File: thinplatespline.cpp

package info (click to toggle)
gdal 1.10.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,320 kB
  • ctags: 74,726
  • sloc: cpp: 677,199; ansic: 162,820; python: 13,816; cs: 11,163; sh: 10,446; java: 5,279; perl: 4,429; php: 2,971; xml: 1,500; yacc: 934; makefile: 494; sql: 112
file content (615 lines) | stat: -rw-r--r-- 16,789 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/******************************************************************************
 * $Id: thinplatespline.cpp 24925 2012-09-16 10:07:00Z rouault $
 *
 * Project:  GDAL Warp API
 * Purpose:  Implemenentation of 2D Thin Plate Spline transformer. 
 * Author:   VIZRT Development Team.
 *
 * This code was provided by Gilad Ronnen (gro at visrt dot com) with
 * permission to reuse under the following license.
 * 
 ******************************************************************************
 * Copyright (c) 2004, VIZRT Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 ****************************************************************************/

#ifdef HAVE_ARMADILLO
/* Include before #define A(r,c) because armadillo uses A in its include files */
#include "armadillo"
#endif

#include "thinplatespline.h"

#ifdef HAVE_FLOAT_H
#  include <float.h>
#elif defined(HAVE_VALUES_H)
#  include <values.h>
#endif

#ifndef FLT_MAX
#  define FLT_MAX 1e+37
#  define FLT_MIN 1e-37
#endif

VizGeorefSpline2D* viz_xy2llz;
VizGeorefSpline2D* viz_llz2xy;

/////////////////////////////////////////////////////////////////////////////////////
//// vizGeorefSpline2D
/////////////////////////////////////////////////////////////////////////////////////

#define A(r,c) _AA[ _nof_eqs * (r) + (c) ]
#define Ainv(r,c) _Ainv[ _nof_eqs * (r) + (c) ]


#define VIZ_GEOREF_SPLINE_DEBUG 0

static int matrixInvert( int N, double input[], double output[] );

void VizGeorefSpline2D::grow_points()

{
    int new_max = _max_nof_points*2 + 2 + 3;
    int i;
    
    if( _max_nof_points == 0 )
    {
        x = (double *) VSIMalloc( sizeof(double) * new_max );
        y = (double *) VSIMalloc( sizeof(double) * new_max );
        u = (double *) VSIMalloc( sizeof(double) * new_max );
        unused = (int *) VSIMalloc( sizeof(int) * new_max );
        index = (int *) VSIMalloc( sizeof(int) * new_max );
        for( i = 0; i < VIZGEOREF_MAX_VARS; i++ )
        {
            rhs[i] = (double *) VSICalloc( sizeof(double), new_max );
            coef[i] = (double *) VSICalloc( sizeof(double), new_max );
        }
    }
    else
    {
        x = (double *) VSIRealloc( x, sizeof(double) * new_max );
        y = (double *) VSIRealloc( y, sizeof(double) * new_max );
        u = (double *) VSIRealloc( u, sizeof(double) * new_max );
        unused = (int *) VSIRealloc( unused, sizeof(int) * new_max );
        index = (int *) VSIRealloc( index, sizeof(int) * new_max );
        for( i = 0; i < VIZGEOREF_MAX_VARS; i++ )
        {
            rhs[i] = (double *) 
                VSIRealloc( rhs[i], sizeof(double) * new_max );
            coef[i] = (double *) 
                VSIRealloc( coef[i], sizeof(double) * new_max );
        }
    }

    _max_nof_points = new_max - 3;
}

int VizGeorefSpline2D::add_point( const double Px, const double Py, const double *Pvars )
{
    type = VIZ_GEOREF_SPLINE_POINT_WAS_ADDED;
    int i;

    if( _nof_points == _max_nof_points )
        grow_points();

    i = _nof_points;
    //A new point is added
    x[i] = Px;
    y[i] = Py;
    for ( int j = 0; j < _nof_vars; j++ )
        rhs[j][i+3] = Pvars[j];
    _nof_points++;
    return 1;
}

bool VizGeorefSpline2D::change_point(int index, double Px, double Py, double* Pvars)
{
    if ( index < _nof_points )
    {
        int i = index;
        x[i] = Px;
        y[i] = Py;
        for ( int j = 0; j < _nof_vars; j++ )
            rhs[j][i+3] = Pvars[j];
    }

    return( true );
}

bool VizGeorefSpline2D::get_xy(int index, double& outX, double& outY)
{
    bool ok;

    if ( index < _nof_points )
    {
        ok = true;
        outX = x[index];
        outY = y[index];
    }
    else
    {
        ok = false;
        outX = outY = 0.0f;
    }

    return(ok);
}

int VizGeorefSpline2D::delete_point(const double Px, const double Py )
{
    for ( int i = 0; i < _nof_points; i++ )
    {
        if ( ( fabs(Px - x[i]) <= _tx ) && ( fabs(Py - y[i]) <= _ty ) )
        {
            for ( int j = i; j < _nof_points - 1; j++ )
            {
                x[j] = x[j+1];
                y[j] = y[j+1];
                for ( int k = 0; k < _nof_vars; k++ )
                    rhs[k][j+3] = rhs[k][j+3+1];
            }
            _nof_points--;
            type = VIZ_GEOREF_SPLINE_POINT_WAS_DELETED;
            return(1);
        }
    }
    return(0);
}

int VizGeorefSpline2D::solve(void)
{
    int r, c, v;
    int p;
	
    //	No points at all
    if ( _nof_points < 1 )
    {
        type = VIZ_GEOREF_SPLINE_ZERO_POINTS;
        return(0);
    }
	
    // Only one point
    if ( _nof_points == 1 )
    {
        type = VIZ_GEOREF_SPLINE_ONE_POINT;
        return(1);
    }
    // Just 2 points - it is necessarily 1D case
    if ( _nof_points == 2 )
    {
        _dx = x[1] - x[0];
        _dy = y[1] - y[0];	 
        double fact = 1.0 / ( _dx * _dx + _dy * _dy );
        _dx *= fact;
        _dy *= fact;
		
        type = VIZ_GEOREF_SPLINE_TWO_POINTS;
        return(2);
    }
	
    // More than 2 points - first we have to check if it is 1D or 2D case
		
    double xmax = x[0], xmin = x[0], ymax = y[0], ymin = y[0];
    double delx, dely;
    double xx, yy;
    double sumx = 0.0f, sumy= 0.0f, sumx2 = 0.0f, sumy2 = 0.0f, sumxy = 0.0f;
    double SSxx, SSyy, SSxy;
	
    for ( p = 0; p < _nof_points; p++ )
    {
        xx = x[p];
        yy = y[p];
		
        xmax = MAX( xmax, xx );
        xmin = MIN( xmin, xx );
        ymax = MAX( ymax, yy );
        ymin = MIN( ymin, yy );
		
        sumx  += xx;
        sumx2 += xx * xx;
        sumy  += yy;
        sumy2 += yy * yy;
        sumxy += xx * yy;
    }
    delx = xmax - xmin;
    dely = ymax - ymin;
	
    SSxx = sumx2 - sumx * sumx / _nof_points;
    SSyy = sumy2 - sumy * sumy / _nof_points;
    SSxy = sumxy - sumx * sumy / _nof_points;
	
    if ( delx < 0.001 * dely || dely < 0.001 * delx || 
         fabs ( SSxy * SSxy / ( SSxx * SSyy ) ) > 0.99 )
    {
        int p1;
		
        type = VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL;
		
        _dx = _nof_points * sumx2 - sumx * sumx;
        _dy = _nof_points * sumy2 - sumy * sumy;
        double fact = 1.0 / sqrt( _dx * _dx + _dy * _dy );
        _dx *= fact;
        _dy *= fact;
		
        for ( p = 0; p < _nof_points; p++ )
        {
            double dxp = x[p] - x[0];
            double dyp = y[p] - y[0];
            u[p] = _dx * dxp + _dy * dyp;
            unused[p] = 1;
        }
		
        for ( p = 0; p < _nof_points; p++ )
        {
            int min_index = -1;
            double min_u = 0;
            for ( p1 = 0; p1 < _nof_points; p1++ )
            {
                if ( unused[p1] )
                {
                    if ( min_index < 0 || u[p1] < min_u )
                    {
                        min_index = p1;
                        min_u = u[p1];
                    }
                }
            }
            index[p] = min_index;
            unused[min_index] = 0;
        }
		
        return(3);
    }
	
    type = VIZ_GEOREF_SPLINE_FULL;
    // Make the necessary memory allocations
    if ( _AA )
        CPLFree(_AA);
    if ( _Ainv )
        CPLFree(_Ainv);
	
    _nof_eqs = _nof_points + 3;
    
    if( _nof_eqs > INT_MAX / _nof_eqs )
    {
        fprintf(stderr, "Too many coefficients. Computation aborted.\n");
        return 0;
    }
	
    _AA = ( double * )VSICalloc( _nof_eqs * _nof_eqs, sizeof( double ) );
    _Ainv = ( double * )VSICalloc( _nof_eqs * _nof_eqs, sizeof( double ) );
    
    if( _AA == NULL || _Ainv == NULL )
    {
        fprintf(stderr, "Out-of-memory while allocating temporary arrays. Computation aborted.\n");
        return 0;
    }
	
    // Calc the values of the matrix A
    for ( r = 0; r < 3; r++ )
        for ( c = 0; c < 3; c++ )
            A(r,c) = 0.0;
		
    for ( c = 0; c < _nof_points; c++ )
    {
        A(0,c+3) = 1.0;
        A(1,c+3) = x[c];
        A(2,c+3) = y[c];
			
        A(c+3,0) = 1.0;
        A(c+3,1) = x[c];
        A(c+3,2) = y[c];
    }
		
    for ( r = 0; r < _nof_points; r++ )
        for ( c = r; c < _nof_points; c++ )
        {
            A(r+3,c+3) = base_func( x[r], y[r], x[c], y[c] );
            if ( r != c )
                A(c+3,r+3 ) = A(r+3,c+3);
        }
			
#if VIZ_GEOREF_SPLINE_DEBUG
			
    for ( r = 0; r < _nof_eqs; r++ )
    {
        for ( c = 0; c < _nof_eqs; c++ )
            fprintf(stderr, "%f", A(r,c));
        fprintf(stderr, "\n");
    }
			
#endif
			
    // Invert the matrix
    int status = matrixInvert( _nof_eqs, _AA, _Ainv );
			
    if ( !status )
    {
        fprintf(stderr, " There is a problem to invert the interpolation matrix\n");
        return 0;
    }
			
    // calc the coefs
    for ( v = 0; v < _nof_vars; v++ )
        for ( r = 0; r < _nof_eqs; r++ )
        {
            coef[v][r] = 0.0;
            for ( c = 0; c < _nof_eqs; c++ )
                coef[v][r] += Ainv(r,c) * rhs[v][c];
        }
				
    return(4);
}

int VizGeorefSpline2D::get_point( const double Px, const double Py, double *vars )
{
	int v, r;
	double tmp, Pu;
	double fact;
	int leftP=0, rightP=0, found = 0;
	
	switch ( type )
	{
	case VIZ_GEOREF_SPLINE_ZERO_POINTS :
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = 0.0;
		break;
	case VIZ_GEOREF_SPLINE_ONE_POINT :
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = rhs[v][3];
		break;
	case VIZ_GEOREF_SPLINE_TWO_POINTS :
		fact = _dx * ( Px - x[0] ) + _dy * ( Py - y[0] );
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = ( 1 - fact ) * rhs[v][3] + fact * rhs[v][4];
		break;
	case VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL :
		Pu = _dx * ( Px - x[0] ) + _dy * ( Py - y[0] );
		if ( Pu <= u[index[0]] )
		{
			leftP = index[0];
			rightP = index[1];
		}
		else if ( Pu >= u[index[_nof_points-1]] )
		{
			leftP = index[_nof_points-2];
			rightP = index[_nof_points-1];
		}
		else
		{
			for ( r = 1; !found && r < _nof_points; r++ )
			{
				leftP = index[r-1];
				rightP = index[r];					
				if ( Pu >= u[leftP] && Pu <= u[rightP] )
					found = 1;
			}
		}
		
		fact = ( Pu - u[leftP] ) / ( u[rightP] - u[leftP] );
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = ( 1.0 - fact ) * rhs[v][leftP+3] +
			fact * rhs[v][rightP+3];
		break;
	case VIZ_GEOREF_SPLINE_FULL :
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = coef[v][0] + coef[v][1] * Px + coef[v][2] * Py;
		
		for ( r = 0; r < _nof_points; r++ )
		{
			tmp = base_func( Px, Py, x[r], y[r] );
			for ( v= 0; v < _nof_vars; v++ )
				vars[v] += coef[v][r+3] * tmp;
		}
		break;
	case VIZ_GEOREF_SPLINE_POINT_WAS_ADDED :
		fprintf(stderr, " A point was added after the last solve\n");
		fprintf(stderr, " NO interpolation - return values are zero\n");
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = 0.0;
		return(0);
		break;
	case VIZ_GEOREF_SPLINE_POINT_WAS_DELETED :
		fprintf(stderr, " A point was deleted after the last solve\n");
		fprintf(stderr, " NO interpolation - return values are zero\n");
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = 0.0;
		return(0);
		break;
	default :
		return(0);
		break;
	}
	return(1);
}

double VizGeorefSpline2D::base_func( const double x1, const double y1,
						  const double x2, const double y2 )
{
	if ( ( x1 == x2 ) && (y1 == y2 ) )
		return 0.0;
	
	double dist  = ( x2 - x1 ) * ( x2 - x1 ) + ( y2 - y1 ) * ( y2 - y1 );
	
	return dist * log( dist );	
}

#ifdef HAVE_ARMADILLO

static int matrixInvert( int N, double input[], double output[] )
{
    try
    {
        arma::mat matInput(input,N,N,false);
        const arma::mat& matInv = arma::inv(matInput);
        int row, col;
        for(row = 0; row < N; row++)
            for(col = 0; col < N; col++)
                output[row * N + col] = matInv.at(row, col);
        return true;
        //arma::mat matInv(output,N,N,false);
        //return arma::inv(matInv, matInput);
    }
    catch(...)
    {
        fprintf(stderr, "matrixInvert(): error occured.\n");
        return false;
    }
}

#else

static int matrixInvert( int N, double input[], double output[] )
{
    // Receives an array of dimension NxN as input.  This is passed as a one-
    // dimensional array of N-squared size.  It produces the inverse of the
    // input matrix, returned as output, also of size N-squared.  The Gauss-
    // Jordan Elimination method is used.  (Adapted from a BASIC routine in
    // "Basic Scientific Subroutines Vol. 1", courtesy of Scott Edwards.)
	
    // Array elements 0...N-1 are for the first row, N...2N-1 are for the
    // second row, etc.
	
    // We need to have a temporary array of size N x 2N.  We'll refer to the
    // "left" and "right" halves of this array.
	
    int row, col;
	
#if 0
    fprintf(stderr, "Matrix Inversion input matrix (N=%d)\n", N);
    for ( row=0; row<N; row++ )
    {
        for ( col=0; col<N; col++ )
        {
            fprintf(stderr, "%5.2f ", input[row*N + col ]  );
        }
        fprintf(stderr, "\n");
    }
#endif
	
    int tempSize = 2 * N * N;
    double* temp = (double*) new double[ tempSize ];
    double ftemp;
	
    if (temp == 0) {
		
        fprintf(stderr, "matrixInvert(): ERROR - memory allocation failed.\n");
        return false;
    }
	
    // First create a double-width matrix with the input array on the left
    // and the identity matrix on the right.
	
    for ( row=0; row<N; row++ )
    {
        for ( col=0; col<N; col++ )
        {
            // Our index into the temp array is X2 because it's twice as wide
            // as the input matrix.
			
            temp[ 2*row*N + col ] = input[ row*N+col ];	// left = input matrix
            temp[ 2*row*N + col + N ] = 0.0f;			// right = 0
        }
        temp[ 2*row*N + row + N ] = 1.0f;		// 1 on the diagonal of RHS
    }
	
    // Now perform row-oriented operations to convert the left hand side
    // of temp to the identity matrix.  The inverse of input will then be
    // on the right.
	
    int max;
    int k=0;
    for (k = 0; k < N; k++)
    {
        if (k+1 < N)	// if not on the last row
        {              
            max = k;
            for (row = k+1; row < N; row++) // find the maximum element
            {  
                if (fabs( temp[row*2*N + k] ) > fabs( temp[max*2*N + k] ))
                {
                    max = row;
                }
            }
			
            if (max != k)	// swap all the elements in the two rows
            {        
                for (col=k; col<2*N; col++)
                {
                    ftemp = temp[k*2*N + col];
                    temp[k*2*N + col] = temp[max*2*N + col];
                    temp[max*2*N + col] = ftemp;
                }
            }
        }
		
        ftemp = temp[ k*2*N + k ];
        if ( ftemp == 0.0f ) // matrix cannot be inverted
        {
            delete[] temp;
            return false;
        }
		
        for ( col=k; col<2*N; col++ )
        {
            temp[ k*2*N + col ] /= ftemp;
        }
		
        int i2 = k*2*N ;
        for ( row=0; row<N; row++ )
        {
            if ( row != k )
            {
                int i1 = row*2*N;
                ftemp = temp[ i1 + k ];
                for ( col=k; col<2*N; col++ ) 
                {
                    temp[ i1 + col ] -= ftemp * temp[ i2 + col ];
                }
            }
        }
    }
	
    // Retrieve inverse from the right side of temp
	
    for (row = 0; row < N; row++)
    {
        for (col = 0; col < N; col++)
        {
            output[row*N + col] = temp[row*2*N + col + N ];
        }
    }
	
#if 0
    fprintf(stderr, "Matrix Inversion result matrix:\n");
    for ( row=0; row<N; row++ )
    {
        for ( col=0; col<N; col++ )
        {
            fprintf(stderr, "%5.2f ", output[row*N + col ]  );
        }
        fprintf(stderr, "\n");
    }
#endif
	
    delete [] temp;       // free memory
    return true;
}
#endif