File: gdal_utilities.dox

package info (click to toggle)
gdal 1.10.1+dfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,320 kB
  • ctags: 74,726
  • sloc: cpp: 677,199; ansic: 162,820; python: 13,816; cs: 11,163; sh: 10,446; java: 5,279; perl: 4,429; php: 2,971; xml: 1,500; yacc: 934; makefile: 494; sql: 112
file content (2413 lines) | stat: -rw-r--r-- 102,252 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
#ifndef DOXYGEN_SKIP
/* $Id: gdal_utilities.dox 25825 2013-04-01 08:45:42Z dron $ */
#endif /* DOXYGEN_SKIP */

/*! 
\page gdal_utilities GDAL Utilities
\brief A collection of GDAL related programs.

The following utility programs are distributed with GDAL. 

<ul>
<li> \ref gdalinfo - report information about a file.
<li> \ref gdal_translate - Copy a raster file, with control of output format.
<li> \ref gdaladdo - Add overviews to a file.
<li> \ref gdalwarp - Warp an image into a new coordinate system.
<li> \ref gdaltindex - Build a MapServer raster tileindex.
<li> \ref gdalbuildvrt - Build a VRT from a list of datasets.
<li> \ref gdal_contour - Contours from DEM.
<li> \ref gdaldem - Tools to analyze and visualize DEMs.
<li> \ref rgb2pct - Convert a 24bit RGB image to 8bit paletted.
<li> \ref pct2rgb - Convert an 8bit paletted image to 24bit RGB.
<li> \ref gdal_merge - Build a quick mosaic from a set of images.
<li> \ref gdal2tiles - Create a TMS tile structure, KML and simple web viewer.
<li> \ref gdal_rasterize - Rasterize vectors into raster file.
<li> \ref gdaltransform - Transform coordinates.
<li> \ref nearblack - Convert nearly black/white borders to exact value.
<li> \ref gdal_retile - Retiles a set of tiles and/or build tiled pyramid levels.
<li> \ref gdal_grid - Create raster from the scattered data.
<li> \ref gdal_proximity - Compute a raster proximity map.
<li> \ref gdal_polygonize - Generate polygons from raster.
<li> \ref gdal_sieve - Raster Sieve filter.
<li> \ref gdal_fillnodata - Interpolate in nodata regions.
<li> \ref gdallocationinfo - Query raster at a location.
<li> \ref gdalsrsinfo - Report a given SRS in different formats.  (GDAL >= 1.9.0)
<li> \ref gdalmove - Transform the coordinate system of a file (GDAL >= 1.10)
<li> \ref gdal_edit - Edit in place various information of an existing GDAL dataset (projection, geotransform, nodata, metadata)
<li> \ref gdal-config - Get options required to build software using GDAL.
<li> \ref gdalmanage - Identify, copy, rename and delete raster.
</ul>

\section gdal_utilities_creating Creating New Files

Access an existing file to read it is generally quite simple.  Just
indicate the name of the file or dataset on the commandline.  However, 
creating a file is more complicated.  It may be necessary to indicate the
the format to create, various creation options affecting how it will
be created and perhaps a coordinate system to be assigned.  Many of 
these options are handled similarly by different GDAL utilities, and are
introduced here. <p>

<dl>
<dt> <b>-of</b> <i>format</i></dt><dd> 
Select the format to create the new file as.  The formats are assigned short 
names such as GTiff (for GeoTIFF) or HFA (for Erdas Imagine).  The list of 
all format codes can be listed with the <b>--formats</b> switch.  Only
formats list as "(rw)" (read-write) can be written.<p>
Many utilities default
to creating GeoTIFF files if a format is not specified.  File extensions
are not used to guess output format, nor are extensions generally added
by GDAL if not indicated in the filename by the user. 
</dd>

<dt> <b>-co</b> <i>NAME=VALUE</i></dt><dd> 
Many formats have one or more optional creation options that can be used
to control particulars about the file created.  For instance, the GeoTIFF
driver supports creation options to control compression, and whether the file
should be tiled.<p>
The creation options available vary by format driver, and some simple 
formats have no creation options at all.  A list of options supported
for a format can be listed with the "--format <format>" commandline
option but the web page for the format is the definitive source of 
information on driver creation options.<p>
</dd>

<dt> <b>-a_srs</b> <i>SRS</i></dt><dd> 
Several utilities, (gdal_translate and gdalwarp) include the ability
to specify coordinate systems with commandline options like
<b>-a_srs</b> (assign SRS to output), <b>-s_srs</b> (source SRS) and
<b>-t_srs</b> (target SRS).<p>
These utilities allow the coordinate system (SRS = spatial reference system)
to be assigned in a variety of formats.<p>

<ul>
<li> <b>NAD27</b>/<b>NAD83</b>/<b>WGS84</b>/<b>WGS72</b>: 
These common geographic (lat/long) coordinate
systems can be used directly by these names. 

<li> <b>EPSG:</b><i>n</i>: Coordinate systems (projected or geographic) can
be selected based on their EPSG codes, for instance EPSG:27700 is the British
National Grid.  A list of EPSG coordinate systems can be found in the GDAL 
data files gcs.csv and pcs.csv. 

<li> <i>PROJ.4 Definitions</i>: A PROJ.4 definition string can be used
as a coordinate system.  For instance "+proj=utm +zone=11 +datum=WGS84".  
Take care to keep the proj.4 string together as a single argument to the
command (usually by double quoting). <p>

<li> <i>OpenGIS Well Known Text</i>: The Open GIS Consortium has defined
a textual format for describing coordinate systems as part of the Simple
Features specifications.  This format is the internal working format
for coordinate systems used in GDAL.  The name of a file containing a 
WKT coordinate system definition may be used a coordinate system argument,
or the entire coordinate system itself may be used as a commandline
option (though escaping all the quotes in WKT is quite challenging). <p>

<li> <i>ESRI Well Known Text</i>: ESRI uses a slight variation on OGC WKT
format in their ArcGIS product (ArcGIS .prj files), and these may be used
in a similar manner to WKT files, but the filename should be prefixed with
<b>ESRI::</b>.  For example <b>"ESRI::NAD 1927 StatePlane Wyoming West FIPS 4904.prj"</b>. <p>

<li> <i>Spatial References from URLs</i>: For example
http://spatialreference.org/ref/user/north-pacific-albers-conic-equal-area/.<p>

<li> <i>filename</i>: The name of a file containing WKT, PROJ.4 strings, or 
XML/GML coordinate system definitions can be provided. <p>

</ul>
</dd>
</dl>

\section gdal_utilities_switches General Command Line Switches
All GDAL command line utility programs support the following 
"general" options.<p>

<dl>
<dt> <b>--version</b></dt><dd> Report the version of GDAL and exit.</dd>

<dt> <b>--formats</b></dt><dd> List all raster formats supported by this
GDAL build (read-only and read-write) and exit. The format support is indicated
 as follows: 'ro' is read-only driver; 
'rw' is read or write (ie. supports CreateCopy);
'rw+' is read, write and update (ie. supports Create).
A 'v' is appended for formats supporting virtual IO (/vsimem, /vsigzip, /vsizip, etc).
A 's' is appended for formats supporting subdatasets.
Note: The valid formats for the output of gdalwarp are formats that support the
Create() method (marked as rw+), not just the CreateCopy() method.
</dd>

<dt> <b>--format</b> <i>format</i></dt><dd>
List detailed information about a single format driver.  The <i>format</i> 
should be the short name reported in the <b>--formats</b> list, such as 
GTiff.</dd>

<dt> <b>--optfile</b> <i>file</i></dt><dd>
Read the named file and substitute the contents into the commandline
options list.  Lines beginning with # will be ignored.  Multi-word arguments
may be kept together with double quotes. 
</dd>

<dt> <b>--config</b> <i>key value</i></dt><dd>
Sets the named <a href="http://trac.osgeo.org/gdal/wiki/ConfigOptions">
configuration keyword</a> to the given value, as opposed to 
setting them as environment variables.  Some common configuration keywords
are GDAL_CACHEMAX (memory used internally for caching in megabytes)
and GDAL_DATA (path of the GDAL "data" directory).  Individual drivers may
be influenced by other configuration options.  
</dd>

<dt> <b>--debug</b> <i>value</i></dt><dd>
Control what debugging messages are emitted.  A value of <i>ON</i> will
enable all debug messages.  A value of <i>OFF</i> will disable all debug
messages.  Another value will select only debug messages containing that
string in the debug prefix code.  
</dd>

<dt> <b>--help-general</b></dt><dd>
Gives a brief usage message for the generic GDAL commandline options 
and exit.
</dd>

</dl>

\htmlonly
<p>
$Id: gdal_utilities.dox 25825 2013-04-01 08:45:42Z dron $
</p>
\endhtmlonly
*/

*******************************************************************************
/*! \page gdalinfo gdalinfo

lists information about a raster dataset

\section gdalinfo_synopsis SYNOPSIS

\verbatim
gdalinfo [--help-general] [-mm] [-stats] [-hist] [-nogcp] [-nomd]
         [-norat] [-noct] [-nofl] [-checksum] [-proj4] [-mdd domain]*
	 [-sd subdataset] datasetname
\endverbatim

\section gdalinfo_description DESCRIPTION

The gdalinfo program lists various information about a GDAL supported
raster dataset. 
<dl>
<dt> <b>-mm</b></dt><dd> Force computation of the actual min/max values for each
band in the dataset.</dd>
<dt> <b>-stats</b></dt><dd> Read and display image statistics. Force computation if no statistics are stored in an image.</dd>
<dt> <b>-approx_stats</b></dt><dd> Read and display image statistics. Force
computation if no statistics are stored in an image. However, they may be
computed based on overviews or a subset of all tiles. Useful if you are in a
hurry and don't want precise stats.</dd>
<dt> <b>-hist</b></dt><dd> Report histogram information for all bands.</dd>
<dt> <b>-nogcp</b></dt><dd> Suppress ground control points list printing. It may be
useful for datasets with huge amount of GCPs, such as L1B AVHRR or HDF4 MODIS
which contain thousands of them.</dd>
<dt> <b>-nomd</b></dt><dd> Suppress metadata printing. Some datasets may contain a lot
of metadata strings.</dd>
<dt> <b>-nrat</b></dt><dd> Suppress printing of raster attribute table.</dd>
<dt> <b>-noct</b></dt><dd> Suppress printing of color table.</dd>
<dt> <b>-checksum</b></dt><dd> Force computation of the checksum for each band in the dataset.</dd>
<dt> <b>-mdd domain</b></dt><dd> Report metadata for the specified domain</dd>
<dt> <b>-nofl</b></dt><dd> (GDAL >= 1.9.0) Only display the first file of the
file list.</dd>
<dt> <b>-sd</b> <i>subdataset</i></dt><dd> (GDAL >= 1.9.0) If the input
dataset contains several subdatasets read and display a subdataset with
specified number (starting from 1). This is an alternative of giving the full
subdataset name.</dd>
<dt> <b>-proj4</b></dt><dd> (GDAL >= 1.9.0) Report a PROJ.4 string corresponding to the file's coordinate system.</dd>
</dl>

The gdalinfo will report all of the following (if known):

<ul>
<li> The format driver used to access the file. 
<li> Raster size (in pixels and lines).
<li> The coordinate system for the file (in OGC WKT).
<li> The geotransform associated with the file (rotational coefficients are
currently not reported).  
<li> Corner coordinates in georeferenced, and if possible lat/long based on
the full geotransform (but not GCPs). 
<li> Ground control points.
<li> File wide (including subdatasets) metadata. 
<li> Band data types.
<li> Band color interpretations.
<li> Band block size.
<li> Band descriptions. 
<li> Band min/max values (internally known and possibly computed).
<li> Band checksum (if computation asked).
<li> Band NODATA value.
<li> Band overview resolutions available. 
<li> Band unit type (i.e.. "meters" or "feet" for elevation bands). 
<li> Band pseudo-color tables. 
</ul>

\section gdalinfo_example EXAMPLE

\verbatim
gdalinfo ~/openev/utm.tif 
Driver: GTiff/GeoTIFF
Size is 512, 512
Coordinate System is:
PROJCS["NAD27 / UTM zone 11N",
    GEOGCS["NAD27",
        DATUM["North_American_Datum_1927",
            SPHEROID["Clarke 1866",6378206.4,294.978698213901]],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-117],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1]]
Origin = (440720.000000,3751320.000000)
Pixel Size = (60.000000,-60.000000)
Corner Coordinates:
Upper Left  (  440720.000, 3751320.000) (117d38'28.21"W, 33d54'8.47"N)
Lower Left  (  440720.000, 3720600.000) (117d38'20.79"W, 33d37'31.04"N)
Upper Right (  471440.000, 3751320.000) (117d18'32.07"W, 33d54'13.08"N)
Lower Right (  471440.000, 3720600.000) (117d18'28.50"W, 33d37'35.61"N)
Center      (  456080.000, 3735960.000) (117d28'27.39"W, 33d45'52.46"N)
Band 1 Block=512x16 Type=Byte, ColorInterp=Gray
\endverbatim

\if man
\section gdalinfo_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Silke Reimer <silke@intevation.de>
\endif
*/

*******************************************************************************
/*! \page gdal_translate gdal_translate

converts raster data between different formats

\section gdal_translate_synopsis SYNOPSIS

\verbatim
gdal_translate [--help-general]
       [-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
             CInt16/CInt32/CFloat32/CFloat64}] [-strict]
       [-of format] [-b band] [-mask band] [-expand {gray|rgb|rgba}]
       [-outsize xsize[%] ysize[%]]
       [-unscale] [-scale [src_min src_max [dst_min dst_max]]]
       [-srcwin xoff yoff xsize ysize] [-projwin ulx uly lrx lry] [-epo] [-eco]
       [-a_srs srs_def] [-a_ullr ulx uly lrx lry] [-a_nodata value]
       [-gcp pixel line easting northing [elevation]]*
       [-mo "META-TAG=VALUE"]* [-q] [-sds]
       [-co "NAME=VALUE"]* [-stats]
       src_dataset dst_dataset
\endverbatim

\section gdal_translate_description DESCRIPTION

The gdal_translate utility can be used to convert raster data between 
different formats, potentially performing some operations like subsettings, 
resampling, and rescaling pixels in the process.

<dl>
<dt> <b>-ot</b>: <i>type</i></dt><dd> For the output bands to be of the
indicated data type.</dd>
<dt> <b>-strict</b>:</dt><dd> Don't be forgiving of mismatches and lost data
when translating to the output format.</dd>
<dt> <b>-of</b> <i>format</i>:</dt><dd> Select the output format.  The default
is GeoTIFF (GTiff).  Use the short format name.</dd>
<dt> <b>-b</b> <i>band</i>:</dt><dd> Select an input band <i>band</i> for
output. Bands are numbered from 1. Multiple <b>-b</b> switches may be used
to select a set of input bands to write to the output file, or to reorder
bands. Starting with GDAL 1.8.0, <i>band</i> can also be set to "mask,1"
(or just "mask") to mean the mask band of the first band of the input dataset.</dd>
<dt> <b>-mask</b> <i>band</i>:</dt><dd> (GDAL >= 1.8.0) Select an input band
<i>band</i> to create output dataset mask band. Bands are numbered from 1. 
<i>band</i> can be set to "none" to avoid copying the global mask of the input dataset if
it exists. Otherwise it is copied by default ("auto"), unless the mask is an alpha channel,
or if it is explicitly used to be a regular band of the output dataset ("-b mask").
<i>band</i> can also be set to "mask,1" (or just "mask") to mean the mask band of
the 1st band of the input dataset.</dd>
<dt> <b>-expand</b> <i>gray|rgb|rgba</i>:</dt><dd> (From GDAL 1.6.0) To expose a dataset with 1 band
with a color table as a dataset with 3 (RGB) or 4 (RGBA) bands. Useful for
output drivers such as JPEG, JPEG2000, MrSID, ECW that don't support color
indexed datasets. The 'gray' value (from GDAL 1.7.0) enables to expand a
dataset with a color table that only contains gray levels to a gray indexed
dataset.</dd>
<dt> <b>-outsize</b> <i>xsize[%] ysize[%]</i>:</dt><dd> Set the size of the output
file.  Outsize is in pixels and lines unless '\%' is attached in which case it
is as a fraction of the input image size.</dd>
<dt> <b>-scale</b> <i>[src_min src_max [dst_min dst_max]]</i>:</dt><dd> Rescale the
input pixels values from the range <i>src_min</i> to <i>src_max</i> to
the range <i>dst_min</i> to <i>dst_max</i>.  If omitted the output range is
0 to 255.  If omitted the input range is automatically computed from the
source data.</dd>
<dt> <b>-unscale</b>:</dt><dd> Apply the scale/offset metadata for the bands
to convert scaled values to unscaled values.  It is also often necessary to 
reset the output datatype with the <b>-ot</b> switch.</dd>
<dt> <b>-srcwin</b> <i>xoff yoff xsize ysize</i>:</dt><dd> Selects a subwindow
from the source image for copying based on pixel/line location.  </dd>
<dt> <b>-projwin</b> <i>ulx uly lrx lry</i>:</dt><dd> Selects a subwindow from
the source image for copying (like <b>-srcwin</b>) but with the corners given
in georeferenced coordinates. </dd>
<dt> <b>-epo</b>: (Error when Partially Outside)</dt><dd>(GDAL >= 1.10) If this
option is set, <b>-srcwin</b> or <b>-projwin</b> values that falls partially outside the
source raster extent will be considered as an error. The default behaviour starting
with GDAL 1.10 is to accept such requests, when they were considered as an error before.</dd>
<dt> <b>-eco</b>: (Error when Completely Outside)</dt><dd>(GDAL >= 1.10) Same
as <b>-epo</b>, except that the criterion for erroring out is when the request falls completely
outside the source raster extent.</dd>
<dt> <b>-a_srs</b> <i>srs_def</i>:</dt><dd> Override the projection for the
output file.  The <i>srs_def</i> may be any of the usual GDAL/OGR forms,
complete WKT, PROJ.4, EPSG:n or a file containing the WKT. </dd>
<dt> <b>-a_ullr</b> <i>ulx uly lrx lry</i>:</dt><dd>
Assign/override the georeferenced bounds of the output file.  This assigns 
georeferenced bounds to the output file, ignoring what would have been derived 
from the source file.</dd>
<dt> <b>-a_nodata</b> <i>value</i>:</dt><dd>
Assign a specified nodata value to output bands. Starting with GDAL 1.8.0, can
be set to <i>none</i> to avoid setting a nodata value to the output file if
one exists for the source file</dd>
<dt> <b>-mo</b> <i>"META-TAG=VALUE"</i>:</dt><dd> Passes a metadata key and
value to set on the output dataset if possible.</dd>
<dt> <b>-co</b> <i>"NAME=VALUE"</i>:</dt><dd> Passes a creation option to the
output format driver.  Multiple <b>-co</b> options may be listed.  See format 
specific documentation for legal creation options for each format.</dd>
<dt> <b>-gcp</b> <i>pixel line easting northing elevation</i>:</dt><dd>
Add the indicated ground control point to the output dataset.  This option 
may be provided multiple times to provide a set of GCPs. 
</dd>
<dt> <b>-q</b>:</dt><dd> Suppress progress monitor and other non-error
output.</dd>
<dt> <b>-sds</b>:</dt><dd> Copy all subdatasets of this file to individual 
output files.  Use with formats like HDF or OGDI that have subdatasets.</dd>
<dt> <b>-stats</b>:</dt><dd> (GDAL >= 1.8.0) Force (re)computation of statistics.</dd>
<dt> <i>src_dataset</i>:</dt><dd>The source dataset name. It can be either
file name, URL of data source or subdataset name for multi-dataset files.</dd>
<dt> <i>dst_dataset</i>:</dt><dd> The destination file name.</dd>
</dl>

\section gdal_translate_example EXAMPLE

\verbatim
gdal_translate -of GTiff -co "TILED=YES" utm.tif utm_tiled.tif
\endverbatim

Starting with GDAL 1.8.0, to create a JPEG-compressed TIFF with internal mask from a RGBA dataset :
\verbatim
gdal_translate rgba.tif withmask.tif -b 1 -b 2 -b 3 -mask 4 -co COMPRESS=JPEG -co PHOTOMETRIC=YCBCR --config GDAL_TIFF_INTERNAL_MASK YES
\endverbatim

Starting with GDAL 1.8.0, to create a RGBA dataset from a RGB dataset with a mask :
\verbatim
gdal_translate withmask.tif rgba.tif -b 1 -b 2 -b 3 -b mask
\endverbatim

\if man
\section gdal_translate_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Silke Reimer <silke@intevation.de>
\endif
*/

*******************************************************************************
/*! \page gdaladdo gdaladdo

builds or rebuilds overview images

\section gdaladdo_synopsis SYNOPSIS

\verbatim
gdaladdo [-r {nearest,average,gauss,cubic,average_mp,average_magphase,mode}]
         [-b band]
         [-ro] [-clean] [--help-general] filename levels
\endverbatim

\section gdaladdo_description DESCRIPTION

The gdaladdo utility can be used to build or rebuild overview images for
most supported file formats with one of several downsampling algorithms. 

<dl>
<dt> <b>-r</b>
<i>{nearest (default),average,gauss,cubic,average_mp,average_magphase,mode}</i>:</dt><dd>
Select a resampling algorithm.</dd>
<dt> <b>-b</b> <i>band</i>:</dt><dd> (available from GDAL 1.10) Select an input band <i>band</i> for
overview generation. Band numbering starts from 1. Multiple <b>-b</b> switches may be used
to select a set of input bands to generate overviews.</dd>
<dt> <b>-ro</b></dt>:<dd> (available from GDAL 1.6.0) open the dataset in read-only mode, in order to generate
external overview (for GeoTIFF especially). </dd>
<dt> <b>-clean</b></dt>:<dd> (available from GDAL 1.7.0) remove all overviews. </dd>
<dt> <i>filename</i>:</dt><dd> The file to build overviews for (or whose overviews must be removed). </dd>
<dt> <i>levels</i>:</dt><dd> A list of integral overview levels to build. Ignored with -clean option.</dd>
</dl>

<i>Mode</i> (available from GDAL 1.6.0) selects the value which appears most often of all the sampled points.
<i>average_mp</i> is unsuitable for use.
<i>Average_magphase</i> averages complex data in mag/phase space.  
<i>Nearest</i> and <i>average</i> are applicable to normal image data.  
<i>Nearest</i> applies a nearest neighbour (simple sampling) resampler, while
<i>average</i> computes the average of all non-NODATA contributing pixels.
<i>Cubic</i> resampling (available from GDAL 1.7.0) applies a 4x4 approximate cubic convolution kernel.
<i>Gauss</i> resampling (available from GDAL 1.6.0) applies a Gaussian kernel before computing the overview, 
which can lead to better results than simple averaging in e.g case of sharp edges
with high contrast or noisy patterns. The advised level values should be 2, 4, 8, ...
so that a 3x3 resampling Gaussian kernel is selected.

gdaladdo will honour properly NODATA_VALUES tuples (special dataset metadata) so
that only a given RGB triplet (in case of a RGB image) will be considered as the
nodata value and not each value of the triplet independently per band. 

Selecting a level value like <i>2</i> causes an overview level that is 1/2
the resolution (in each dimension) of the base layer to be computed.  If
the file has existing overview levels at a level selected, those levels will
be recomputed and rewritten in place.

For internal GeoTIFF overviews (or external overviews in GeoTIFF format), note
that -clean does not shrink the file. A later run of gdaladdo with overview levels
will cause the file to be expanded, rather than reusing the space of the previously
deleted overviews. If you just want to change the resampling method on a file that
already has overviews computed, you don't need to clean the existing overviews.

Some format drivers do not support overviews at all.  Many format drivers
store overviews in a secondary file with the extension .ovr that is actually
in TIFF format.  By default, the GeoTIFF driver stores overviews internally to the file 
operated on (if it is writeable), unless the -ro flag is specified.

Most drivers also support an alternate overview format using Erdas Imagine 
format.  To trigger this use the USE_RRD=YES configuration option.  This will 
place the overviews in an associated .aux file suitable for direct use with 
Imagine or ArcGIS as well as GDAL applications.  (eg --config USE_RRD YES)

\section gdaladdo_externalgtiffoverviews External overviews in GeoTIFF format

External overviews created in TIFF format may be compressed using the COMPRESS_OVERVIEW 
configuration option.  All compression methods, supported by the GeoTIFF 
driver, are available here. (eg --config COMPRESS_OVERVIEW DEFLATE).
The photometric interpretation can be set with --config PHOTOMETRIC_OVERVIEW {RGB,YCBCR,...},
and the interleaving with --config INTERLEAVE_OVERVIEW {PIXEL|BAND}.

For JPEG compressed external overviews, the JPEG quality can be set with
"--config JPEG_QUALITY_OVERVIEW value" (GDAL 1.7.0 or later).

For LZW or DEFLATE compressed external overviews, the predictor value can be set
with "--config PREDICTOR_OVERVIEW 1|2|3" (GDAL 1.8.0 or later).

To produce the smallest possible JPEG-In-TIFF overviews, you should use :
\verbatim
--config COMPRESS_OVERVIEW JPEG --config PHOTOMETRIC_OVERVIEW YCBCR --config INTERLEAVE_OVERVIEW PIXEL
\endverbatim

Starting with GDAL 1.7.0, external overviews can be created in the BigTIFF format by using
the BIGTIFF_OVERVIEW configuration option : --config BIGTIFF_OVERVIEW {IF_NEEDED|IF_SAFER|YES|NO}.
The default value is IF_NEEDED. The behaviour of this option is exactly the same as the BIGTIFF creation option
documented in the GeoTIFF driver documentation.
<ul>
    <li>YES forces BigTIFF.
    <li>NO forces classic TIFF.
    <li>IF_NEEDED will only create a BigTIFF if it is clearly needed (uncompressed, and overviews larger than 4GB).
    <li>IF_SAFER will create BigTIFF if the resulting file *might* exceed 4GB.
</ul>
<br>

See the documentation of the GeoTIFF driver for further explanations on all those options.

\section gdaladdo_example EXAMPLE

\htmlonly
Example:
\endhtmlonly

Create overviews, embedded in the supplied TIFF file:

\verbatim
gdaladdo -r average abc.tif 2 4 8 16
\endverbatim

Create an external compressed GeoTIFF overview file from the ERDAS .IMG file:

\verbatim
gdaladdo -ro --config COMPRESS_OVERVIEW DEFLATE erdas.img 2 4 8 16
\endverbatim

Create an external JPEG-compressed GeoTIFF overview file from a 3-band RGB dataset
(if the dataset is a writeable GeoTIFF, you also need to add the -ro option to
force the generation of external overview):

\verbatim
gdaladdo --config COMPRESS_OVERVIEW JPEG --config PHOTOMETRIC_OVERVIEW YCBCR
         --config INTERLEAVE_OVERVIEW PIXEL rgb_dataset.ext 2 4 8 16
\endverbatim

Create an Erdas Imagine format overviews for the indicated JPEG file:

\verbatim
gdaladdo --config USE_RRD YES airphoto.jpg 3 9 27 81
\endverbatim

\if man
\section gdaladdo_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Silke Reimer <silke@intevation.de>
\endif
*/

*******************************************************************************
/*! \page gdaltindex gdaltindex

builds a shapefile as a raster tileindex

\section gdaltindex_synopsis SYNOPSIS

\verbatim
gdaltindex [-tileindex field_name] [-write_absolute_path] [-skip_different_projection] [-t_srs target_srs] index_file [gdal_file]*
\endverbatim

\section gdaltindex_description DESCRIPTION

This program builds a shapefile with a record for each input raster file, 
an attribute containing the filename, and a polygon geometry outlining the
raster.  This output is suitable for use with <a href="http://mapserver.org/">MapServer</a> as a raster 
tileindex. 

<ul>
<li> The shapefile (index_file) will be created if it doesn't already exist, 
otherwise it will append to the existing file.
<li> The default tile index field is 'location'.
<li> Raster filenames will be put in the file exactly as they are specified
on the commandline unless the option -write_absolute_path is used.
<li> If -skip_different_projection is specified, only files with same projection ref
as files already inserted in the tileindex will be inserted (unless t_srs is specified).
<li> If -t_srs is specified, geometries of input files will be transformed to the desired
target coordinate reference system. 
Note that using this option generates files that are NOT compatible with MapServer.
<li> Simple rectangular polygons are generated in the same coordinate reference system
as the rasters, or in target reference system if the -t_srs option is used.
</ul>

\section gdaltindex_example EXAMPLE

\htmlonly
Example:
\endhtmlonly

\verbatim
gdaltindex doq_index.shp doq/*.tif
\endverbatim

\if man
\section gdaltindex_author AUTHOR
Frank Warmerdam <warmerdam@pobox.com>
\endif
*/


*******************************************************************************
/*! \page gdalbuildvrt gdalbuildvrt

Builds a VRT from a list of datasets. (compiled by default since GDAL 1.6.1)

\section gdalbuildvrt_synopsis SYNOPSIS

\verbatim
gdalbuildvrt [-tileindex field_name]
             [-resolution {highest|lowest|average|user}]
             [-te xmin ymin xmax ymax] [-tr xres yres] [-tap]
             [-separate] [-b band] [-sd subdataset]
             [-allow_projection_difference] [-q]
             [-addalpha] [-hidenodata]
             [-srcnodata "value [value...]"] [-vrtnodata "value [value...]"] 
             [-a_srs srs_def]
             [-input_file_list my_liste.txt] [-overwrite] output.vrt [gdalfile]*
\endverbatim

\section gdalbuildvrt_description DESCRIPTION

This program builds a VRT (Virtual Dataset) that is a mosaic of the list of
input GDAL datasets. The list of input GDAL datasets can be specified at the end
of the command line, or put in a text file (one filename per line) for very long lists,
or it can be a MapServer tileindex (see \ref gdaltindex utility). In the later case, all
entries in the tile index will be added to the VRT.

With -separate, each files goes into a separate <i>stacked</i> band in the VRT band. Otherwise,
the files are considered as tiles of a larger mosaic and the VRT file has as many bands as one
of the input files.

If one GDAL dataset is made of several subdatasets and has 0 raster bands,
all the subdatasets will be added to the VRT rather than the dataset itself.

gdalbuildvrt does some amount of checks to assure that all files that will be put
in the resulting VRT have similar characteristics : number of bands, projection, color
interpretation... If not, files that do not match the common characteristics will be skipped.
(This is only true in the default mode, and not when using the -separate option)

If there is some amount of spatial overlapping between files, the order may depend on the order they
are inserted in the VRT file, but this behaviour should not be relied on.

This utility is somehow equivalent to the gdal_vrtmerge.py utility and is build by default
in GDAL 1.6.1.

<dl>

<dt> <b>-tileindex</b>:</dt><dd> 
Use the specified value as the tile index field, instead of the default value with is 'location'. 
</dd>

<dt> <b>-resolution</b> {highest|lowest|average|user}:</dt><dd> 
In case the resolution of all input files is not the same, the -resolution flag
enables the user to control the way the output resolution is computed. 'average' is the default.
'highest' will pick the smallest values of pixel dimensions within the set of source rasters.
'lowest' will pick the largest values of pixel dimensions within the set of source rasters.
'average' will compute an average of pixel dimensions within the set of source rasters.
'user' is new in GDAL 1.7.0 and must be used in combination with the -tr option to specify the target resolution.
</dd>

<dt> <b>-tr</b> xres yres :</dt><dd>  (starting with GDAL 1.7.0)
set target resolution. The values must be expressed in georeferenced units.
Both must be positive values. Specifying those values is of course incompatible with
highest|lowest|average values for -resolution option.
</dd>

<dt> <b>-tap</b>:</dt><dd> (GDAL >= 1.8.0) (target aligned pixels) align
the coordinates of the extent of the output file to the values of the -tr,
such that the aligned extent includes the minimum extent.</dd>

<dt> <b>-te</b> xmin ymin xmax ymax :</dt><dd>  (starting with GDAL 1.7.0)
set georeferenced extents of VRT file. The values must be expressed in georeferenced units.
If not specified, the extent of the VRT is the minimum bounding box of the set of source rasters.
</dd>

<dt> <b>-addalpha</b>:</dt><dd> (starting with GDAL 1.7.0)
Adds an alpha mask band to the VRT when the source raster have none. Mainly useful for RGB sources (or grey-level sources).
The alpha band is filled on-the-fly with the value 0 in areas without any source raster, and with value
255 in areas with source raster. The effect is that a RGBA viewer will render
the areas without source rasters as transparent and areas with source rasters as opaque.
This option is not compatible with -separate.</dd>

<dt> <b>-hidenodata</b>:</dt><dd> (starting with GDAL 1.7.0)
Even if any band contains nodata value, giving this option makes the VRT band
not report the NoData. Useful when you want to control the background color of
the dataset. By using along with the -addalpha option, you can prepare a
dataset which doesn't report nodata value but is transparent in areas with no
data.</dd>

<dt> <b>-srcnodata</b> <em>value [value...]</em>:</dt><dd> (starting with GDAL 1.7.0)
Set nodata values for input bands (different values can be supplied for each band). If 
more than one value is supplied all values should be quoted to keep them 
together as a single operating system argument. If the option is not specified, the
intrinsic nodata settings on the source datasets will be used (if they exist). The value set by this option
is written in the NODATA element of each ComplexSource element. Use a value of
<tt>None</tt> to ignore intrinsic nodata settings on the source datasets.</dd>

<dt> <b>-b</b> <i>band</i>:</dt><dd>(GDAL >= 1.10.0) 
Select an input <i>band</i> to be processed. Bands are numbered from 1.
If input bands not set all bands will be added to vrt</dd>

<dt> <b>-sd</b> <i>subdataset</i></dt><dd> (GDAL >= 1.10.0) If the input
dataset contains several subdatasets use a subdataset with the specified
number (starting from 1). This is an alternative of giving the full subdataset
name as an input.</dd>

<dt> <b>-vrtnodata</b> <em>value [value...]</em>:</dt><dd> (starting with GDAL 1.7.0)
Set nodata values at the VRT band level (different values can be supplied for each band).  If more
than one value is supplied all values should be quoted to keep them together
as a single operating system argument.  If the option is not specified,
intrinsic nodata settings on the first dataset will be used (if they exist). The value set by this option
is written in the NoDataValue element of each VRTRasterBand element. Use a value of
<tt>None</tt> to ignore intrinsic nodata settings on the source datasets.</dd>

<dt> <b>-separate</b>:</dt><dd> (starting with GDAL 1.7.0)
Place each input file into a separate <i>stacked</i> band. In that case, only the first
band of each dataset will be placed into a new band. Contrary to the default mode, it is not
required that all bands have the same datatype.
</dd>

<dt> <b>-allow_projection_difference</b>:</dt><dd> (starting with GDAL 1.7.0)
When this option is specified, the utility will accept to make a VRT even if the input datasets have
not the same projection. Note: this does not mean that they will be reprojected. Their projection will
just be ignored.
</dd>

<dt> <b>-a_srs</b> <i>srs_def</i>:</dt><dd> (starting with GDAL 1.10)
Override the projection for the output file.  The <i>srs_def</i> may be any of the usual GDAL/OGR forms,
complete WKT, PROJ.4, EPSG:n or a file containing the WKT. </dd>

<dt> <b>-input_file_list</b>:</dt><dd> 
To specify a text file with an input filename on each line
</dd>

<dt> <b>-q</b>:</dt><dd> (starting with GDAL 1.7.0)
To disable the progress bar on the console
</dd>

<dt> <b>-overwrite</b>:</dt><dd>Overwrite the VRT if it already exists.</dd>

</dl>

\section gdalbuildvrt_example EXAMPLE

\htmlonly
Example:
\endhtmlonly

Make a virtual mosaic from all TIFF files contained in a directory :
\verbatim
gdalbuildvrt doq_index.vrt doq/*.tif
\endverbatim

Make a virtual mosaic from files whose name is specified in a text file :
\verbatim
gdalbuildvrt -input_file_list my_liste.txt doq_index.vrt
\endverbatim

Make a RGB virtual mosaic from 3 single-band input files :
\verbatim
gdalbuildvrt -separate rgb.vrt red.tif green.tif blue.tif
\endverbatim

Make a virtual mosaic with blue background colour (RGB: 0 0 255) :
\verbatim
gdalbuildvrt -hidenodata -vrtnodata "0 0 255" doq_index.vrt doq/*.tif
\endverbatim

\if man
\section gdalbuildvrt_author AUTHOR
Even Rouault <even.rouault@mines-paris.org>
\endif
*/

*******************************************************************************
/*! \page gdal_contour gdal_contour

builds vector contour lines from a raster elevation model

\section gdal_contour_synopsis SYNOPSIS

\verbatim
Usage: gdal_contour [-b <band>] [-a <attribute_name>] [-3d] [-inodata]
                    [-snodata n] [-i <interval>]
                    [-f <formatname>] [[-dsco NAME=VALUE] ...] [[-lco NAME=VALUE] ...]
                    [-off <offset>] [-fl <level> <level>...]
                    [-nln <outlayername>]
                    <src_filename> <dst_filename> 
\endverbatim

\section gdal_contour_description DESCRIPTION

This program generates a vector contour file from the input raster elevation
model (DEM). 

Starting from version 1.7 the contour line-strings will be oriented
consistently. The high side will be on the right, i.e. a line string goes
clockwise around a top.

<dl>

<dt> <b>-b</b> <em>band</em>:</dt><dd> picks a particular band to get the DEM from.  Defaults to band 1.</dd>

<dt> <b>-a</b> <em>name</em>:</dt><dd>provides a name for the attribute in which to put the elevation. If not provided no elevation attribute is attached. </dd>
<dt> <b>-3d</b>:</dt> <dd>
      Force production of 3D vectors instead of 2D.  Includes elevation at
      every vertex.</dd>

<dt> <b>-inodata</b>:</dt> <dd> Ignore any nodata value implied in the dataset - treat all values as valid.</dd>

<dt> <b>-snodata</b> <em>value</em>:</dt><dd>
 Input pixel value to treat as "nodata". </dd>

<dt> <b>-f</b> <em>format</em>:</dt> <dd>
create output in a particular format, default is shapefiles.</dd>

<dt> <b>-dsco</b> <em>NAME=VALUE</em>:</dt><dd> Dataset creation option (format specific)</dd>
<dt> <b>-lco</b> <em>NAME=VALUE</em>:</dt><dd> Layer creation option (format specific)</dd>

<dt> <b>-i</b> <em>interval</em>:</dt><dd>
 elevation interval between contours.</dd>

<dt> <b>-off</b> <em>offset</em>:</dt><dd>
 Offset from zero relative to which to interpret intervals.</dd>

<dt> <b>-fl</b> <em>level</em>:</dt>
<dd> Name one or more "fixed levels" to extract.</dd>
<dt> <b>-nln</b> <em>outlayername</em>:</dt>
<dd> Provide a name for the output vector layer.  Defaults to "contour".</dd>
</dl>

\section gdal_contour_example EXAMPLE

This would create 10meter contours from the DEM data in dem.tif and produce
a shapefile in contour.shp/shx/dbf with the contour elevations in the "elev"
attribute.

\verbatim
gdal_contour -a elev dem.tif contour.shp -i 10.0
\endverbatim

\if man
\section gdal_contour_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Silke Reimer <silke@intevation.de>
\endif
*/

*******************************************************************************
/*! \page gdal_rasterize gdal_rasterize

burns vector geometries into a raster

\section gdal_rasterize_synopsis SYNOPSIS

\verbatim
Usage: gdal_rasterize [-b band]* [-i] [-at]
       [-burn value]* | [-a attribute_name] [-3d]
       [-l layername]* [-where expression] [-sql select_statement]
       [-of format] [-a_srs srs_def] [-co "NAME=VALUE"]*
       [-a_nodata value] [-init value]*
       [-te xmin ymin xmax ymax] [-tr xres yres] [-tap] [-ts width height]
       [-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
             CInt16/CInt32/CFloat32/CFloat64}] [-q]
       <src_datasource> <dst_filename>
\endverbatim

\section gdal_rasterize_description DESCRIPTION

This program burns vector geometries (points, lines and polygons) into the 
raster band(s) of a raster image.  Vectors are read from OGR supported vector 
formats. 

Note that the vector data must in the same coordinate system as the 
raster data; on the fly reprojection is not provided.

Since GDAL 1.8.0, the target GDAL file can be created by gdal_rasterize. One of -tr or -ts option
must be used in that case.

<dl>
<dt> <b>-b</b> <em>band</em>: </dt><dd> 
The band(s) to burn values into.  Multiple -b arguments may be used to burn 
into a list of bands.  The default is to burn into band 1.</dd>

<dt> <b>-i</b>: </dt><dd>
Invert rasterization.  Burn the fixed burn value, or the burn value associated 
with the first feature into all parts of the image <em>not</em> inside the
provided a polygon.</dd>

<dt> <b>-at</b>: </dt><dd>
Enables the ALL_TOUCHED rasterization option so that all pixels touched
by lines or polygons will be updated not just those one the line render path,
or whose center point is within the polygon.  Defaults to disabled for normal
rendering rules.</dd>

<dt> <b>-burn</b> <em>value</em>: </dt><dd> 
A fixed value to burn into a band for all objects.  A list of -burn options 
can be supplied, one per band being written to.</dd>

<dt> <b>-a</b> <em>attribute_name</em>: </dt><dd> 
Identifies an attribute field on the features to be used for a burn in value.
The value will be burned into all output bands.</dd>

<dt> <b>-3d</b>: </dt><dd> 
Indicates that a burn value should be extracted from the "Z" values of the 
feature. These values are adjusted by the burn value given by "-burn value" or
"-a attribute_name" if provided. As of now, only points and lines are drawn in
3D.</dd>

<dt> <b>-l</b> <em>layername</em>: </dt><dd> 
Indicates the layer(s) from the datasource that will be used for input 
features.  May be specified multiple times, but at least one layer name or a -sql option must be specified.</dd>

<dt> <b>-where</b> <em>expression</em>: </dt><dd> 
An optional SQL WHERE style query expression to be applied to select features 
to burn in from the input layer(s). </dd>

<dt> <b>-sql</b> <em>select_statement</em>: </dt><dd> 
An SQL statement to be evaluated against the datasource to produce a
virtual layer of features to be burned in.</dd>

<dt> <b>-of</b> <i>format</i>:</dt><dd> (GDAL >= 1.8.0) Select the output format.  The default
is GeoTIFF (GTiff).  Use the short format name.</dd>

<dt> <b>-a_nodata</b> <i>value</i>:</dt><dd> (GDAL >= 1.8.0)
Assign a specified nodata value to output bands.</dd>

<dt> <b>-init</b> <i>value</i>:</dt><dd> (GDAL >= 1.8.0)
Pre-initialize the output image bands with these values.  However, it is not
marked as the nodata value in the output file.  If only one value is given, the
same value is used in all the bands.</dd>

<dt> <b>-a_srs</b> <i>srs_def</i>:</dt><dd> (GDAL >= 1.8.0) Override the projection for the
output file. If not specified, the projection of the input vector file will be used if available.
If incompatible projections between input and output files, no attempt will be made to reproject features.
The <i>srs_def</i> may be any of the usual GDAL/OGR forms,
complete WKT, PROJ.4, EPSG:n or a file containing the WKT. </dd>

<dt> <b>-co</b> <i>"NAME=VALUE"</i>:</dt><dd> (GDAL >= 1.8.0) Passes a creation option to the
output format driver.  Multiple <b>-co</b> options may be listed.  See format 
specific documentation for legal creation options for each format.</dd>

<dt> <b>-te</b> <em>xmin ymin xmax ymax</em> :</dt><dd> (GDAL >= 1.8.0) 
set georeferenced extents. The values must be expressed in georeferenced units.
If not specified, the extent of the output file will be the extent of the vector layers.
</dd>

<dt> <b>-tr</b> <em>xres yres</em> :</dt><dd> (GDAL >= 1.8.0) 
set target resolution. The values must be expressed in georeferenced units.
Both must be positive values.
</dd>

<dt> <b>-tap</b>:</dt><dd> (GDAL >= 1.8.0) (target aligned pixels) align
the coordinates of the extent of the output file to the values of the -tr,
such that the aligned extent includes the minimum extent.</dd>

<dt> <b>-ts</b> <em>width height</em>:</dt><dd>  (GDAL >= 1.8.0) set output file size in
pixels and lines. Note that -ts cannot be used with -tr</dd>

<dt> <b>-ot</b> <i>type</i>:</dt><dd> (GDAL >= 1.8.0) For the output bands to be of the
indicated data type. Defaults to Float64</dd>

<dt> <b>-q</b>:</dt><dd> (GDAL >= 1.8.0) Suppress progress monitor and other non-error
output.</dd>

<dt> <em>src_datasource</em>: </dt><dd> 
Any OGR supported readable datasource.</dd>

<dt> <em>dst_filename</em>: </dt><dd> 
The GDAL supported output file.  Must support update mode access.  
Before GDAL 1.8.0, gdal_rasterize could not create new output files.</dd>

</dl>

\section gdal_rasterize_example EXAMPLE

The following would burn all polygons from mask.shp into the RGB TIFF
file work.tif with the color red (RGB = 255,0,0).  

\verbatim
gdal_rasterize -b 1 -b 2 -b 3 -burn 255 -burn 0 -burn 0 -l mask mask.shp work.tif
\endverbatim

The following would burn all "class A" buildings into the output elevation
file, pulling the top elevation from the ROOF_H attribute.

\verbatim
gdal_rasterize -a ROOF_H -where 'class="A"' -l footprints footprints.shp city_dem.tif
\endverbatim

\if man
\section gdal_rasterize_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>
\endif
*/

*******************************************************************************
/*! \page rgb2pct rgb2pct.py

Convert a 24bit RGB image to 8bit paletted

\section rgb2pct_synopsis SYNOPSIS

\verbatim
rgb2pct.py [-n colors | -pct palette_file] [-of format] source_file dest_file
\endverbatim

\section rgb2pct_description DESCRIPTION

This utility will compute an optimal pseudo-color table for a given RGB image
using a median cut algorithm on a downsampled RGB histogram.   Then it 
converts the image into a pseudo-colored image using the color table.
This conversion utilizes Floyd-Steinberg dithering (error diffusion) to 
maximize output image visual quality. 

<dl>
<dt> <b>-n</b> <i>colors</i>:</dt><dd> Select the number of colors in the generated
color table.  Defaults to 256.  Must be between 2 and 256. </dd>
<dt> <b>-pct</b> <i>palette_file</i>:</dt><dd> Extract the color table from
<i>palette_file</i> instead of computing it. Can be used to have a consistent
color table for multiple files.  The <i>palette_file</i> must be a raster file
in a GDAL supported format with a palette.</dd>
<dt> <b>-of</b> <i>format</i>:</dt><dd> Format to generated (defaults to GeoTIFF).  Same
semantics as the <b>-of</b> flag for gdal_translate.  Only output formats
supporting pseudocolor tables should be used. </dd>
<dt> <i>source_file</i>:</dt><dd> The input RGB file. </dd>
<dt> <i>dest_file</i>:</dt><dd> The output pseudo-colored file that will be
created.</dd>
</dl>

NOTE: rgb2pct.py is a Python script, and will only work if GDAL was built
with Python support.  

\section rgb2pct_example EXAMPLE

If it is desired to hand create the palette, likely the simplest text format
is the GDAL VRT format.  In the following example a VRT was created in a 
text editor with a small 4 color palette with the RGBA colors 238/238/238/255, 
237/237/237/255, 236/236/236/255 and 229/229/229/255.

\verbatim
% rgb2pct.py -pct palette.vrt rgb.tif pseudo-colored.tif
% more < palette.vrt
<VRTDataset rasterXSize="226" rasterYSize="271">
  <VRTRasterBand dataType="Byte" band="1">
    <ColorInterp>Palette</ColorInterp>
    <ColorTable>
      <Entry c1="238" c2="238" c3="238" c4="255"/>
      <Entry c1="237" c2="237" c3="237" c4="255"/>
      <Entry c1="236" c2="236" c3="236" c4="255"/>
      <Entry c1="229" c2="229" c3="229" c4="255"/>
    </ColorTable>
  </VRTRasterBand>
</VRTDataset> 
\endverbatim

\if man
\section rgb2pct_author AUTHOR
Frank Warmerdam <warmerdam@pobox.com>
\endif
*/

*******************************************************************************
/*! \page pct2rgb pct2rgb.py

Convert an 8bit paletted image to 24bit RGB

\section pct2rgb_synopsis SYNOPSIS

\htmlonly
Usage: 
\endhtmlonly

\verbatim
pct2rgb.py [-of format] [-b band] [-rgba] source_file dest_file
\endverbatim

\section pct2rgb_description DESCRIPTION

This utility will convert a pseudocolor band on the input file into an output
RGB file of the desired format. 

<dl>
<dt> <b>-of</b> <i>format</i>:</dt><dd> Format to generated (defaults to GeoTIFF).</dd>
<dt> <b>-b</b> <i>band</i>:</dt><dd> 
Band to convert to RGB, defaults to 1.</dd>
<dt> <b>-rgba:</b></dt><dd> Generate a RGBA file (instead of a RGB file by default).</dd>
<dt> <i>source_file</i>:</dt><dd> The input file. </dd>
<dt> <i>dest_file</i>:</dt><dd> The output RGB file that will be
created.</dd>
</dl>

NOTE: pct2rgb.py is a Python script, and will only work if GDAL was built
with Python support.

The new '-expand rgb|rgba' option of gdal_translate obsoletes that utility.

\if man
\section pct2rgb_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Silke Reimer <silke@intevation.de>
\endif
*/

*******************************************************************************
/*! \page gdaltransform gdaltransform
	
transforms coordinates 

\section gdaltransform_synopsis SYNOPSIS

\verbatim
gdaltransform [--help-general]
    [-i] [-s_srs srs_def] [-t_srs srs_def] [-to "NAME=VALUE"]
    [-order n] [-tps] [-rpc] [-geoloc]
    [-gcp pixel line easting northing [elevation]]*
    [srcfile [dstfile]]
\endverbatim

\section gdaltransform_description DESCRIPTION

The gdaltransform utility reprojects a list of coordinates into any supported
projection,including  GCP-based transformations.

<dl>
<dt> <b>-s_srs</b> <em>srs def</em>:</dt><dd> source spatial reference set.
The coordinate systems that can be passed are anything supported by the
OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file
containing well known text.</dd>
<dt> <b>-t_srs</b> <em>srs_def</em>:</dt><dd> target spatial reference set.
The coordinate systems that can be passed are anything supported by the
OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file
containing well known text.</dd>
<dt> <b>-to</b> <em>NAME=VALUE</em>:</dt><dd> set a transformer option suitable
to pass to GDALCreateGenImgProjTransformer2(). </dd>
<dt> <b>-order</b> <em>n</em>:</dt><dd> order of polynomial used for warping
(1 to 3). The default is to select a polynomial order based on the number of
GCPs.</dd>
<dt> <b>-tps</b>:</dt><dd>Force use of thin plate spline transformer based on
available GCPs.</dd>
<dt> <b>-rpc</b>:</dt> <dd>Force use of RPCs.</dd>
<dt> <b>-geoloc</b>:</dt><dd>Force use of Geolocation Arrays.</dd>
<dt> <b>-i</b></dt><dd>Inverse transformation: from destination to source.</dd>
<dt> <b>-gcp</b><em>pixel line easting northing [elevation]</em>:</dt> <dd>Provide a GCP to be used for transformation (generally three or more are required)</dd>
<dt> <em>srcfile</em>:</dt><dd> File with source projection definition or GCP's. If
    not given, source projection is read from the command-line -s_srs or -gcp parameters </dd>
<dt> <em>dstfile</em>:</dt><dd> File with destination projection definition. </dd>
</dl>


Coordinates are read as pairs (or triples) of numbers per line from standard
input, transformed, and written out to standard output in the same way. All
transformations offered by gdalwarp are handled, including gcp-based ones.

Note that input and output must always be in decimal form.  There is currently
no support for DMS input or output.

If an input image file is provided, input is in pixel/line coordinates on that
image.  If an output file is provided, output is in pixel/line coordinates
on that image.  

\section gdaltransform_example Reprojection Example

Simple reprojection from one projected coordinate system to another:

\verbatim
gdaltransform -s_srs EPSG:28992 -t_srs EPSG:31370
177502 311865
\endverbatim

Produces the following output in meters in the "Belge 1972 / Belgian Lambert 
72" projection:

\verbatim
244510.77404604 166154.532871342 -1046.79270555763
\endverbatim

\section gdaltransform_example Image RPC Example

The following command requests an RPC based transformation using the RPC
model associated with the named file.  Because the -i (inverse) flag is
used, the transformation is from output georeferenced (WGS84) coordinates 
back to image coordinates. 

\verbatim
gdaltransform -i -rpc 06OCT20025052-P2AS-005553965230_01_P001.TIF
125.67206 39.85307 50                    
\endverbatim

Produces this output measured in pixels and lines on the image:
\verbatim
3499.49282422381 2910.83892848414 50
\endverbatim

\if man
\section gdaltransform_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Jan Hartmann <j.l.h.hartmann@uva.nl>
\endif
*/
*******************************************************************************
/*! \page nearblack nearblack

convert nearly black/white borders to black

\section nearblack_synopsis SYNOPSIS

\verbatim
nearblack [-of format] [-white | [-color c1,c2,c3...cn]*] [-near dist] [-nb non_black_pixels]
          [-setalpha] [-setmask] [-o outfile] [-q]  [-co "NAME=VALUE"]* infile
\endverbatim

\section nearblack_description DESCRIPTION

This utility will scan an image and try to set all pixels that are nearly or exactly
black, white or one or more custom colors around the collar to black or white.  This
is often used to "fix up" lossy compressed airphotos so that color pixels
can be treated as transparent when mosaicking. 

<dl>
<dt> <b>-o</b> <i>outfile</i>:</dt><dd> The name of the output file to be
created.  Newly created files are created with the HFA driver by default
(Erdas Imagine - .img)</dd>
<dt> <b>-of</b> <i>format</i>:</dt><dd> (GDAL 1.8.0 or later) Select the output format.
Use the short format name (GTiff for GeoTIFF for examle).</dd>
<dt> <b>-co</b> <i>"NAME=VALUE"</i>:</dt><dd> (GDAL 1.8.0 or later) Passes a creation option to the
output format driver.  Multiple <b>-co</b> options may be listed.  See format 
specific documentation for legal creation options for each format. Only valid when creating a new file</dd>
<dt> <b>-white</b>:</dt><dd> 
Search for nearly white (255) pixels instead of nearly black pixels.
</dd>
<dt> <b>-color</b> <i>c1,c2,c3...cn</i>:</dt><dd> (GDAL >= 1.9.0)
Search for pixels near the specified color. May be specified multiple times.
When -color is specified, the pixels that are considered as the collar are set to 0.
</dd>
<dt> <b>-near</b> <i>dist</i>:</dt><dd> 
Select how far from black, white or custom colors the pixel values can be and still considered near black, white or custom color.  Defaults to 15. 
</dd>
<dt> <b>-nb</b> <i>non_black_pixels</i>:</dt><dd> 
number of non-black pixels that can be encountered before the giving up search inwards. Defaults to 2. 
</dd>
<dt> <b>-setalpha</b>:</dt><dd> (GDAL 1.8.0 or later) 
Adds an alpha band if the output file is specified and the input file has 3 bands,
or sets the alpha band of the output file if it is specified and the input file has 4 bands,
or sets the alpha band of the input file if it has 4 bands and no output file is specified.
The alpha band is set to 0 in the image collar and to 255 elsewhere.
</dd>
<dt> <b>-setmask</b>:</dt><dd> (GDAL 1.8.0 or later) 
Adds a mask band to the output file,
or adds a mask band to the input file if it does not already have one and no output file is specified.
The mask band is set to 0 in the image collar and to 255 elsewhere.
</dd>
<dt> <b>-q</b>:</dt><dd> (GDAL 1.8.0 or later) Suppress progress monitor and other non-error
output.</dd>
<dt> <i>infile</i>:</dt><dd> 
The input file.  Any GDAL supported format, any number of bands, normally 8bit 
Byte bands.
</dd>
</dl>

The algorithm processes the image one scanline at a time.  A scan "in" is done 
from either end setting pixels to black or white until at least 
"non_black_pixels" pixels that are more than "dist" gray levels away from 
black, white or custom colors have been encountered at which point the scan stops.  The nearly
black, white or custom color pixels are set to black or white. The algorithm also scans from
top to bottom and from bottom to top to identify indentations in the top or bottom.

The processing is all done in 8bit (Bytes).

If the output file is omitted, the processed results will be written back
to the input file - which must support update. 

\if man
\section nearblack_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>
\endif
*/

*******************************************************************************
/*! \page gdal_merge gdal_merge.py

mosaics a set of images

\section gdal_merge_synopsis SYNOPSIS

\verbatim
gdal_merge.py [-o out_filename] [-of out_format] [-co NAME=VALUE]*
              [-ps pixelsize_x pixelsize_y] [-tap] [-separate] [-v] [-pct]
              [-ul_lr ulx uly lrx lry] [-n nodata_value] [-init "value [value...]"]
              [-ot datatype] [-createonly] input_files
\endverbatim

\section gdal_merge_description DESCRIPTION

This utility will automatically mosaic a set of images.  All the images must
be in the same coordinate system and have a matching number of bands, but 
they may be overlapping, and at different resolutions. In areas of overlap,
the last image will be copied over earlier ones.

<dl>
<dt> <b>-o</b> <i>out_filename</i>:</dt><dd> The name of the output file,
which will be created if it does not already exist (defaults to "out.tif").</dd>
<dt> <b>-of</b> <i>format</i>:</dt><dd> 
Output format, defaults to GeoTIFF (GTiff). 
</dd>
<dt> <b>-co</b> <i>NAME=VALUE</i>:</dt><dd> 
Creation option for output file.  Multiple options can be specified.
</dd>
<dt> <b>-ot</b> <i>datatype</i>:</dt><dd> 
Force the output image bands to have a specific type. Use type names (ie. Byte, Int16,...)
</dd>
<dt> <b>-ps</b> <i>pixelsize_x pixelsize_y</i>:</dt><dd> Pixel size to be used for the
output file.  If not specified the resolution of the first input file will
be used.</dd>

<dt> <b>-tap</b>:</dt><dd> (GDAL >= 1.8.0) (target aligned pixels) align
the coordinates of the extent of the output file to the values of the -tr,
such that the aligned extent includes the minimum extent.</dd>

<dt> <b>-ul_lr</b> <i>ulx uly lrx lry</i>:</dt><dd> The extents of the output file. 
If not specified the aggregate extents of all input files will be
used.</dd>
<dt>
<dt> <b>-v</b>:</dt><dd> Generate verbose output of mosaicing operations as they are done.</dd>
<dt> <b>-separate</b>:</dt><dd> 
Place each input file into a separate <i>stacked</i> band. 
</dd>
<dt> <b>-pct</b>:</dt><dd> 
Grab a pseudocolor table from the first input image, and use it for the output.
Merging pseudocolored images this way assumes that all input files use the same
color table.
</dd>
<dt> <b>-n</b> <i>nodata_value</i>:</dt><dd> 
Ignore pixels from files being merged in with this pixel value. 
</dd>
<dt> <b>-a_nodata</b> <i>output_nodata_value</i>:</dt><dd>
(GDAL >= 1.9.0) Assign a specified nodata value to output bands.</dd>
<dt> <b>-init</b> <i>"value(s)"</i>:</dt><dd> 
Pre-initialize the output image bands with these values.  However, it is not
marked as the nodata value in the output file.  If only one value is given, the
same value is used in all the bands. 
</dd>
<dt> <b>-createonly</b>:</dt><dd> 
The output file is created (and potentially pre-initialized) but no input
image data is copied into it.  
</dd>
</dl>

NOTE: gdal_merge.py is a Python script, and will only work if GDAL was built
with Python support.

\section gdal_merge_example EXAMPLE

Create an image with the pixels in all bands initialized to 255.

\verbatim
% gdal_merge.py -init 255 -o out.tif in1.tif in2.tif
\endverbatim

Create an RGB image that shows blue in pixels with no data. The first two bands
will be initialized to 0 and the third band will be initialized to 255.

\verbatim
% gdal_merge.py -init "0 0 255" -o out.tif in1.tif in2.tif
\endverbatim

\if man
\section gdal_merge_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Silke Reimer <silke@intevation.de>
\endif
*/

*******************************************************************************
/*! \page gdal2tiles gdal2tiles.py

generates directory with TMS tiles, KMLs and simple web viewers

\section gdal2tiles_synopsis SYNOPSIS

\verbatim
gdal2tiles.py [-p profile] [-r resampling] [-s srs] [-z zoom]
              [-e] [-a nodata] [-v] [-h] [-k] [-n] [-u url]
              [-w webviewer] [-t title] [-c copyright]
              [-g googlekey] [-b bingkey] input_file [output_dir]
\endverbatim

\section gdal2tiles_description DESCRIPTION

This utility generates a directory with small tiles and metadata, following
the OSGeo Tile Map Service Specification. Simple web pages with viewers based on
Google Maps and OpenLayers are generated as well - so anybody can comfortably
explore your maps on-line and you do not need to install or configure any
special software (like MapServer) and the map displays very fast in the
web browser. You only need to upload the generated directory onto a web server.

GDAL2Tiles also creates the necessary metadata for Google Earth (KML
SuperOverlay), in case the supplied map uses EPSG:4326 projection.

World files and embedded georeferencing is used during tile generation, but you
can publish a picture without proper georeferencing too. 

<dl>
<dt> <b>-p</b> <i>PROFILE</i>, --profile=<i>PROFILE</i>:</dt>
  <dd>Tile cutting profile (mercator,geodetic,raster) - default 'mercator' (Google Maps compatible).</dd>
<dt> <b>-r</b> <i>RESAMPLING</i>, --resampling=<i>RESAMPLING</i>:</dt>
  <dd>Resampling method (average,near,bilinear,cubic,cubicspline,lanczos,antialias) - default 'average'.</dd>
<dt> <b>-s</b> <i>SRS</i>, --s_srs=<i>SRS</i>:</dt>
  <dd>The spatial reference system used for the source input data.</dd>
<dt> <b>-z</b> <i>ZOOM</i>, --zoom=<i>ZOOM</i>:</dt>
  <dd>Zoom levels to render (format:'2-5' or '10').</dd>
<dt> <b>-e</b>, --resume:</dt>
  <dd>Resume mode. Generate only missing files.</dd>
<dt> <b>-a</b> <i>NODATA</i>, --srcnodata=<i>NODATA</i>:</dt>
  <dd>NODATA transparency value to assign to the input data.</dd>
<dt> <b>-v, --verbose</b></dt>
  <dd>Generate verbose output of tile generation.</dd>
<dt> <b>-h, --help</b></dt>
  <dd>Show help message and exit.</dd>
<dt> <b>--version</b></dt>
  <dd>Show program's version number and exit.</dd>
</dl>

<b>KML (Google Earth) options:</b>

Options for generated Google Earth SuperOverlay metadata
<dl>
<dt> <b>-k, --force-kml</b></dt>
  <dd>Generate KML for Google Earth - default for 'geodetic' profile and 'raster' in EPSG:4326. For a dataset with different projection use with caution!</dd>
<dt> <b>-n, --no-kml</b>:</dt>
  <dd>Avoid automatic generation of KML files for EPSG:4326.</dd>
<dt> <b>-u</b> <i>URL</i>, --url=<i>URL</i>:</dt>
  <dd>URL address where the generated tiles are going to be published.</dd>
</dl>

<b>Web viewer options:</b>

Options for generated HTML viewers a la Google Maps
<dl>
<dt> <b>-w</b> <i>WEBVIEWER</i>, --webviewer=<i>WEBVIEWER</i>:</dt>
  <dd>Web viewer to generate (all,google,openlayers,none) - default 'all'.</dd>
<dt> <b>-t</b> <i>TITLE</i>, --title=<i>TITLE</i>:</dt>
  <dd>Title of the map.</dd>
<dt> <b>-c</b> <i>COPYRIGHT</i>, --copyright=<i>COPYRIGHT</i>:</dt>
  <dd>Copyright for the map.</dd>
<dt> <b>-g</b> <i>GOOGLEKEY</i>, --googlekey=<i>GOOGLEKEY</i>:</dt>
  <dd>Google Maps API key from http://code.google.com/apis/maps/signup.html.</dd>
<dt> <b>-b</b> <i>BINGKEY</i>, --bingkey=<i>BINGKEY</i>:</dt>
  <dd>Bing Maps API key from https://www.bingmapsportal.com/</dd>

</dl>


NOTE: gdal2tiles.py is a Python script that needs to be run against "new generation" Python GDAL binding.

\if man
\section gdal2tiles_author AUTHORS
Klokan Petr Pridal <klokan@klokan.cz> as a Google SoC 2007 Project.
\endif
*/

*******************************************************************************
/*! \page gdal-config gdal-config

determines various information about a GDAL installation

\section gdal_config_synopsis SYNOPSIS

\verbatim
gdal-config [OPTIONS]
Options:
        [--prefix[=DIR]]
        [--libs]
        [--cflags]
        [--version]
        [--ogr-enabled]
        [--formats]
\endverbatim

\section gdal_config_description DESCRIPTION

This utility script (available on Unix systems) can be used to determine
various information about a GDAL installation.  It is normally just used
by configure scripts for applications using GDAL but can be queried by an
end user. 

<dl>
<dt> <b>--prefix</b>:</dt><dd> the top level directory for the GDAL
installation.</dd>
<dt> <b>--libs</b>:</dt><dd> The libraries and link directives required to
use GDAL.</dd>
<dt> <b>--cflags</b>:</dt><dd> The include and macro definition required to compiled
modules using GDAL.</dd>
<dt> <b>--version</b>:</dt><dd> Reports the GDAL version.</dd>
<dt> <b>--ogr-enabled</b>:</dt><dd> Reports "yes" or "no" to standard output depending
on whether OGR is built into GDAL.</dd>
<dt> <b>--formats</b>:</dt><dd> Reports which formats are configured into GDAL 
to stdout.  
</dd>
</dl>

*/

*******************************************************************************
/*! \page gdal_retile gdal_retile.py

gdal_retile.py retiles a set of tiles and/or build tiled pyramid levels

\if man
\section retile_synopsis SYNOPSIS
\endif

\htmlonly
Usage:
\endhtmlonly

\verbatim

gdal_retile.py [-v] [-co NAME=VALUE]* [-of out_format] [-ps pixelWidth pixelHeight]
               [-ot  {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
                      CInt16/CInt32/CFloat32/CFloat64}]'
               [ -tileIndex tileIndexName [-tileIndexField tileIndexFieldName]]
               [ -csv fileName [-csvDelim delimiter]]
               [-s_srs srs_def]  [-pyramidOnly]
               [-r {near/bilinear/cubic/cubicspline/lanczos}]
               -levels numberoflevels
               [-useDirForEachRow]   
               -targetDir TileDirectory input_files

\endverbatim
\if man
\section retile_description DESCRIPTION
\endif

This utility will retile a set of input tile(s). All the input tile(s) must
be georeferenced in the same coordinate system and have a matching number of bands.
Optionally pyramid levels are generated. It  is  possible to generate  shape file(s) for the tiled output.

If your number of input tiles exhausts the command line buffer, use the general --optfile option


<dl>
<dt> <b>-targetDir</b> <i>directory</i>:</dt><dd>
The directory where the tile result is created. Pyramids are stored
in  subdirectories  numbered  from  1. Created tile names have a numbering
schema and contain the name of the source tiles(s)
</dd>
<dt> <b>-of</b> <i>format</i>:</dt><dd>
Output format, defaults to GeoTIFF (GTiff).
</dd>
<dt> <b>-co</b> <i>NAME=VALUE</i>:</dt><dd>
Creation option for output file.  Multiple options can be specified.
</dd>
<dt> <b>-ot</b> <i>datatype</i>:</dt><dd>
Force the output image bands to have a specific type. Use type names (ie. Byte, Int16,...)
</dd>
<dt> <b>-ps</b> <i>pixelsize_x pixelsize_y</i>:</dt><dd> Pixel size to be used for the
output file.  If not specified, 256 x 256 is the default
</dd>
<dt> <b>-levels</b> <i>numberOfLevels</i>:</dt><dd>
Number of pyramids levels to build.
</dd>
<dt> <b>-v</b>:</dt><dd>
Generate verbose output of tile operations as they are done.
</dd>
<dt> <b>-pyramidOnly</b>:</dt><dd>
No retiling, build only the pyramids
</dd>
<dt> <b>-r</b> <i>algorithm</i>:</dt><dd>
Resampling algorithm, default is near
</dd>
<dt> <b>-s_srs</b> <i>srs_def</i>:</dt><dd>
Source spatial reference to use. The coordinate systems  that  can  be
passed  are  anything  supported by the OGRSpatialReference.SetFro‐mUserInput()  call,
which  includes  EPSG  PCS  and   GCSes   (ie.EPSG:4296),  PROJ.4  declarations (as above),
or the name of a .prf file containing well known text.
If  no  srs_def  is  given,  the srs_def  of the source tiles is used (if there is any).
The srs_def will be propagated to created tiles (if possible) and  to  the  optional
shape file(s)
</dd>
<dt> <b>-tileIndex</b> <i>tileIndexName</i>:</dt><dd>
The name of shape file containing the result tile(s) index
</dd>
<dt> <b>-tileIndexField</b> <i>tileIndexFieldName</i>:</dt><dd>
The name of the attribute containing the tile name
</dd>
<dt> <b>-csv</b> <i>csvFileName</i>:</dt><dd>
The name of the csv file containing the tile(s) georeferencing information.
The file contains 5 columns: tilename,minx,maxx,miny,maxy
</dd>
<dt> <b>-csvDelim</b> <i>column delimiter</i>:</dt><dd>
The column delimter used in the csv file, default value is a semicolon ";"
</dd>
<dt> <b>-useDirForEachRow</b>:</dt><dd>
Normally the tiles of the base image are stored as described in <b>-targetDir</b>.
For large images, some file systems have performance problems if the number of files 
in a directory is to big, causing gdal_retile not to finish in reasonable time. 
Using this parameter creates a different output structure. The tiles of the base image
are stored in a subdirectory called 0, the pyramids in subdirectories numbered 1,2,....
Within each of these directories another level of subdirectories is created, numbered from
0...n, depending of how many tile rows are needed for each level. Finally, a directory contains
only the the tiles for one row for a specific level. For large images a performance improvement
of a factor N could be achieved.
</dd>
</dl>

NOTE: gdal_retile.py is a Python script, and will only work if GDAL was built
with Python support.

\if man
\section retile_author AUTHORS
Christian Mueller <christian.mueller@nvoe.at>
\endif
*/

*******************************************************************************
/*! \page gdal_grid gdal_grid

creates regular grid from the scattered data

\section gdal_grid_synopsis SYNOPSIS

\verbatim
gdal_grid [-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
          CInt16/CInt32/CFloat32/CFloat64}]
	  [-of format] [-co "NAME=VALUE"]
	  [-zfield field_name]
	  [-a_srs srs_def] [-spat xmin ymin xmax ymax]
          [-clipsrc <xmin ymin xmax ymax>|WKT|datasource|spat_extent]
          [-clipsrcsql sql_statement] [-clipsrclayer layer]
          [-clipsrcwhere expression]
	  [-l layername]* [-where expression] [-sql select_statement]
	  [-txe xmin xmax] [-tye ymin ymax] [-outsize xsize ysize]
	  [-a algorithm[:parameter1=value1]*] [-q]
	  <src_datasource> <dst_filename>
\endverbatim

\section gdal_grid_description DESCRIPTION

This program creates regular grid (raster) from the scattered data read from
the OGR datasource. Input data will be interpolated to fill grid nodes with
values, you can choose from various interpolation methods. 

Starting with GDAL 1.10, it is possible to set the <b>GDAL_NUM_THREADS</b>
configuration option to parallelize the processing. The value to specify is
the number of worker threads, or <i>ALL_CPUS</i> to use all the cores/CPUs of the
computer.

<dl>

<dt> <b>-ot</b> <i>type</i>:</dt><dd> For the output bands to be of the
indicated data type.</dd>

<dt> <b>-of</b> <i>format</i>:</dt><dd> Select the output format.  The default
is GeoTIFF (GTiff).  Use the short format name.</dd>

<dt> <b>-txe</b> <em>xmin xmax</em>:</dt><dd> Set georeferenced
X extents of output file to be created.</dd>

<dt> <b>-tye</b> <em>ymin ymax</em>:</dt><dd> Set georeferenced
Y extents of output file to be created.</dd>

<dt> <b>-outsize</b> <i>xsize ysize</i>:</dt><dd> Set the size of the
output file in pixels and lines.</dd>

<dt> <b>-a_srs</b> <i>srs_def</i>:</dt><dd> Override the projection for the
output file.  The <i>srs_def</i> may be any of the usual GDAL/OGR forms,
complete WKT, PROJ.4, EPSG:n or a file containing the WKT. </dd>

<dt> <b>-zfield</b> <i>field_name</i>:</dt><dd> Identifies an attribute field
on the features to be used to get a Z value from. This value overrides Z value
read from feature geometry record (naturally, if you have a Z value in
geometry, otherwise you have no choice and should specify a field name
containing Z value).</dd>

<dt> <b>-a</b> <i>[algorithm[:parameter1=value1][:parameter2=value2]...]</i>:
</dt><dd> Set the interpolation algorithm or data metric name and (optionally)
its parameters. See \ref gdal_grid_algorithms and \ref gdal_grid_metrics
sections for further discussion of available options.</dd>

<dt> <b>-spat</b> <i>xmin ymin xmax ymax</i>:</dt><dd> Adds a spatial filter
to select only features contained within the bounding box described by
(xmin, ymin) - (xmax, ymax).</dd>

<dt> <b>-clipsrc</b><em> [xmin ymin xmax ymax]|WKT|datasource|spat_extent</em>:
</dt><dd> Adds a spatial filter to select only features contained within the
specified bounding box (expressed in source SRS), WKT geometry (POLYGON or
MULTIPOLYGON), from a datasource or to the spatial extent of the <b>-spat</b>
option if you use the <em>spat_extent</em> keyword. When specifying a
datasource, you will generally want to use it in combination of the
<b>-clipsrclayer</b>, <b>-clipsrcwhere</b> or <b>-clipsrcsql</b>
options.</dd>

<dt> <b>-clipsrcsql</b> <em>sql_statement</em>:</dt><dd>Select desired
geometries using an SQL query instead.</dd>

<dt> <b>-clipsrclayer</b> <em>layername</em>:</dt><dd>Select the named layer
from the source clip datasource.</dd>

<dt> <b>-clipsrcwhere</b> <em>expression</em>:</dt><dd>Restrict desired
geometries based on attribute query.</dd>

<dt> <b>-l</b> <em>layername</em>: </dt><dd> Indicates the layer(s) from the
datasource that will be used for input features.  May be specified multiple
times, but at least one layer name or a <b>-sql</b> option must be
specified.</dd>

<dt> <b>-where</b> <em>expression</em>: </dt><dd> 
An optional SQL WHERE style query expression to be applied to select features 
to process from the input layer(s). </dd>

<dt> <b>-sql</b> <em>select_statement</em>: </dt><dd> 
An SQL statement to be evaluated against the datasource to produce a
virtual layer of features to be processed.</dd>

<dt> <b>-co</b> <i>"NAME=VALUE"</i>:</dt><dd> Passes a creation option to the
output format driver.  Multiple <b>-co</b> options may be listed.  See format 
specific documentation for legal creation options for each format.</dd>

<dt> <b>-q</b>:</dt><dd> Suppress progress monitor and other non-error
output.</dd>

<dt> <em>src_datasource</em>: </dt><dd> 
Any OGR supported readable datasource.</dd>

<dt> <em>dst_filename</em>: </dt><dd> 
The GDAL supported output file.</dd>

</dl>

\section gdal_grid_algorithms INTERPOLATION ALGORITHMS

There are number of interpolation algorithms to choose from.

\subsection gdal_grid_algorithms_invdist invdist

Inverse distance to a power. This is default algorithm. It has following
parameters:

<dl>
<dt><i>power</i>:</dt> <dd>Weighting power (default 2.0).</dd>
<dt><i>smoothing</i>:</dt> <dd>Smoothing parameter (default 0.0).</dd>
<dt><i>radius1</i>:</dt> <dd>The first radius (X axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>radius2</i>:</dt> <dd>The second radius (Y axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>angle</i>:</dt> <dd>Angle of search ellipse rotation in degrees
(counter clockwise, default 0.0).</dd>
<dt><i>max_points</i>:</dt> <dd>Maximum number of data points to use. Do not
search for more points than this number. This is only used if search ellipse
is set (both radii are non-zero). Zero means that all found points should
be used. Default is 0.</dd>
<dt><i>min_points</i>:</dt> <dd>Minimum number of data points to use. If less
amount of points found the grid node considered empty and will be filled with
NODATA marker. This is only used if search ellipse is set (both radii are
non-zero). Default is 0.</dd>
<dt><i>nodata</i>:</dt> <dd>NODATA marker to fill empty points (default
0.0).</dd>
</dl>

\subsection gdal_grid_algorithms_average average

Moving average algorithm. It has following parameters:

<dl>
<dt><i>radius1</i>:</dt> <dd>The first radius (X axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>radius2</i>:</dt> <dd>The second radius (Y axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>angle</i>:</dt> <dd>Angle of search ellipse rotation in degrees
(counter clockwise, default 0.0).</dd>
<dt><i>min_points</i>:</dt> <dd>Minimum number of data points to use. If less
amount of points found the grid node considered empty and will be filled with
NODATA marker. Default is 0.</dd>
<dt><i>nodata</i>:</dt> <dd>NODATA marker to fill empty points (default
0.0).</dd>
</dl>

Note, that it is essential to set search ellipse for moving average method. It
is a window that will be averaged when computing grid nodes values.

\subsection gdal_grid_algorithms_nearest nearest

Nearest neighbor algorithm. It has following parameters:

<dl>
<dt><i>radius1</i>:</dt> <dd>The first radius (X axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>radius2</i>:</dt> <dd>The second radius (Y axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>angle</i>:</dt> <dd>Angle of search ellipse rotation in degrees
(counter clockwise, default 0.0).</dd>
<dt><i>nodata</i>:</dt> <dd>NODATA marker to fill empty points (default
0.0).</dd>
</dl>

\section gdal_grid_metrics DATA METRICS

Besides the interpolation functionality \ref gdal_grid can be used to compute
some data metrics using the specified window and output grid geometry. These
metrics are:

<dl>

<dt><i>minimum</i>:</dt> <dd>Minimum value found in grid node search
ellipse.</dd>

<dt><i>maximum</i>:</dt> <dd>Maximum value found in grid node search
ellipse.</dd>

<dt><i>range</i>:</dt> <dd>A difference between the minimum and maximum values
found in grid node search ellipse.</dd>

<dt><i>count</i>:</dt> <dd> A number of data points found in grid node search
ellipse.</dd>

<dt><i>average_distance</i>:</dt> <dd>An average distance between the grid
node (center of the search ellipse) and all of the data points found in grid
node search ellipse.</dd>

<dt><i>average_distance_pts</i>:</dt> <dd>An average distance between the data
points found in grid node search ellipse. The distance between each pair of
points within ellipse is calculated and average of all distances is set as a
grid node value.</dd>

</dl>

All the metrics have the same set of options:

<dl>

<dt><i>radius1</i>:</dt> <dd>The first radius (X axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>radius2</i>:</dt> <dd>The second radius (Y axis if rotation angle is 0)
of search ellipse. Set this parameter to zero to use whole point array.
Default is 0.0.</dd>
<dt><i>angle</i>:</dt> <dd>Angle of search ellipse rotation in degrees
(counter clockwise, default 0.0).</dd>
<dt><i>min_points</i>:</dt> <dd>Minimum number of data points to use. If less
amount of points found the grid node considered empty and will be filled with
NODATA marker. This is only used if search ellipse is set (both radii are
non-zero). Default is 0.</dd>
<dt><i>nodata</i>:</dt> <dd>NODATA marker to fill empty points (default
0.0).</dd>

</dl>

\section gdal_grid_csv READING COMMA SEPARATED VALUES

Often you have a text file with a list of comma separated XYZ values to work
with (so called CSV file). You can easily use that kind of data source in \ref
gdal_grid. All you need is create a virtual dataset header (VRT) for you CSV
file and use it as input datasource for \ref gdal_grid. You can find details
on VRT format at <a href="ogr/drv_vrt.html">Virtual Format</a> description
page.

Here is a small example. Let we have a CSV file called <i>dem.csv</i>
containing

\verbatim
Easting,Northing,Elevation
86943.4,891957,139.13
87124.3,892075,135.01
86962.4,892321,182.04
87077.6,891995,135.01
...
\endverbatim

For above data we will create <i>dem.vrt</i> header with the following
content:

\verbatim
<OGRVRTDataSource>
    <OGRVRTLayer name="dem">
        <SrcDataSource>dem.csv</SrcDataSource> 
	<GeometryType>wkbPoint</GeometryType> 
	<GeometryField encoding="PointFromColumns" x="Easting" y="Northing" z="Elevation"/> 
    </OGRVRTLayer>
</OGRVRTDataSource>
\endverbatim

This description specifies so called 2.5D geometry with three coordinates X, Y
and Z. Z value will be used for interpolation. Now you can use <i>dem.vrt</i>
with all OGR programs (start with \ref ogrinfo to test that everything works
fine). The datasource will contain single layer called <i>"dem"</i> filled
with point features constructed from values in CSV file. Using this technique
you can handle CSV files with more than three columns, switch columns, etc.

If your CSV file does not contain column headers then it can be handled in the
following way:

\verbatim
<GeometryField encoding="PointFromColumns" x="field_1" y="field_2" z="field_3"/>
\endverbatim

<a href="ogr/drv_csv.html">Comma Separated Value</a> description page contains
details on CSV format supported by GDAL/OGR.

\section gdal_grid_example EXAMPLE

The following would create raster TIFF file from VRT datasource described in
\ref gdal_grid_csv section using the inverse distance to a power method.
Values to interpolate will be read from Z value of geometry record.

\verbatim
gdal_grid -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000 890000 -outsize 400 400 -of GTiff -ot Float64 -l dem dem.vrt dem.tiff
\endverbatim

The next command does the same thing as the previous one, but reads values to
interpolate from the attribute field specified with <b>-zfield</b> option
instead of geometry record. So in this case X and Y coordinates are being
taken from geometry and Z is being taken from the <i>"Elevation"</i> field.
The GDAL_NUM_THREADS is also set to parallelize the computation.

\verbatim
gdal_grid -zfield "Elevation" -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000 890000 -outsize 400 400 -of GTiff -ot Float64 -l dem dem.vrt dem.tiff --config GDAL_NUM_THREADS ALL_CPUS
\endverbatim

\if man
\section gdal_grid_author AUTHORS
Andrey Kiselev <dron@ak4719.spb.edu>
\endif
*/


*******************************************************************************
/*! \page gdaldem gdaldem

Tools to analyze and visualize DEMs. (since GDAL 1.7.0)

\section gdaldem_synopsis SYNOPSIS

\htmlonly
Usage:
\endhtmlonly

\verbatim

- To generate a shaded relief map from any GDAL-supported elevation raster :
    gdaldem hillshade input_dem output_hillshade
                [-z ZFactor (default=1)] [-s scale* (default=1)]"
                [-az Azimuth (default=315)] [-alt Altitude (default=45)]
                [-alg ZevenbergenThorne] [-combined]
                [-compute_edges] [-b Band (default=1)] [-of format] [-co "NAME=VALUE"]* [-q]

- To generate a slope map from any GDAL-supported elevation raster :
    gdaldem slope input_dem output_slope_map"
                [-p use percent slope (default=degrees)] [-s scale* (default=1)]
                [-alg ZevenbergenThorne]
                [-compute_edges] [-b Band (default=1)] [-of format] [-co "NAME=VALUE"]* [-q]

- To generate an aspect map from any GDAL-supported elevation raster
  Outputs a 32-bit float raster with pixel values from 0-360 indicating azimuth :
    gdaldem aspect input_dem output_aspect_map"
                [-trigonometric] [-zero_for_flat]
                [-alg ZevenbergenThorne]
                [-compute_edges] [-b Band (default=1)] [-of format] [-co "NAME=VALUE"]* [-q]

- To generate a color relief map from any GDAL-supported elevation raster
    gdaldem color-relief input_dem color_text_file output_color_relief_map
                [-alpha] [-exact_color_entry | -nearest_color_entry]
                [-b Band (default=1)] [-of format] [-co "NAME=VALUE"]* [-q]
    where color_text_file contains lines of the format "elevation_value red green blue"
    
- To generate a Terrain Ruggedness Index (TRI) map from any GDAL-supported elevation raster:
    gdaldem TRI input_dem output_TRI_map
                [-compute_edges] [-b Band (default=1)] [-of format] [-q]
            
- To generate a Topographic Position Index (TPI) map from any GDAL-supported elevation raster:
    gdaldem TPI input_dem output_TPI_map
                [-compute_edges] [-b Band (default=1)] [-of format] [-q]
            
- To generate a roughness map from any GDAL-supported elevation raster:
    gdaldem roughness input_dem output_roughness_map
                [-compute_edges] [-b Band (default=1)] [-of format] [-q]

Notes :
  Scale is the ratio of vertical units to horizontal
   for Feet:Latlong use scale=370400, for Meters:LatLong use scale=111120)

\endverbatim
\if man
\section gdaldem_description DESCRIPTION
\endif

This utility has 7 different modes :
<dl>
<dt>\ref gdaldem_hillshade</dt><dd>to generate a shaded relief map from any GDAL-supported elevation raster</dd>
<dt>\ref gdaldem_slope</dt><dd>to generate a slope map from any GDAL-supported elevation raster</dd>
<dt>\ref gdaldem_aspect</dt><dd>to generate an aspect map from any GDAL-supported elevation raster</dd>
<dt>\ref gdaldem_color_relief</dt><dd>to generate a color relief map from any GDAL-supported elevation raster</dd>
<dt>\ref gdaldem_TRI</dt><dd>to generate a map of Terrain Ruggedness Index from any GDAL-supported elevation raster</dd>
<dt>\ref gdaldem_TPI</dt><dd>to generate a map of Topographic Position Index from any GDAL-supported elevation raster</dd>
<dt>\ref gdaldem_roughness</dt><dd>to generate a map of roughness from any GDAL-supported elevation raster</dd>
</dl>

The following general options are available :
<dl>
<dt> <i>input_dem</i>:</dt><dd> The input DEM raster to be processed</dd>
<dt> <i>output_xxx_map</i>:</dt><dd> The output raster produced</dd>
<dt> <b>-of</b> <i>format</i>:</dt><dd> Select the output format.  The default
is GeoTIFF (GTiff).  Use the short format name.</dd>
<dt> <b>-compute_edges</b>:</dt><dd> (GDAL >= 1.8.0) Do the computation at raster edges and near nodata values</dd>
<dt> <b>-alg</b> <i>ZevenbergenThorne</i>:</dt><dd> (GDAL >= 1.8.0) Use Zevenbergen & Thorne formula, instead of Horn's formula, to compute slope & aspect. The litterature suggests Zevenbergen & Thorne to be more suited to smooth landscapes, whereas Horn's formula to perform better on rougher terrain.</dd>
<dt> <b>-b</b> <i>band</i>:</dt><dd> Select an input <i>band</i> to be processed. Bands are numbered from 1.</dd>
<dt> <b>-co</b> <i>"NAME=VALUE"</i>:</dt><dd> Passes a creation option to the
output format driver.  Multiple <b>-co</b> options may be listed.  See format 
specific documentation for legal creation options for each format.</dd>
<dt> <b>-q</b>:</dt><dd> Suppress progress monitor and other non-error
output.</dd>
</dl>

For all algorithms, except color-relief, a nodata value in the target dataset will be emitted if
at least one pixel set to the nodata value is found in the 3x3 window centered around each source pixel.
The consequence is that there will be a 1-pixel border around each image set with nodata value.
From GDAL 1.8.0, if -compute_edges is specified, gdaldem will compute values at image edges
or if a nodata value is found in the 3x3 window, by interpolating missing values.

\section gdaldem_modes Modes

\subsection gdaldem_hillshade hillshade

This command outputs an 8-bit raster with a nice shaded relief effect.
It’s very useful for visualizing the terrain.
You can optionally specify the azimuth and altitude of the light source,
a vertical exaggeration factor and a scaling factor to account for differences between vertical and horizontal units.

The value 0 is used as the output nodata value.

The following specific options are available :
<dl>
<dt> <b>-z</b> <i>zFactor</i>:</dt><dd>vertical exaggeration used to pre-multiply the elevations</dd>
<dt> <b>-s</b> <i>scale</i>:</dt><dd>ratio of vertical units to horizontal. If the horizontal unit of the source DEM is degrees (e.g Lat/Long WGS84 projection), you can use scale=111120 if the vertical units are meters (or scale=370400 if they are in feet)</dd>
<dt> <b>-az</b> <i>azimuth</i>:</dt><dd>azimuth of the light, in degrees. 0 if it comes from the top of the raster, 90 from the east, ... The default value, 315, should rarely be changed as it is the value generally used to generate shaded maps.</dd>
<dt> <b>-alt</b> <i>altitude</i>:</dt><dd>altitude of the light, in degrees. 90 if the light comes from above the DEM, 0 if it is raking light.</dd>
<dt> <b>-combined</b> <i>combined shading</i>:</dt><dd>(starting with GDAL 1.10) a combination of slope and oblique shading.</dd>
</dl>

\subsection gdaldem_slope slope

This command will take a DEM raster and output a 32-bit float raster with slope values.
You have the option of specifying the type of slope value you want: degrees or percent slope.
In cases where the horizontal units differ from the vertical units, you can also supply a scaling factor.

The value -9999 is used as the output nodata value.

The following specific options are available :
<dl>
<dt> <b>-p</b> :</dt><dd>if specified, the slope will be expressed as percent slope. Otherwise, it is expressed as degrees</dd>
<dt> <b>-s</b> <i>scale</i>:</dt><dd>ratio of vertical units to horizontal. If the horizontal unit of the source DEM is degrees (e.g Lat/Long WGS84 projection), you can use scale=111120 if the vertical units are meters (or scale=370400 if they are in feet)</dd>
</dl>

\subsection gdaldem_aspect aspect

This command outputs a 32-bit float raster with values between 0° and 360° representing the azimuth that slopes are facing.
The definition of the azimuth is such that : 0° means that the slope is facing the North, 90° it's facing the East, 180° it's facing the South and
270° it's facing the West (provided that the top of your input raster is north oriented). The aspect value -9999 is used as the nodata value
to indicate undefined aspect in flat areas with slope=0.

The following specifics options are available :
<dl>
<dt> <b>-trigonometric</b>:</dt><dd> return trigonometric angle instead of azimuth. Thus 0° means East, 90° North, 180° West, 270° South</dd>
<dt> <b>-zero_for_flat</b>:</dt><dd> return 0 for flat areas with slope=0, instead of -9999</dd>
</dl>

By using those 2 options, the aspect returned by gdaldem aspect should be identical to the one of GRASS r.slope.aspect. Otherwise, it's identical
to the one of Matthew Perry's aspect.cpp utility.

\subsection gdaldem_color_relief color-relief

This command outputs a 3-band (RGB) or 4-band (RGBA) raster with values are computed from the elevation
and a text-based color configuration file, containing the association between various elevation
values and the corresponding wished color. By default, the colors between the given elevation values
are blended smoothly and the result is a nice colorized DEM. The -exact_color_entry or
-nearest_color_entry options can be used to avoid that linear interpolation for values that don't match an index
of the color configuration file.

The following specifics options are available :
<dl>
<dt> <i>color_text_file</i>:</dt><dd> text-based color configuration file</dd>
<dt> <b>-alpha</b> :</dt><dd>add an alpha channel to the output raster</dd>
<dt> <b>-exact_color_entry</b> :</dt><dd>use strict matching when searching in the color configuration file.
 If none matching color entry is found, the "0,0,0,0" RGBA quadruplet will be used</dd>
<dt> <b>-nearest_color_entry</b> :</dt><dd></dd>use the RGBA quadruplet corresponding to the closest entry in the color configuration file.</dd>
</dl>

The color-relief mode is the only mode that supports VRT as output format. In that case, it will translate the color configuration file into appropriate LUT elements. Note that elevations specified as percentage will be translated as absolute values, which must be taken into account when the statistics of the source raster differ from the one that was used when building the VRT.

The text-based color configuration file generally contains 4 columns per line : the elevation value and the
corresponding Red, Green, Blue component (between 0 and 255).
The elevation value can be any floating point value, or the <i>nv</i> keyword for the nodata value..
The elevation can also be expressed as a percentage : 0% being the minimum value found in the raster, 100% the maximum value.

An extra column can be optionally added for the alpha component. If it is not specified, full opacity (255) is assumed.

Various field separators are accepted : comma, tabulation, spaces, ':'.

Common colors used by GRASS can also be specified by using their name, instead of the RGB triplet. The supported list is :
white, black, red, green, blue, yellow, magenta, cyan, aqua, grey/gray, orange, brown, purple/violet and indigo.

Since GDAL 1.8.0, GMT .cpt palette files are also supported (COLOR_MODEL = RGB only).

Note: the syntax of the color configuration file is derived from the one supported by GRASS r.colors utility.
ESRI HDR color table files (.clr) also match that syntax.
The alpha component and the support of tab and comma as separators are GDAL specific extensions.

For example :
\verbatim
3500   white
2500   235:220:175
50%   190 185 135
700    240 250 150
0      50  180  50
nv     0   0   0   0 
\endverbatim

\subsection gdaldem_TRI TRI

This command outputs a single-band raster with values computed from the elevation.
TRI stands for Terrain Ruggedness Index, which is defined as the mean difference between a central pixel and its surrounding cells (see Wilson et al 2007, Marine Geodesy 30:3-35).

The value -9999 is used as the output nodata value.

There are no specific options.

\subsection gdaldem_TPI TPI

This command outputs a single-band raster with values computed from the elevation.
TPI stands for Topographic Position Index, which is defined as the difference between a central pixel and the mean of its surrounding cells (see Wilson et al 2007, Marine Geodesy 30:3-35).

The value -9999 is used as the output nodata value.

There are no specific options.

\subsection gdaldem_roughness roughness

This command outputs a single-band raster with values computed from the elevation.
Roughness is the largest inter-cell difference of a central pixel and its surrounding cell, as defined in Wilson et al (2007, Marine Geodesy 30:3-35).

The value -9999 is used as the output nodata value.

There are no specific options.


\section gdaldem_author AUTHORS
Matthew Perry <perrygeo@gmail.com>, Even Rouault <even.rouault@mines-paris.org>, Howard Butler <hobu.inc@gmail.com>, Chris Yesson <chris.yesson@ioz.ac.uk>

Derived from code by Michael Shapiro, Olga Waupotitsch, Marjorie Larson, Jim Westervelt :
U.S. Army CERL, 1993. GRASS 4.1 Reference Manual. U.S. Army Corps of Engineers,
Construction Engineering Research Laboratories, Champaign, Illinois, 1-425. 

\section gdaldem_seealso See also

Documentation of related GRASS utilities :

http://grass.osgeo.org/grass64/manuals/html64_user/r.slope.aspect.html

http://grass.osgeo.org/grass64/manuals/html64_user/r.shaded.relief.html

http://grass.osgeo.org/grass64/manuals/html64_user/r.colors.html

*/


*******************************************************************************
/*! \page gdalsrsinfo gdalsrsinfo
	
lists info about a given SRS in number of formats (WKT, PROJ.4, etc.)

\section gdalsrsinfo_synopsis SYNOPSIS

\verbatim
Usage: gdalsrsinfo [options] srs_def

srs_def may be the filename of a dataset supported by GDAL/OGR from which to extract SRS information
OR any of the usual GDAL/OGR forms (complete WKT, PROJ.4, EPSG:n or a file containing the SRS)

Options: 
   [--help-general] [-h]  Show help and exit
   [-p]                   Pretty-print where applicable (e.g. WKT)
   [-V]                   Validate SRS
   [-o out_type]          Output type { default, all, wkt_all, proj4,
                                        wkt, wkt_simple, wkt_noct, wkt_esri,
                                        mapinfo, xml }

\endverbatim

\section gdalsrsinfo_description DESCRIPTION

The gdalsrsinfo utility reports information about a given SRS from one of the following:

- The filename of a dataset supported by GDAL/OGR which contains SRS information
- Any of the usual GDAL/OGR forms (complete WKT, PROJ.4, EPSG:n or a file containing the SRS)

Output types:

- <b>default</b>&nbsp;&nbsp;&nbsp;proj4 and wkt (default option)
- <b>all</b>&nbsp;&nbsp;&nbsp;all options available
- <b>wkt_all</b>&nbsp;&nbsp;&nbsp;all wkt options available
- <b>proj4</b>&nbsp;&nbsp;&nbsp;PROJ.4 string
- <b>wkt</b>&nbsp;&nbsp;&nbsp;OGC WKT format (full)
- <b>wkt_simple</b>&nbsp;&nbsp;&nbsp;OGC WKT (simplified)
- <b>wkt_noct</b>&nbsp;&nbsp;&nbsp;OGC WKT (without OGC CT params)
- <b>wkt_esri</b>&nbsp;&nbsp;&nbsp;ESRI WKT format
- <b>mapinfo</b>&nbsp;&nbsp;&nbsp;Mapinfo style CoordSys format
- <b>xml</b>&nbsp;&nbsp;&nbsp;XML format (GML based)

\n
\section gdal_grid_example EXAMPLE

\verbatim
$  gdalsrsinfo   "EPSG:4326"

PROJ.4 : '+proj=longlat +datum=WGS84 +no_defs '

OGC WKT :
GEOGCS["WGS 84",
    DATUM["WGS_1984",
        SPHEROID["WGS 84",6378137,298.257223563,
            AUTHORITY["EPSG","7030"]],
        AUTHORITY["EPSG","6326"]],
    PRIMEM["Greenwich",0,
        AUTHORITY["EPSG","8901"]],
    UNIT["degree",0.0174532925199433,
        AUTHORITY["EPSG","9122"]],
    AUTHORITY["EPSG","4326"]]

\endverbatim

\n
\verbatim
$ gdalsrsinfo -o proj4 osr/data/lcc_esri.prj
'+proj=lcc +lat_1=34.33333333333334 +lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.22 +y_0=0 +datum=NAD83 +units=m +no_defs '
\endverbatim

\n
\verbatim
$ gdalsrsinfo -o proj4 landsat.tif
PROJ.4 : '+proj=utm +zone=19 +south +datum=WGS84 +units=m +no_defs '
\endverbatim

\n
\verbatim
$ gdalsrsinfo  -o wkt -p  "EPSG:32722"

PROJCS["WGS 84 / UTM zone 22S",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-51],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",10000000],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]],
    AXIS["Easting",EAST],
    AXIS["Northing",NORTH],
    AUTHORITY["EPSG","32722"]]
\endverbatim

\n
\verbatim
$ gdalsrsinfo  -o wkt_all  "EPSG:4618"

OGC WKT :
GEOGCS["SAD69",
    DATUM["South_American_Datum_1969",
        SPHEROID["GRS 1967 Modified",6378160,298.25,
            AUTHORITY["EPSG","7050"]],
        TOWGS84[-57,1,-41,0,0,0,0],
        AUTHORITY["EPSG","6618"]],
    PRIMEM["Greenwich",0,
        AUTHORITY["EPSG","8901"]],
    UNIT["degree",0.0174532925199433,
        AUTHORITY["EPSG","9122"]],
    AUTHORITY["EPSG","4618"]]

OGC WKT (simple) :
GEOGCS["SAD69",
    DATUM["South_American_Datum_1969",
        SPHEROID["GRS 1967 Modified",6378160,298.25],
        TOWGS84[-57,1,-41,0,0,0,0]],
    PRIMEM["Greenwich",0],
    UNIT["degree",0.0174532925199433]]

OGC WKT (no CT) :
GEOGCS["SAD69",
    DATUM["South_American_Datum_1969",
        SPHEROID["GRS 1967 Modified",6378160,298.25]],
    PRIMEM["Greenwich",0],
    UNIT["degree",0.0174532925199433]]

ESRI WKT :
GEOGCS["SAD69",
    DATUM["D_South_American_1969",
        SPHEROID["GRS_1967_Truncated",6378160,298.25]],
    PRIMEM["Greenwich",0],
    UNIT["Degree",0.017453292519943295]]
\endverbatim


\if man
\section gdalsrsinfo_author AUTHORS
Frank Warmerdam <warmerdam@pobox.com>, Etienne Tourigny <etourigny.dev-at-gmail-dot-com>
\endif
*/

*******************************************************************************
/*! \page gdalmanage gdalmanage

Identify, delete, rename and copy raster data files

\section gdalmanage_synopsis SYNOPSIS

\verbatim
Usage: gdalmanage mode [-r] [-u] [-f format]
                  datasetname [newdatasetname]
\endverbatim

\section gdalmanage_description DESCRIPTION

The gdalmanage program can perform various operations on raster data files, depending on the chosen <i>mode</i>. This includes identifying raster data types and deleting, renaming or copying the files.

<dl>
<dt> <i>mode</i>:</dt><dd>Mode of operation</dd>
 <dl>
 <dt> <b>identify</b> <i>datasetname</i>:</dt><dd>List data format of file.</dd>
 <dt> <b>copy</b> <i>datasetname newdatasetname</i>:</dt><dd>Create a copy of the raster file with a new name.</dd>
 <dt> <b>rename</b> <i>datasetname newdatasetname</i>:</dt><dd>Change the name of the raster file.</dd>
 <dt> <b>delete</b> <i>datasetname</i>:</dt><dd>Delete raster file.</dd>
 </dl>

 <dt> <b>-r</b>:</dt><dd>Recursively scan files/folders for raster files.</dd>
 <dt> <b>-u</b>:</dt><dd>Report failures if file type is unidentified.</dd>
 <dt> <b>-f</b> <i>format</i>:</dt><dd>Specify format of raster file if unknown by the application. Uses short data format name (e.g. <i>GTiff</i>).</dd>

<dt> <i>datasetname</i>:</dt><dd>Raster file to operate on.</dd>
<dt> <i>newdatasetname</i>:</dt><dd>For copy and rename modes, you provide a <i>source</i> filename and a <i>target</i> filename, just like copy and move commands in an operating system.</dd>
</dl>

\section gdalmanage_exampes EXAMPLES

\subsection gdalmanage_example_identify Using identify mode

Report the data format of the raster file by using the <i>identify</i> mode and specifying a data file name:

\verbatim
$ gdalmanage identify NE1_50M_SR_W.tif

NE1_50M_SR_W.tif: GTiff
\endverbatim

Recursive mode will scan subfolders and report the data format:

\verbatim
$ gdalmanage identify -r 50m_raster/

NE1_50M_SR_W/ne1_50m.jpg: JPEG
NE1_50M_SR_W/ne1_50m.png: PNG
NE1_50M_SR_W/ne1_50m_20pct.tif: GTiff
NE1_50M_SR_W/ne1_50m_band1.tif: GTiff
NE1_50M_SR_W/ne1_50m_print.png: PNG
NE1_50M_SR_W/NE1_50M_SR_W.aux: HFA
NE1_50M_SR_W/NE1_50M_SR_W.tif: GTiff
NE1_50M_SR_W/ne1_50m_sub.tif: GTiff
NE1_50M_SR_W/ne1_50m_sub2.tif: GTiff

\endverbatim
\subsection gdalmanage_example_copy Using copy mode

Copy the raster data:

\verbatim
$ gdalmanage copy NE1_50M_SR_W.tif ne1_copy.tif
\endverbatim

\subsection gdalmanage_example_rename Using rename mode

Rename raster data:
\verbatim
$ gdalmanage rename NE1_50M_SR_W.tif ne1_rename.tif
\endverbatim

\subsection gdalmanage_example_delete Using delete mode

Delete the raster data:

\verbatim
gdalmanage delete NE1_50M_SR_W.tif
\endverbatim

\if man
\section gdalmanage_author AUTHORS
Tyler Mitchell <spatialguru@shaw.ca>
\endif
*/