVal = 127.0;
            outType = "char";
            break;
        case CL_UNORM_INT8:
            dstMinVal = 0.0;
            dstMaxVal = 255.0;
            outType = "uchar";
            break;
        case CL_SNORM_INT16:
            dstMinVal = -32768.0;
            dstMaxVal = 32767.0;
            outType = "short";
            break;
        case CL_UNORM_INT16:
            dstMinVal = 0.0;
            dstMaxVal = 65535.0;
            outType = "ushort";
            break;
    }
    
    //Use vector format?
    if (useVec) {
        dUseVec = "-D USE_VEC";
        dVecf = "float4";
    }
    
    //Assemble the kernel from parts. The compiler is unable to handle multiple
    //kernels in one string with more than a few __constant modifiers each.
    if (warper->resampAlg == OCL_Bilinear)
        sprintf(progBuf, "%s\n%s", kernGenFuncs, kernBilinear);
    else if (warper->resampAlg == OCL_Cubic)
        sprintf(progBuf, "%s\n%s", kernGenFuncs, kernCubic);
    else
        sprintf(progBuf, "%s\n%s", kernGenFuncs, kernResampler);
    
    //Actually make the program from assembled source
    program = clCreateProgramWithSource(warper->context, 1, (const char**)&progBuf,
                                        NULL, &err);
    handleErrGoto(err, error_final);
    
    //Assemble the compiler arg string for speed. All invariants should be defined here.
    sprintf(buffer, "-cl-fast-relaxed-math -Werror -D FALSE=0 -D TRUE=1 "
            "%s"
            "-D iSrcWidth=%d -D iSrcHeight=%d -D iDstWidth=%d -D iDstHeight=%d "
            "-D useUnifiedSrcDensity=%d -D useUnifiedSrcValid=%d "
            "-D useDstDensity=%d -D useDstValid=%d -D useImag=%d "
            "-D fXScale=%015.15lff -D fYScale=%015.15lff -D fXFilter=%015.15lff -D fYFilter=%015.15lff "
            "-D nXRadius=%d -D nYRadius=%d -D nFiltInitX=%d -D nFiltInitY=%d "
            "-D PI=%015.15lff -D outType=%s -D dstMinVal=%015.15lff -D dstMaxVal=%015.15lff "
            "-D useDstNoDataReal=%d -D vecf=%s %s -D doCubicSpline=%d "
            "-D useUseBandSrcValid=%d -D iCoordMult=%d ",
            /* FIXME: Is it really a ATI specific thing ? */
            (warper->imageFormat == CL_FLOAT && (warper->eCLVendor == VENDOR_AMD || warper->eCLVendor == VENDOR_INTEL)) ? "-D USE_CLAMP_TO_DST_FLOAT=1 " : "",
            warper->srcWidth, warper->srcHeight, warper->dstWidth, warper->dstHeight,
            warper->useUnifiedSrcDensity, warper->useUnifiedSrcValid,
            warper->useDstDensity, warper->useDstValid, warper->imagWorkCL != NULL,
            dfXScale, dfYScale, dfXFilter, dfYFilter,
            nXRadius, nYRadius, nFiltInitX, nFiltInitY,
            M_PI, outType, dstMinVal, dstMaxVal, warper->fDstNoDataRealCL != NULL,
            dVecf, dUseVec, warper->resampAlg == OCL_CubicSpline,
            warper->nBandSrcValidCL != NULL, warper->coordMult);

    (*clErr) = err = clBuildProgram(program, 1, &(warper->dev), buffer, NULL, NULL);
    
    //Detailed debugging info
    if (err != CL_SUCCESS)
    {
        const char* pszStatus = "unknown_status";
        err = clGetProgramBuildInfo(program, warper->dev, CL_PROGRAM_BUILD_LOG,
                                    128000*sizeof(char), buffer, NULL);
        handleErrGoto(err, error_free_program);
        
        CPLError(CE_Failure, CPLE_AppDefined, "Error: Failed to build program executable!\nBuild Log:\n%s", buffer);

        err = clGetProgramBuildInfo(program, warper->dev, CL_PROGRAM_BUILD_STATUS,
                                    128000*sizeof(char), buffer, NULL);
        handleErrGoto(err, error_free_program);

        if(buffer[0] == CL_BUILD_NONE)
            pszStatus = "CL_BUILD_NONE";
        else if(buffer[0] == CL_BUILD_ERROR)
            pszStatus = "CL_BUILD_ERROR";
        else if(buffer[0] == CL_BUILD_SUCCESS)
            pszStatus = "CL_BUILD_SUCCESS";
        else if(buffer[0] == CL_BUILD_IN_PROGRESS)
            pszStatus = "CL_BUILD_IN_PROGRESS";

        CPLDebug("OpenCL", "Build Status: %s\nProgram Source:\n%s", pszStatus, progBuf);
        goto error_free_program;
    }
    
    kernel = clCreateKernel(program, "resamp", &err);
    handleErrGoto(err, error_free_program);
    
    err = clReleaseProgram(program);
    handleErrGoto(err, error_final);
    
    CPLFree(buffer);
    CPLFree(progBuf);
    return kernel;

error_free_program:
    err = clReleaseProgram(program);

error_final:
    CPLFree(buffer);
    CPLFree(progBuf);
    return NULL;
}

/*
 Alloc & copy the coordinate data from host working memory to the device. The
 working memory should be a pinned, linear, array of floats. This allows us to
 allocate and copy all data in one step. The pointer to the device memory is
 saved and set as the appropriate argument number.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int set_coord_data (struct oclWarper *warper, cl_mem *xy)
{
    cl_int err = CL_SUCCESS;
    cl_image_format imgFmt;
    
    //Copy coord data to the device
    imgFmt.image_channel_order = warper->xyChOrder;
    imgFmt.image_channel_data_type = CL_FLOAT;
    (*xy) = clCreateImage2D(warper->context,
                            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &imgFmt,
                            (size_t) warper->xyWidth,
                            (size_t) warper->xyHeight,
                            (size_t) sizeof(float) * warper->xyChSize * warper->xyWidth,
                            warper->xyWork, &err);
    handleErr(err);
    
    //Free the source memory, now that it's copied we don't need it
    freeCLMem(warper->xyWorkCL, warper->xyWork);
    
    //Set up argument
    if (warper->kern1 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern1, 0, sizeof(cl_mem), xy));
    }
    if (warper->kern4 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern4, 0, sizeof(cl_mem), xy));
    }
    
    return CL_SUCCESS;
}

/*
 Sets the unified density & valid data structures. These are optional structures
 from GDAL, and as such if they are NULL a small placeholder memory segment is
 defined. This is because the spec is unclear on if a NULL value can be passed
 as a kernel argument in place of memory. If it's not NULL, the data is copied
 from the working memory to the device memory. After that, we check if we are
 using the per-band validity mask, and set that as appropriate. At the end, the
 CL mem is passed as the kernel arguments.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int set_unified_data(struct oclWarper *warper,
                        cl_mem *unifiedSrcDensityCL, cl_mem *unifiedSrcValidCL,
                        float *unifiedSrcDensity, unsigned int *unifiedSrcValid,
                        cl_mem *useBandSrcValidCL, cl_mem *nBandSrcValidCL)
{
    cl_int err = CL_SUCCESS;
    size_t sz = warper->srcWidth * warper->srcHeight;
    int useValid = warper->nBandSrcValidCL != NULL;
    //32 bits in the mask
    int validSz = sizeof(int) * ((31 + sz) >> 5);
    
    //Copy unifiedSrcDensity if it exists
    if (unifiedSrcDensity == NULL) {
        //Alloc dummy device RAM
        (*unifiedSrcDensityCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    } else {
        //Alloc & copy all density data
        (*unifiedSrcDensityCL) = clCreateBuffer(warper->context,
                                                CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                                sizeof(float) * sz, unifiedSrcDensity, &err);
        handleErr(err);
    }
    
    //Copy unifiedSrcValid if it exists
    if (unifiedSrcValid == NULL) {
        //Alloc dummy device RAM
        (*unifiedSrcValidCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    } else {
        //Alloc & copy all validity data
        (*unifiedSrcValidCL) = clCreateBuffer(warper->context,
                                              CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                              validSz, unifiedSrcValid, &err);
        handleErr(err);
    }
    
    // Set the band validity usage
    if(useValid) {
        (*useBandSrcValidCL) = clCreateBuffer(warper->context,
                                              CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                              sizeof(char) * warper->numBands,
                                              warper->useBandSrcValid, &err);
        handleErr(err);
    } else {
        //Make a fake image so we don't have a NULL pointer
        (*useBandSrcValidCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    }
    
    //Do a more thorough check for validity
    if (useValid) {
        int i;
        useValid = FALSE;
        for (i = 0; i < warper->numBands; ++i)
            if (warper->useBandSrcValid[i])
                useValid = TRUE;
    }
    
    //And the validity mask if needed
    if (useValid) {
        (*nBandSrcValidCL) = clCreateBuffer(warper->context,
                                            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                            warper->numBands * validSz,
                                            warper->nBandSrcValid, &err);
        handleErr(err);
    } else {
        //Make a fake image so we don't have a NULL pointer
        (*nBandSrcValidCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    }

    //Set up arguments
    if (warper->kern1 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern1, 3, sizeof(cl_mem), unifiedSrcDensityCL));
        handleErr(err = clSetKernelArg(warper->kern1, 4, sizeof(cl_mem), unifiedSrcValidCL));
        handleErr(err = clSetKernelArg(warper->kern1, 5, sizeof(cl_mem), useBandSrcValidCL));
        handleErr(err = clSetKernelArg(warper->kern1, 6, sizeof(cl_mem), nBandSrcValidCL));
    }
    if (warper->kern4 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern4, 3, sizeof(cl_mem), unifiedSrcDensityCL));
        handleErr(err = clSetKernelArg(warper->kern4, 4, sizeof(cl_mem), unifiedSrcValidCL));
        handleErr(err = clSetKernelArg(warper->kern4, 5, sizeof(cl_mem), useBandSrcValidCL));
        handleErr(err = clSetKernelArg(warper->kern4, 6, sizeof(cl_mem), nBandSrcValidCL));
    }
    
    return CL_SUCCESS;
}

/*
 Here we set the per-band raster data. First priority is the real raster data,
 of course. Then, if applicable, we set the additional image channel. Once this
 data is copied to the device, it can be freed on the host, so that is done
 here. Finally the appropriate kernel arguments are set.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int set_src_rast_data (struct oclWarper *warper, int iNum, size_t sz,
                          cl_channel_order chOrder, cl_mem *srcReal, cl_mem *srcImag)
{
    cl_image_format imgFmt;
    cl_int err = CL_SUCCESS;
    int useImagWork = warper->imagWork.v != NULL && warper->imagWork.v[iNum] != NULL;
    
    //Set up image vars
    imgFmt.image_channel_order = chOrder;
    imgFmt.image_channel_data_type = warper->imageFormat;

    //Create & copy the source image
    (*srcReal) = clCreateImage2D(warper->context,
                                 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &imgFmt,
                                 (size_t) warper->srcWidth, (size_t) warper->srcHeight,
                                 sz * warper->srcWidth, warper->realWork.v[iNum], &err);
    handleErr(err);
    
    //And the source image parts if needed
    if (useImagWork) {
        (*srcImag) = clCreateImage2D(warper->context,
                                     CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &imgFmt,
                                     (size_t) warper->srcWidth, (size_t) warper->srcHeight,
                                     sz * warper->srcWidth, warper->imagWork.v[iNum], &err);
        handleErr(err);
    } else {
        //Make a fake image so we don't have a NULL pointer

        char dummyImageData[16];
        (*srcImag) = clCreateImage2D(warper->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &imgFmt,
                                    1, 1, sz, dummyImageData, &err);

        handleErr(err);
    }

    //Free the source memory, now that it's copied we don't need it
    freeCLMem(warper->realWorkCL[iNum], warper->realWork.v[iNum]);
    if (warper->imagWork.v != NULL) {
        freeCLMem(warper->imagWorkCL[iNum], warper->imagWork.v[iNum]);
    }
    
    //Set up per-band arguments
    if (warper->kern1 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern1, 1, sizeof(cl_mem), srcReal));
        handleErr(err = clSetKernelArg(warper->kern1, 2, sizeof(cl_mem), srcImag));
    }
    if (warper->kern4 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern4, 1, sizeof(cl_mem), srcReal));
        handleErr(err = clSetKernelArg(warper->kern4, 2, sizeof(cl_mem), srcImag));
    }
    
    return CL_SUCCESS;
}

/*
 Set the destination data for the raster. Although it's the output, it still
 is copied to the device because some blending is done there. First the real
 data is allocated and copied, then the imag data is allocated and copied if
 needed. They are then set as the appropriate arguments to the kernel.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int set_dst_rast_data(struct oclWarper *warper, int iImg, size_t sz,
                         cl_mem *dstReal, cl_mem *dstImag)
{
    cl_int err = CL_SUCCESS;
    sz *= warper->dstWidth * warper->dstHeight;
    
    //Copy the dst real data
    (*dstReal) = clCreateBuffer(warper->context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
                                sz, warper->dstRealWork.v[iImg], &err);
    handleErr(err);
    
    //Copy the dst imag data if exists
    if (warper->dstImagWork.v != NULL && warper->dstImagWork.v[iImg] != NULL) {
        (*dstImag) = clCreateBuffer(warper->context,
                                    CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
                                    sz, warper->dstImagWork.v[iImg], &err);
        handleErr(err);
    } else {
        (*dstImag) = clCreateBuffer(warper->context, CL_MEM_READ_WRITE, 1, NULL, &err);
        handleErr(err);
    }
    
    //Set up per-band arguments
    if (warper->kern1 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern1, 7, sizeof(cl_mem), dstReal));
        handleErr(err = clSetKernelArg(warper->kern1, 8, sizeof(cl_mem), dstImag));
    }
    if (warper->kern4 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern4, 7, sizeof(cl_mem), dstReal));
        handleErr(err = clSetKernelArg(warper->kern4, 8, sizeof(cl_mem), dstImag));
    }
    
    return CL_SUCCESS;
}

/*
 Read the final raster data back from the graphics card to working memory. This
 copies both the real memory and the imag memory if appropriate.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int get_dst_rast_data(struct oclWarper *warper, int iImg, size_t wordSz,
                         cl_mem dstReal, cl_mem dstImag)
{
    cl_int err = CL_SUCCESS;
    size_t sz = warper->dstWidth * warper->dstHeight * wordSz;
    
    //Copy from dev into working memory
    handleErr(err = clEnqueueReadBuffer(warper->queue, dstReal,
                                        CL_FALSE, 0, sz, warper->dstRealWork.v[iImg],
                                        0, NULL, NULL));
    
    //If we are expecting the imag channel, then copy it back also
    if (warper->dstImagWork.v != NULL && warper->dstImagWork.v[iImg] != NULL) {
        handleErr(err = clEnqueueReadBuffer(warper->queue, dstImag,
                                            CL_FALSE, 0, sz, warper->dstImagWork.v[iImg],
                                            0, NULL, NULL));
    }
    
    //The copy requests were non-blocking, so we'll need to make sure they finish.
    handleErr(err = clFinish(warper->queue));
    
    return CL_SUCCESS;
}

/*
 Set the destination image density & validity mask on the device. This is used
 to blend the final output image with the existing buffer. This handles the
 unified structures that apply to all bands. After the buffers are created and
 copied, they are set as kernel arguments.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int set_dst_data(struct oclWarper *warper,
                    cl_mem *dstDensityCL, cl_mem *dstValidCL, cl_mem *dstNoDataRealCL,
                    float *dstDensity, unsigned int *dstValid, float *dstNoDataReal)
{
    cl_int err = CL_SUCCESS;
    size_t sz = warper->dstWidth * warper->dstHeight;
    
    //Copy the no-data value(s)
    if (dstNoDataReal == NULL) {
        (*dstNoDataRealCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    } else {
        (*dstNoDataRealCL) = clCreateBuffer(warper->context,
                                         CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                         sizeof(float) * warper->numBands, dstNoDataReal, &err);
        handleErr(err);
    }
    
    //Copy unifiedSrcDensity if it exists
    if (dstDensity == NULL) {
        (*dstDensityCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    } else {
        (*dstDensityCL) = clCreateBuffer(warper->context,
                                         CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                         sizeof(float) * sz, dstDensity, &err);
        handleErr(err);
    }
    
    //Copy unifiedSrcValid if it exists
    if (dstValid == NULL) {
        (*dstValidCL) = clCreateBuffer(warper->context, CL_MEM_READ_ONLY, 1, NULL, &err);
        handleErr(err);
    } else {
        (*dstValidCL) = clCreateBuffer(warper->context,
                                       CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                       sizeof(int) * ((31 + sz) >> 5), dstValid, &err);
        handleErr(err);
    }
    
    //Set up arguments
    if (warper->kern1 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern1,  9, sizeof(cl_mem), dstNoDataRealCL));
        handleErr(err = clSetKernelArg(warper->kern1, 10, sizeof(cl_mem), dstDensityCL));
        handleErr(err = clSetKernelArg(warper->kern1, 11, sizeof(cl_mem), dstValidCL));
    }
    if (warper->kern4 != NULL) {
        handleErr(err = clSetKernelArg(warper->kern4,  9, sizeof(cl_mem), dstNoDataRealCL));
        handleErr(err = clSetKernelArg(warper->kern4, 10, sizeof(cl_mem), dstDensityCL));
        handleErr(err = clSetKernelArg(warper->kern4, 11, sizeof(cl_mem), dstValidCL));
    }
    
    return CL_SUCCESS;
}

/*
 Go ahead and execute the kernel. This handles some housekeeping stuff like the
 run dimensions. When running in debug mode, it times the kernel call and prints
 the execution time.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int execute_kern(struct oclWarper *warper, cl_kernel kern, size_t loc_size)
{
    cl_int err = CL_SUCCESS;
    cl_event ev;
    size_t ceil_runs[2];
    size_t group_size[2];
#ifdef DEBUG_OPENCL
    size_t start_time = 0;
    size_t end_time;
    char *vecTxt = "";
#endif
    
    // Use a likely X-dimension which is a power of 2
    if (loc_size >= 512)
        group_size[0] = 32;
    else if (loc_size >= 64)
        group_size[0] = 16;
    else if (loc_size > 8)
        group_size[0] = 8;
    else
        group_size[0] = 1;
    
    if (group_size[0] > loc_size)
        group_size[1] = group_size[0]/loc_size;
    else
        group_size[1] = 1;
    
    //Round up num_runs to find the dim of the block of pixels we'll be processing
    if(warper->dstWidth % group_size[0])
        ceil_runs[0] = warper->dstWidth + group_size[0] - warper->dstWidth % group_size[0];
    else
        ceil_runs[0] = warper->dstWidth;
    
    if(warper->dstHeight % group_size[1])
        ceil_runs[1] = warper->dstHeight + group_size[1] - warper->dstHeight % group_size[1];
    else
        ceil_runs[1] = warper->dstHeight;
    
#ifdef DEBUG_OPENCL
    handleErr(err = clSetCommandQueueProperty(warper->queue, CL_QUEUE_PROFILING_ENABLE, CL_TRUE, NULL));
#endif
    
    // Run the calculation by enqueuing it and forcing the 
    // command queue to complete the task
    handleErr(err = clEnqueueNDRangeKernel(warper->queue, kern, 2, NULL, 
                                           ceil_runs, group_size, 0, NULL, &ev));
    handleErr(err = clFinish(warper->queue));
    
#ifdef DEBUG_OPENCL
    handleErr(err = clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_START,
                                            sizeof(size_t), &start_time, NULL));
    handleErr(err = clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_END,
                                            sizeof(size_t), &end_time, NULL));
    assert(end_time != 0);
    assert(start_time != 0);
    handleErr(err = clReleaseEvent(ev));
    if (kern == warper->kern4)
        vecTxt = "(vec)";
    
    CPLDebug("OpenCL", "Kernel Time: %6s %10lu", vecTxt, (long int)((end_time-start_time)/100000));
#endif
    return CL_SUCCESS;
}

/*
 Copy data from a raw source to the warper's working memory. If the imag
 channel is expected, then the data will be de-interlaced into component blocks
 of memory.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int set_img_data(struct oclWarper *warper, void *srcImgData,
                    unsigned int width, unsigned int height, int isSrc,
                    unsigned int bandNum, void **dstRealImgs, void **dstImagImgs)
{
    unsigned int imgChSize = warper->imgChSize1;
    unsigned int iSrcY, i;
    unsigned int vecOff = 0;
    unsigned int imgNum = bandNum;
    void *dstReal = NULL;
    void *dstImag = NULL;
    
    // Handle vector if needed
    if (warper->useVec && bandNum < warper->numBands - warper->numBands % 4) {
        imgChSize = warper->imgChSize4;
        vecOff = bandNum % 4;
        imgNum = bandNum / 4;
    } else if(warper->useVec) {
        imgNum = bandNum / 4 + bandNum % 4;
    }
    
    // Set the images as needed
    dstReal = dstRealImgs[imgNum];
    if(dstImagImgs == NULL)
        dstImag = NULL;
    else
        dstImag = dstImagImgs[imgNum];
    
    // Set stuff for dst imgs
    if (!isSrc) {
        vecOff *= height * width;
        imgChSize = 1;
    }
    
    // Copy values as needed
    if (warper->imagWorkCL == NULL && !(warper->useVec && isSrc)) {
        //Set memory size & location depending on the data type
        //This is the ideal code path for speed
        switch (warper->imageFormat) {
            case CL_UNORM_INT8:
            {
                unsigned char *realDst = &(((unsigned char *)dstReal)[vecOff]);
                memcpy(realDst, srcImgData, width*height*sizeof(unsigned char));
                break;
            }
            case CL_SNORM_INT8:
            {
                char *realDst = &(((char *)dstReal)[vecOff]);
                memcpy(realDst, srcImgData, width*height*sizeof(char));
                break;
            }
            case CL_UNORM_INT16:
            {
                unsigned short *realDst = &(((unsigned short *)dstReal)[vecOff]);
                memcpy(realDst, srcImgData, width*height*sizeof(unsigned short));
                break;
            }
            case CL_SNORM_INT16:
            {
                short *realDst = &(((short *)dstReal)[vecOff]);
                memcpy(realDst, srcImgData, width*height*sizeof(short));
                break;
            }
            case CL_FLOAT:
            {
                float *realDst = &(((float *)dstReal)[vecOff]);
                memcpy(realDst, srcImgData, width*height*sizeof(float));
                break;
            }
        }
    } else if (warper->imagWorkCL == NULL) {
        //We need to space the values due to OpenCL implementation reasons
        for( iSrcY = 0; iSrcY < height; iSrcY++ )
        {
            int pxOff = width*iSrcY;
            int imgOff = imgChSize*pxOff + vecOff;
            //Copy & deinterleave interleaved data
            switch (warper->imageFormat) {
                case CL_UNORM_INT8:
                {
                    unsigned char *realDst = &(((unsigned char *)dstReal)[imgOff]);
                    unsigned char *dataSrc = &(((unsigned char *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i)
                        realDst[imgChSize*i] = dataSrc[i];
                }
                    break;
                case CL_SNORM_INT8:
                {
                    char *realDst = &(((char *)dstReal)[imgOff]);
                    char *dataSrc = &(((char *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i)
                        realDst[imgChSize*i] = dataSrc[i];
                }
                    break;
                case CL_UNORM_INT16:
                {
                    unsigned short *realDst = &(((unsigned short *)dstReal)[imgOff]);
                    unsigned short *dataSrc = &(((unsigned short *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i)
                        realDst[imgChSize*i] = dataSrc[i];
                }
                    break;
                case CL_SNORM_INT16:
                {
                    short *realDst = &(((short *)dstReal)[imgOff]);
                    short *dataSrc = &(((short *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i)
                        realDst[imgChSize*i] = dataSrc[i];
                }
                    break;
                case CL_FLOAT:
                {
                    float *realDst = &(((float *)dstReal)[imgOff]);
                    float *dataSrc = &(((float *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i)
                        realDst[imgChSize*i] = dataSrc[i];
                }
                    break;
            }
        }
    } else {
        //Copy, deinterleave, & space interleaved data
        for( iSrcY = 0; iSrcY < height; iSrcY++ )
        {
            int pxOff = width*iSrcY;
            int imgOff = imgChSize*pxOff + vecOff;
            //Copy & deinterleave interleaved data
            switch (warper->imageFormat) {
                case CL_FLOAT:
                {
                    float *realDst = &(((float *)dstReal)[imgOff]);
                    float *imagDst = &(((float *)dstImag)[imgOff]);
                    float *dataSrc = &(((float *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i) {
                        realDst[imgChSize*i] = dataSrc[i*2  ];
                        imagDst[imgChSize*i] = dataSrc[i*2+1];
                    }
                }
                    break;
                case CL_SNORM_INT8:
                {
                    char *realDst = &(((char *)dstReal)[imgOff]);
                    char *imagDst = &(((char *)dstImag)[imgOff]);
                    char *dataSrc = &(((char *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i) {
                        realDst[imgChSize*i] = dataSrc[i*2  ];
                        imagDst[imgChSize*i] = dataSrc[i*2+1];
                    }
                }
                    break;
                case CL_UNORM_INT8:
                {
                    unsigned char *realDst = &(((unsigned char *)dstReal)[imgOff]);
                    unsigned char *imagDst = &(((unsigned char *)dstImag)[imgOff]);
                    unsigned char *dataSrc = &(((unsigned char *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i) {
                        realDst[imgChSize*i] = dataSrc[i*2  ];
                        imagDst[imgChSize*i] = dataSrc[i*2+1];
                    }
                }
                    break;
                case CL_SNORM_INT16:
                {
                    short *realDst = &(((short *)dstReal)[imgOff]);
                    short *imagDst = &(((short *)dstImag)[imgOff]);
                    short *dataSrc = &(((short *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i) {
                        realDst[imgChSize*i] = dataSrc[i*2  ];
                        imagDst[imgChSize*i] = dataSrc[i*2+1];
                    }
                }
                    break;
                case CL_UNORM_INT16:
                {
                    unsigned short *realDst = &(((unsigned short *)dstReal)[imgOff]);
                    unsigned short *imagDst = &(((unsigned short *)dstImag)[imgOff]);
                    unsigned short *dataSrc = &(((unsigned short *)srcImgData)[pxOff]);
                    for (i = 0; i < width; ++i) {
                        realDst[imgChSize*i] = dataSrc[i*2  ];
                        imagDst[imgChSize*i] = dataSrc[i*2+1];
                    }
                }
                    break;
            }
        }
    }
    
    return CL_SUCCESS;
}

/*
 Creates the struct which inits & contains the OpenCL context & environment.
 Inits wired(?) space to buffer the image in host RAM. Chooses the OpenCL
 device, perhaps the user can choose it later? This would also choose the
 appropriate OpenCL image format (R, RG, RGBA, or multiples thereof). Space
 for metadata can be allocated as required, though.
 
 Supported image formats are:
 CL_FLOAT, CL_SNORM_INT8, CL_UNORM_INT8, CL_SNORM_INT16, CL_UNORM_INT16
 32-bit int formats won't keep precision when converted to floats internally
 and doubles are generally not supported on the GPU image formats.
 */
struct oclWarper* GDALWarpKernelOpenCL_createEnv(int srcWidth, int srcHeight,
                                                 int dstWidth, int dstHeight,
                                                 cl_channel_type imageFormat,
                                                 int numBands, int coordMult,
                                                 int useImag, int useBandSrcValid,
                                                 float *fDstDensity,
                                                 double *dfDstNoDataReal,
                                                 OCLResampAlg resampAlg, cl_int *clErr)
{
    struct oclWarper *warper;
    int i;
    size_t maxWidth = 0, maxHeight = 0;
    cl_int err = CL_SUCCESS;
    size_t fmtSize, sz;
    cl_device_id device;
    cl_bool bool_flag;
    OCLVendor eCLVendor = VENDOR_OTHER;
    
    // Do we have a suitable OpenCL device? 
    device = get_device(&eCLVendor);
    if( device == NULL )
        return NULL;
        
    err = clGetDeviceInfo(device, CL_DEVICE_IMAGE_SUPPORT, 
                          sizeof(cl_bool), &bool_flag, &sz);
    if( err != CL_SUCCESS || !bool_flag )
    {
        CPLDebug( "OpenCL", "No image support on selected device." );
        return NULL;
    }

    // Set up warper environment.
    warper = (struct oclWarper *)CPLCalloc(1, sizeof(struct oclWarper));

    warper->eCLVendor = eCLVendor;
    
    //Init passed vars
    warper->srcWidth = srcWidth;
    warper->srcHeight = srcHeight;
    warper->dstWidth = dstWidth;
    warper->dstHeight = dstHeight;
    
    warper->coordMult = coordMult;
    warper->numBands = numBands;
    warper->imageFormat = imageFormat;
    warper->resampAlg = resampAlg;

    warper->useUnifiedSrcDensity = FALSE;
    warper->useUnifiedSrcValid = FALSE;
    warper->useDstDensity = FALSE;
    warper->useDstValid = FALSE;
    
    warper->imagWorkCL = NULL;
    warper->dstImagWorkCL = NULL;
    warper->useBandSrcValidCL = NULL;
    warper->useBandSrcValid = NULL;
    warper->nBandSrcValidCL = NULL;
    warper->nBandSrcValid = NULL;
    warper->fDstNoDataRealCL = NULL;
    warper->fDstNoDataReal = NULL;
    warper->kern1 = NULL;
    warper->kern4 = NULL;

    warper->dev = device;
    
    warper->context = clCreateContext(0, 1, &(warper->dev), NULL, NULL, &err);
    handleErrGoto(err, error_label);
    warper->queue = clCreateCommandQueue(warper->context, warper->dev, 0, &err);
    handleErrGoto(err, error_label);
    
    //Ensure that we hand handle imagery of these dimensions
    err = clGetDeviceInfo(warper->dev, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof(size_t), &maxWidth, &sz);
    handleErrGoto(err, error_label);
    err = clGetDeviceInfo(warper->dev, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof(size_t), &maxHeight, &sz);
    handleErrGoto(err, error_label);
    if (maxWidth < srcWidth || maxHeight < srcHeight) {
        err = CL_INVALID_IMAGE_SIZE;
        handleErrGoto(err, error_label);
    }
    
    // Split bands into sets of four when possible
    // Cubic runs slower as vector, so don't use it (probably register pressure)
    // Feel free to do more testing and come up with more precise case statements
    if(numBands < 4 || resampAlg == OCL_Cubic) {
        warper->numImages = numBands;
        warper->useVec = FALSE;
    } else {
        warper->numImages = numBands/4 + numBands % 4;
        warper->useVec = TRUE;
    }
    
    //Make the pointer space for the real images
    warper->realWorkCL = (cl_mem *)CPLCalloc(sizeof(cl_mem), warper->numImages);
    warper->dstRealWorkCL = (cl_mem *)CPLCalloc(sizeof(cl_mem), warper->numImages);
    
    //Make space for the per-channel Imag data (if exists)
    if (useImag) {
        warper->imagWorkCL = (cl_mem *)CPLCalloc(sizeof(cl_mem), warper->numImages);
        warper->dstImagWorkCL = (cl_mem *)CPLCalloc(sizeof(cl_mem), warper->numImages);
    }
    
    //Make space for the per-band BandSrcValid data (if exists)
    if (useBandSrcValid) {
        //32 bits in the mask
        size_t sz = warper->numBands * ((31 + warper->srcWidth * warper->srcHeight) >> 5);
        
        //Allocate some space for the validity of the validity mask
        err = alloc_pinned_mem(warper, 0, warper->numBands*sizeof(char),
                               (void **)&(warper->useBandSrcValid),
                               &(warper->useBandSrcValidCL));
        handleErrGoto(err, error_label);
        
        for (i = 0; i < warper->numBands; ++i)
            warper->useBandSrcValid[i] = FALSE;
        
        //Allocate one array for all the band validity masks
        //Remember that the masks don't use much memeory (they're bitwise)
        err = alloc_pinned_mem(warper, 0, sz * sizeof(int),
                               (void **)&(warper->nBandSrcValid),
                               &(warper->nBandSrcValidCL));
        handleErrGoto(err, error_label);
    }
    
    //Make space for the per-band 
    if (dfDstNoDataReal != NULL) {
        alloc_pinned_mem(warper, 0, warper->numBands,
                         (void **)&(warper->fDstNoDataReal), &(warper->fDstNoDataRealCL));
        
        //Copy over values
        for (i = 0; i < warper->numBands; ++i)
            warper->fDstNoDataReal[i] = dfDstNoDataReal[i];
    }
    
    //Alloc working host image memory
    //We'll be copying into these buffers soon
    switch (imageFormat) {
      case CL_FLOAT:
        err = alloc_working_arr(warper, sizeof(float *), sizeof(float), &fmtSize);
        break;
      case CL_SNORM_INT8:
        err = alloc_working_arr(warper, sizeof(char *), sizeof(char), &fmtSize);
        break;
      case CL_UNORM_INT8:
        err = alloc_working_arr(warper, sizeof(unsigned char *), sizeof(unsigned char), &fmtSize);
        break;
      case CL_SNORM_INT16:
        err = alloc_working_arr(warper, sizeof(short *), sizeof(short), &fmtSize);
        break;
      case CL_UNORM_INT16:
        err = alloc_working_arr(warper, sizeof(unsigned short *), sizeof(unsigned short), &fmtSize);
        break;
    }
    handleErrGoto(err, error_label);
    
    //Find a good & compable image channel order for the Lat/Long arr
    err = set_supported_formats(warper, 2,
                                &(warper->xyChOrder), &(warper->xyChSize),
                                CL_FLOAT);
    handleErrGoto(err, error_label);
    
    //Set coordinate image dimensions
    warper->xyWidth  = ceil(((float)warper->dstWidth  + (float)warper->coordMult-1)/(float)warper->coordMult);
    warper->xyHeight = ceil(((float)warper->dstHeight + (float)warper->coordMult-1)/(float)warper->coordMult);
    
    //Alloc coord memory
    sz = sizeof(float) * warper->xyChSize * warper->xyWidth * warper->xyHeight;
    err = alloc_pinned_mem(warper, 0, sz, (void **)&(warper->xyWork),
                           &(warper->xyWorkCL));
    handleErrGoto(err, error_label);
    
    //Ensure everything is finished allocating, copying, & mapping
    err = clFinish(warper->queue);
    handleErrGoto(err, error_label);
    
    (*clErr) = CL_SUCCESS;
    return warper;
    
error_label:
    GDALWarpKernelOpenCL_deleteEnv(warper);
    return NULL;
}

/*
 Copy the validity mask for an image band to the warper.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_setSrcValid(struct oclWarper *warper,
                                        int *bandSrcValid, int bandNum)
{
    //32 bits in the mask
    int stride = (31 + warper->srcWidth * warper->srcHeight) >> 5;
    
    //Copy bandSrcValid
    assert(warper->nBandSrcValid != NULL);
    memcpy(&(warper->nBandSrcValid[bandNum*stride]), bandSrcValid, sizeof(int) * stride);
    warper->useBandSrcValid[bandNum] = TRUE;
    
    return CL_SUCCESS;
}

/*
 Sets the source image real & imag into the host memory so that it is
 permuted (ex. RGBA) for better graphics card access.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_setSrcImg(struct oclWarper *warper, void *imgData,
                                      int bandNum)
{
    void **imagWorkPtr = NULL;
    
    if (warper->imagWorkCL != NULL)
        imagWorkPtr = warper->imagWork.v;
    
    return set_img_data(warper, imgData, warper->srcWidth, warper->srcHeight,
                        TRUE, bandNum, warper->realWork.v, imagWorkPtr);
}

/*
 Sets the destination image real & imag into the host memory so that it is
 permuted (ex. RGBA) for better graphics card access.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_setDstImg(struct oclWarper *warper, void *imgData,
                                      int bandNum)
{
    void **dstImagWorkPtr = NULL;
    
    if (warper->dstImagWorkCL != NULL)
        dstImagWorkPtr = warper->dstImagWork.v;
    
    return set_img_data(warper, imgData, warper->dstWidth, warper->dstHeight,
                        FALSE, bandNum, warper->dstRealWork.v, dstImagWorkPtr);
}

/*
 Inputs the source coordinates for a row of the destination pixels. Invalid
 coordinates are set as -99.0, which should be out of the image bounds. Sets
 the coordinates as ready to be used in OpenCL image memory: interleaved and
 minus the offset. By using image memory, we can use a smaller texture for
 coordinates and use OpenCL's built-in interpolation to save memory.
 
 What it does: generates a smaller matrix of X/Y coordinate transformation
 values from an original matrix. When bilinearly sampled in the GPU hardware,
 the generated values are as close as possible to the original matrix.
 
 Complication: matricies have arbitrary dimensions and the sub-sampling factor
 is an arbitrary integer greater than zero. Getting the edge cases right is 
 difficult.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_setCoordRow(struct oclWarper *warper,
                                        double *rowSrcX, double *rowSrcY,
                                        double srcXOff, double srcYOff,
                                        int *success, int rowNum)
{
    int coordMult = warper->coordMult;
    int width = warper->dstWidth;
    int height = warper->dstHeight;
    int xyWidth = warper->xyWidth;
    int i;
    int xyChSize = warper->xyChSize;
    float *xyPtr, *xyPrevPtr = NULL;
    int lastRow = rowNum == height - 1;
    double dstHeightMod = 1.0, dstWidthMod = 1.0;
    
    //Return if we're at an off row
    if(!lastRow && rowNum % coordMult != 0)
        return CL_SUCCESS;
    
    //Standard row, adjusted for the skipped rows
    xyPtr = &(warper->xyWork[xyWidth * xyChSize * rowNum / coordMult]);
    
    //Find our row
    if(lastRow){
        //Setup for the final row
        xyPtr     = &(warper->xyWork[xyWidth * xyChSize * (warper->xyHeight - 1)]);
        xyPrevPtr = &(warper->xyWork[xyWidth * xyChSize * (warper->xyHeight - 2)]);
        
        if((height-1) % coordMult)
            dstHeightMod = (double)coordMult / (double)((height-1) % coordMult);
    }
    
    //Copy selected coordinates
    for (i = 0; i < width; i += coordMult) {
        if (success[i]) {
            xyPtr[0] = rowSrcX[i] - srcXOff;
            xyPtr[1] = rowSrcY[i] - srcYOff;
            
            if(lastRow) {
                //Adjust bottom row so interpolator returns correct value
                xyPtr[0] = dstHeightMod * (xyPtr[0] - xyPrevPtr[0]) + xyPrevPtr[0];
                xyPtr[1] = dstHeightMod * (xyPtr[1] - xyPrevPtr[1]) + xyPrevPtr[1];
            }
        } else {
            xyPtr[0] = -99.0f;
            xyPtr[1] = -99.0f;
        }
        
        xyPtr += xyChSize;
        xyPrevPtr += xyChSize;
    }
    
    //Copy remaining coordinate
    if((width-1) % coordMult){
        dstWidthMod = (double)coordMult / (double)((width-1) % coordMult);
        xyPtr -= xyChSize;
        xyPrevPtr -= xyChSize;
    } else {
        xyPtr -= xyChSize*2;
        xyPrevPtr -= xyChSize*2;
    }
    
    if(lastRow) {
        double origX = rowSrcX[width-1] - srcXOff;
        double origY = rowSrcY[width-1] - srcYOff;
        double a = 1.0, b = 1.0;
        
        // Calculate the needed x/y values using an equation from the OpenCL Spec
        // section 8.2, solving for Ti1j1
        if((width -1) % coordMult)
            a = ((width -1) % coordMult)/(double)coordMult;
        
        if((height-1) % coordMult)
            b = ((height-1) % coordMult)/(double)coordMult;
        
        xyPtr[xyChSize  ] = (((1.0 - a) * (1.0 - b) * xyPrevPtr[0]
                              + a * (1.0 - b) * xyPrevPtr[xyChSize]
                              + (1.0 - a) * b * xyPtr[0]) - origX)/(-a * b);
        
        xyPtr[xyChSize+1] = (((1.0 - a) * (1.0 - b) * xyPrevPtr[1]
                              + a * (1.0 - b) * xyPrevPtr[xyChSize+1]
                              + (1.0 - a) * b * xyPtr[1]) - origY)/(-a * b);
    } else {
        //Adjust last coordinate so interpolator returns correct value
        xyPtr[xyChSize  ] = dstWidthMod * (rowSrcX[width-1] - srcXOff - xyPtr[0]) + xyPtr[0];
        xyPtr[xyChSize+1] = dstWidthMod * (rowSrcY[width-1] - srcYOff - xyPtr[1]) + xyPtr[1];
    }
    
    return CL_SUCCESS;
}

/*
 Copies all data to the device RAM, frees the host RAM, runs the
 appropriate resampling kernel, mallocs output space, & copies the data
 back from the device RAM for each band. Also check to make sure that
 setRow*() was called the appropriate number of times to init all image
 data.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_runResamp(struct oclWarper *warper,
                                      float *unifiedSrcDensity,
                                      unsigned int *unifiedSrcValid,
                                      float *dstDensity,
                                      unsigned int *dstValid,
                                      double dfXScale, double dfYScale,
                                      double dfXFilter, double dfYFilter,
                                      int nXRadius, int nYRadius,
                                      int nFiltInitX, int nFiltInitY)
{
    int i, nextBandNum = 0, chSize = 1;
	cl_int err = CL_SUCCESS;
    cl_mem xy, unifiedSrcDensityCL, unifiedSrcValidCL;
    cl_mem dstDensityCL, dstValidCL, dstNoDataRealCL;
    cl_mem useBandSrcValidCL, nBandSrcValidCL;
	size_t groupSize, wordSize;
    cl_kernel kern = NULL;
    cl_channel_order chOrder;
    
    warper->useUnifiedSrcDensity = unifiedSrcDensity != NULL;
    warper->useUnifiedSrcValid = unifiedSrcValid != NULL;

    //Check the word size
    switch (warper->imageFormat) {
        case CL_FLOAT:
            wordSize = sizeof(float);
            break;
        case CL_SNORM_INT8:
            wordSize = sizeof(char);
            break;
        case CL_UNORM_INT8:
            wordSize = sizeof(unsigned char);
            break;
        case CL_SNORM_INT16:
            wordSize = sizeof(short);
            break;
        case CL_UNORM_INT16:
            wordSize = sizeof(unsigned short);
            break;
    }
    
    //Compile the kernel; the invariants are being compiled into the code
    if (!warper->useVec || warper->numBands % 4) {
        warper->kern1 = get_kernel(warper, FALSE,
                                   dfXScale, dfYScale, dfXFilter, dfYFilter,
                                   nXRadius, nYRadius, nFiltInitX, nFiltInitY, &err);
        handleErr(err);
    }
    if (warper->useVec){
        warper->kern4 = get_kernel(warper, TRUE,
                                   dfXScale, dfYScale, dfXFilter, dfYFilter,
                                   nXRadius, nYRadius, nFiltInitX, nFiltInitY, &err);
        handleErr(err);
    }
    
    //Copy coord data to the device
    handleErr(err = set_coord_data(warper, &xy));
    
    //Copy unified density & valid data
    handleErr(err = set_unified_data(warper, &unifiedSrcDensityCL, &unifiedSrcValidCL,
                                     unifiedSrcDensity, unifiedSrcValid,
                                     &useBandSrcValidCL, &nBandSrcValidCL));
    
    //Copy output density & valid data
    handleErr(set_dst_data(warper, &dstDensityCL, &dstValidCL, &dstNoDataRealCL,
                           dstDensity, dstValid, warper->fDstNoDataReal));
    
    //What's the recommended group size?
    if (warper->useVec) {
        // Start with the vector kernel
        handleErr(clGetKernelWorkGroupInfo(warper->kern4, warper->dev,
                                           CL_KERNEL_WORK_GROUP_SIZE,
                                           sizeof(size_t), &groupSize, NULL));
        kern = warper->kern4;
        chSize = warper->imgChSize4;
        chOrder = warper->imgChOrder4;
    } else {
        // We're only using the float kernel
        handleErr(clGetKernelWorkGroupInfo(warper->kern1, warper->dev,
                                           CL_KERNEL_WORK_GROUP_SIZE,
                                           sizeof(size_t), &groupSize, NULL));
        kern = warper->kern1;
        chSize = warper->imgChSize1;
        chOrder = warper->imgChOrder1;
    }
    
    //Loop over each image
    for (i = 0; i < warper->numImages; ++i)
    {
        cl_mem srcImag, srcReal;
        cl_mem dstReal, dstImag;
        int bandNum = nextBandNum;
        
        //Switch kernels if needed
        if (warper->useVec && nextBandNum < warper->numBands - warper->numBands % 4) {
            nextBandNum += 4;
        } else {
            if (kern == warper->kern4) {
                handleErr(clGetKernelWorkGroupInfo(warper->kern1, warper->dev,
                                                   CL_KERNEL_WORK_GROUP_SIZE,
                                                   sizeof(size_t), &groupSize, NULL));
                kern = warper->kern1;
                chSize = warper->imgChSize1;
                chOrder = warper->imgChOrder1;
            }
            ++nextBandNum;
        }
        
        //Create & copy the source image
        handleErr(err = set_src_rast_data(warper, i, chSize*wordSize, chOrder,
                                          &srcReal, &srcImag));
        
        //Create & copy the output image
        if (kern == warper->kern1) {
            handleErr(err = set_dst_rast_data(warper, i, wordSize, &dstReal, &dstImag));
        } else {
            handleErr(err = set_dst_rast_data(warper, i, wordSize*4, &dstReal, &dstImag));
        }
        
        //Set the bandNum
        handleErr(err = clSetKernelArg(kern, 12, sizeof(int), &bandNum));
        
        //Run the kernel
        handleErr(err = execute_kern(warper, kern, groupSize));
        
        //Free loop CL mem
        handleErr(err = clReleaseMemObject(srcReal));
        handleErr(err = clReleaseMemObject(srcImag));
        
        //Copy the back output results
        if (kern == warper->kern1) {
            handleErr(err = get_dst_rast_data(warper, i, wordSize, dstReal, dstImag));
        } else {
            handleErr(err = get_dst_rast_data(warper, i, wordSize*4, dstReal, dstImag));
        }
            
        //Free remaining CL mem
        handleErr(err = clReleaseMemObject(dstReal));
        handleErr(err = clReleaseMemObject(dstImag));
    }
    
    //Free remaining CL mem
    handleErr(err = clReleaseMemObject(xy));
    handleErr(err = clReleaseMemObject(unifiedSrcDensityCL));
    handleErr(err = clReleaseMemObject(unifiedSrcValidCL));
    handleErr(err = clReleaseMemObject(useBandSrcValidCL));
    handleErr(err = clReleaseMemObject(nBandSrcValidCL));
    handleErr(err = clReleaseMemObject(dstDensityCL));
    handleErr(err = clReleaseMemObject(dstValidCL));
    handleErr(err = clReleaseMemObject(dstNoDataRealCL));

    return CL_SUCCESS;
}

/*
 Sets pointers to the floating point data in the warper. The pointers
 are internal to the warper structure, so don't free() them. If the imag
 channel is in use, it will receive a pointer. Otherwise it'll be set to NULL.
 These are pointers to floating point data, so the caller will need to
 manipulate the output as appropriate before saving the data.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_getRow(struct oclWarper *warper,
                                   void **rowReal, void **rowImag,
                                   int rowNum, int bandNum)
{
    int memOff = rowNum * warper->dstWidth;
    int imgNum = bandNum;
    
    if (warper->useVec && bandNum < warper->numBands - warper->numBands % 4) {
        memOff += warper->dstWidth * warper->dstHeight * (bandNum % 4);
        imgNum = bandNum / 4;
    } else if(warper->useVec) {
        imgNum = bandNum / 4 + bandNum % 4;
    }
    
    //Return pointers into the warper's data
    switch (warper->imageFormat) {
        case CL_FLOAT:
            (*rowReal) = &(warper->dstRealWork.f[imgNum][memOff]);
            break;
        case CL_SNORM_INT8:
            (*rowReal) = &(warper->dstRealWork.c[imgNum][memOff]);
            break;
        case CL_UNORM_INT8:
            (*rowReal) = &(warper->dstRealWork.uc[imgNum][memOff]);
            break;
        case CL_SNORM_INT16:
            (*rowReal) = &(warper->dstRealWork.s[imgNum][memOff]);
            break;
        case CL_UNORM_INT16:
            (*rowReal) = &(warper->dstRealWork.us[imgNum][memOff]);
            break;
    }
    
    if (warper->dstImagWorkCL == NULL) {
        (*rowImag) = NULL;
    } else {
        switch (warper->imageFormat) {
            case CL_FLOAT:
                (*rowImag) = &(warper->dstImagWork.f[imgNum][memOff]);
                break;
            case CL_SNORM_INT8:
                (*rowImag) = &(warper->dstImagWork.c[imgNum][memOff]);
                break;
            case CL_UNORM_INT8:
                (*rowImag) = &(warper->dstImagWork.uc[imgNum][memOff]);
                break;
            case CL_SNORM_INT16:
                (*rowImag) = &(warper->dstImagWork.s[imgNum][memOff]);
                break;
            case CL_UNORM_INT16:
                (*rowImag) = &(warper->dstImagWork.us[imgNum][memOff]);
                break;
        }
    }
    
    return CL_SUCCESS;
}

/*
 Free the OpenCL warper environment. It should check everything for NULL, so
 be sure to mark free()ed pointers as NULL or it'll be double free()ed.
 
 Returns CL_SUCCESS on success and other CL_* errors when something goes wrong.
 */
cl_int GDALWarpKernelOpenCL_deleteEnv(struct oclWarper *warper)
{
    int i;
	cl_int err = CL_SUCCESS;
    
    for (i = 0; i < warper->numImages; ++i) {
        // Run free!!
        void* dummy = NULL;
        if( warper->realWork.v )
            freeCLMem(warper->realWorkCL[i], warper->realWork.v[i]);
        else
            freeCLMem(warper->realWorkCL[i], dummy);
        if( warper->realWork.v )
            freeCLMem(warper->dstRealWorkCL[i], warper->dstRealWork.v[i]);
        else
            freeCLMem(warper->dstRealWorkCL[i], dummy);
        
        //(As applicable)
        if(warper->imagWorkCL != NULL && warper->imagWork.v != NULL && warper->imagWork.v[i] != NULL) {
            freeCLMem(warper->imagWorkCL[i], warper->imagWork.v[i]);
        }
        if(warper->dstImagWorkCL != NULL && warper->dstImagWork.v != NULL && warper->dstImagWork.v[i] != NULL) {
            freeCLMem(warper->dstImagWorkCL[i], warper->dstImagWork.v[i]);
        }
    }
    
    //Free cl_mem
    freeCLMem(warper->useBandSrcValidCL, warper->useBandSrcValid);
    freeCLMem(warper->nBandSrcValidCL, warper->nBandSrcValid);
    freeCLMem(warper->xyWorkCL, warper->xyWork);
    freeCLMem(warper->fDstNoDataRealCL, warper->fDstNoDataReal);
    
    //Free pointers to cl_mem*
    if (warper->realWorkCL != NULL)
        CPLFree(warper->realWorkCL);
    if (warper->dstRealWorkCL != NULL)
        CPLFree(warper->dstRealWorkCL);
    
    if (warper->imagWorkCL != NULL)
        CPLFree(warper->imagWorkCL);
    if (warper->dstImagWorkCL != NULL)
        CPLFree(warper->dstImagWorkCL);

    if (warper->realWork.v != NULL)
        CPLFree(warper->realWork.v);
    if (warper->dstRealWork.v != NULL)
        CPLFree(warper->dstRealWork.v);
    
    if (warper->imagWork.v != NULL)
        CPLFree(warper->imagWork.v);
    if (warper->dstImagWork.v != NULL)
        CPLFree(warper->dstImagWork.v);
    
    //Free OpenCL structures
    if (warper->kern1 != NULL)
        clReleaseKernel(warper->kern1);
    if (warper->kern4 != NULL)
        clReleaseKernel(warper->kern4);
    if (warper->queue != NULL)
        clReleaseCommandQueue(warper->queue);
    if (warper->context != NULL)
        clReleaseContext(warper->context);
    
    CPLFree(warper);
    
    return CL_SUCCESS;
}

#endif /* defined(HAVE_OPENCL) */