File: gdal2tiles.py

package info (click to toggle)
gdal 1.10.1+dfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,320 kB
  • ctags: 74,726
  • sloc: cpp: 677,199; ansic: 162,820; python: 13,816; cs: 11,163; sh: 10,446; java: 5,279; perl: 4,429; php: 2,971; xml: 1,500; yacc: 934; makefile: 494; sql: 112
file content (2262 lines) | stat: -rwxr-xr-x 101,714 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
#!/usr/bin/env python
#******************************************************************************
#  $Id: gdal2tiles.py 25611 2013-02-07 10:24:56Z bishop $
# 
# Project:  Google Summer of Code 2007, 2008 (http://code.google.com/soc/)
# Support:  BRGM (http://www.brgm.fr)
# Purpose:  Convert a raster into TMS (Tile Map Service) tiles in a directory.
#           - generate Google Earth metadata (KML SuperOverlay)
#           - generate simple HTML viewer based on Google Maps and OpenLayers
#           - support of global tiles (Spherical Mercator) for compatibility
#               with interactive web maps a la Google Maps
# Author:   Klokan Petr Pridal, klokan at klokan dot cz
# Web:      http://www.klokan.cz/projects/gdal2tiles/
# GUI:      http://www.maptiler.org/
#
###############################################################################
# Copyright (c) 2008, Klokan Petr Pridal
# 
#  Permission is hereby granted, free of charge, to any person obtaining a
#  copy of this software and associated documentation files (the "Software"),
#  to deal in the Software without restriction, including without limitation
#  the rights to use, copy, modify, merge, publish, distribute, sublicense,
#  and/or sell copies of the Software, and to permit persons to whom the
#  Software is furnished to do so, subject to the following conditions:
# 
#  The above copyright notice and this permission notice shall be included
#  in all copies or substantial portions of the Software.
# 
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
#  OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
#  THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
#  FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
#  DEALINGS IN THE SOFTWARE.
#******************************************************************************

import sys

try:
    from osgeo import gdal
    from osgeo import osr
except:
    import gdal
    print('You are using "old gen" bindings. gdal2tiles needs "new gen" bindings.')
    sys.exit(1)

import os
import math

try:
    from PIL import Image
    import numpy
    import osgeo.gdal_array as gdalarray
except:
    # 'antialias' resampling is not available
    pass

__version__ = "$Id: gdal2tiles.py 25611 2013-02-07 10:24:56Z bishop $"

resampling_list = ('average','near','bilinear','cubic','cubicspline','lanczos','antialias')
profile_list = ('mercator','geodetic','raster') #,'zoomify')
webviewer_list = ('all','google','openlayers','none')

# =============================================================================
# =============================================================================
# =============================================================================

__doc__globalmaptiles = """
globalmaptiles.py

Global Map Tiles as defined in Tile Map Service (TMS) Profiles
==============================================================

Functions necessary for generation of global tiles used on the web.
It contains classes implementing coordinate conversions for:

  - GlobalMercator (based on EPSG:900913 = EPSG:3785)
       for Google Maps, Yahoo Maps, Bing Maps compatible tiles
  - GlobalGeodetic (based on EPSG:4326)
       for OpenLayers Base Map and Google Earth compatible tiles

More info at:

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation
http://msdn.microsoft.com/en-us/library/bb259689.aspx
http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates

Created by Klokan Petr Pridal on 2008-07-03.
Google Summer of Code 2008, project GDAL2Tiles for OSGEO.

In case you use this class in your product, translate it to another language
or find it useful for your project please let me know.
My email: klokan at klokan dot cz.
I would like to know where it was used.

Class is available under the open-source GDAL license (www.gdal.org).
"""

import math

MAXZOOMLEVEL = 32

class GlobalMercator(object):
    """
    TMS Global Mercator Profile
    ---------------------------

  Functions necessary for generation of tiles in Spherical Mercator projection,
  EPSG:900913 (EPSG:gOOglE, Google Maps Global Mercator), EPSG:3785, OSGEO:41001.

  Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps,
  UK Ordnance Survey OpenSpace API, ...
  and you can overlay them on top of base maps of those web mapping applications.

    Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left).

    What coordinate conversions do we need for TMS Global Mercator tiles::

         LatLon      <->       Meters      <->     Pixels    <->       Tile     

     WGS84 coordinates   Spherical Mercator  Pixels in pyramid  Tiles in pyramid
         lat/lon            XY in metres     XY pixels Z zoom      XYZ from TMS 
        EPSG:4326           EPSG:900913                                         
         .----.              ---------               --                TMS      
        /      \     <->     |       |     <->     /----/    <->      Google    
        \      /             |       |           /--------/          QuadTree   
         -----               ---------         /------------/                   
       KML, public         WebMapService         Web Clients      TileMapService

    What is the coordinate extent of Earth in EPSG:900913?

      [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244]
      Constant 20037508.342789244 comes from the circumference of the Earth in meters,
      which is 40 thousand kilometers, the coordinate origin is in the middle of extent.
      In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0
      $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:900913
      Polar areas with abs(latitude) bigger then 85.05112878 are clipped off.

    What are zoom level constants (pixels/meter) for pyramid with EPSG:900913?

      whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile,
      every lower zoom level resolution is always divided by two
      initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062

    What is the difference between TMS and Google Maps/QuadTree tile name convention?

      The tile raster itself is the same (equal extent, projection, pixel size),
      there is just different identification of the same raster tile.
      Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ.
      Google placed the origin [0,0] to the top-left corner, reference is XYZ.
      Microsoft is referencing tiles by a QuadTree name, defined on the website:
      http://msdn2.microsoft.com/en-us/library/bb259689.aspx

    The lat/lon coordinates are using WGS84 datum, yeh?

      Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum.
      Well, the web clients like Google Maps are projecting those coordinates by
      Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if
      the were on the WGS84 ellipsoid.
     
      From MSDN documentation:
      To simplify the calculations, we use the spherical form of projection, not
      the ellipsoidal form. Since the projection is used only for map display,
      and not for displaying numeric coordinates, we don't need the extra precision
      of an ellipsoidal projection. The spherical projection causes approximately
      0.33 percent scale distortion in the Y direction, which is not visually noticable.

    How do I create a raster in EPSG:900913 and convert coordinates with PROJ.4?

      You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform.
      All of the tools supports -t_srs 'epsg:900913'.

      For other GIS programs check the exact definition of the projection:
      More info at http://spatialreference.org/ref/user/google-projection/
      The same projection is degined as EPSG:3785. WKT definition is in the official
      EPSG database.

      Proj4 Text:
        +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0
        +k=1.0 +units=m +nadgrids=@null +no_defs

      Human readable WKT format of EPGS:900913:
         PROJCS["Google Maps Global Mercator",
             GEOGCS["WGS 84",
                 DATUM["WGS_1984",
                     SPHEROID["WGS 84",6378137,298.257223563,
                         AUTHORITY["EPSG","7030"]],
                     AUTHORITY["EPSG","6326"]],
                 PRIMEM["Greenwich",0],
                 UNIT["degree",0.0174532925199433],
                 AUTHORITY["EPSG","4326"]],
             PROJECTION["Mercator_1SP"],
             PARAMETER["central_meridian",0],
             PARAMETER["scale_factor",1],
             PARAMETER["false_easting",0],
             PARAMETER["false_northing",0],
             UNIT["metre",1,
                 AUTHORITY["EPSG","9001"]]]
    """

    def __init__(self, tileSize=256):
        "Initialize the TMS Global Mercator pyramid"
        self.tileSize = tileSize
        self.initialResolution = 2 * math.pi * 6378137 / self.tileSize
        # 156543.03392804062 for tileSize 256 pixels
        self.originShift = 2 * math.pi * 6378137 / 2.0
        # 20037508.342789244

    def LatLonToMeters(self, lat, lon ):
        "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913"

        mx = lon * self.originShift / 180.0
        my = math.log( math.tan((90 + lat) * math.pi / 360.0 )) / (math.pi / 180.0)

        my = my * self.originShift / 180.0
        return mx, my

    def MetersToLatLon(self, mx, my ):
        "Converts XY point from Spherical Mercator EPSG:900913 to lat/lon in WGS84 Datum"

        lon = (mx / self.originShift) * 180.0
        lat = (my / self.originShift) * 180.0

        lat = 180 / math.pi * (2 * math.atan( math.exp( lat * math.pi / 180.0)) - math.pi / 2.0)
        return lat, lon

    def PixelsToMeters(self, px, py, zoom):
        "Converts pixel coordinates in given zoom level of pyramid to EPSG:900913"

        res = self.Resolution( zoom )
        mx = px * res - self.originShift
        my = py * res - self.originShift
        return mx, my

    def MetersToPixels(self, mx, my, zoom):
        "Converts EPSG:900913 to pyramid pixel coordinates in given zoom level"

        res = self.Resolution( zoom )
        px = (mx + self.originShift) / res
        py = (my + self.originShift) / res
        return px, py

    def PixelsToTile(self, px, py):
        "Returns a tile covering region in given pixel coordinates"

        tx = int( math.ceil( px / float(self.tileSize) ) - 1 )
        ty = int( math.ceil( py / float(self.tileSize) ) - 1 )
        return tx, ty

    def PixelsToRaster(self, px, py, zoom):
        "Move the origin of pixel coordinates to top-left corner"

        mapSize = self.tileSize << zoom
        return px, mapSize - py

    def MetersToTile(self, mx, my, zoom):
        "Returns tile for given mercator coordinates"

        px, py = self.MetersToPixels( mx, my, zoom)
        return self.PixelsToTile( px, py)

    def TileBounds(self, tx, ty, zoom):
        "Returns bounds of the given tile in EPSG:900913 coordinates"

        minx, miny = self.PixelsToMeters( tx*self.tileSize, ty*self.tileSize, zoom )
        maxx, maxy = self.PixelsToMeters( (tx+1)*self.tileSize, (ty+1)*self.tileSize, zoom )
        return ( minx, miny, maxx, maxy )

    def TileLatLonBounds(self, tx, ty, zoom ):
        "Returns bounds of the given tile in latutude/longitude using WGS84 datum"

        bounds = self.TileBounds( tx, ty, zoom)
        minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1])
        maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3])

        return ( minLat, minLon, maxLat, maxLon )

    def Resolution(self, zoom ):
        "Resolution (meters/pixel) for given zoom level (measured at Equator)"

        # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom)
        return self.initialResolution / (2**zoom)

    def ZoomForPixelSize(self, pixelSize ):
        "Maximal scaledown zoom of the pyramid closest to the pixelSize."

        for i in range(MAXZOOMLEVEL):
            if pixelSize > self.Resolution(i):
                if i!=0:
                    return i-1
                else:
                    return 0 # We don't want to scale up

    def GoogleTile(self, tx, ty, zoom):
        "Converts TMS tile coordinates to Google Tile coordinates"

        # coordinate origin is moved from bottom-left to top-left corner of the extent
        return tx, (2**zoom - 1) - ty

    def QuadTree(self, tx, ty, zoom ):
        "Converts TMS tile coordinates to Microsoft QuadTree"

        quadKey = ""
        ty = (2**zoom - 1) - ty
        for i in range(zoom, 0, -1):
            digit = 0
            mask = 1 << (i-1)
            if (tx & mask) != 0:
                digit += 1
            if (ty & mask) != 0:
                digit += 2
            quadKey += str(digit)

        return quadKey

#---------------------

class GlobalGeodetic(object):
    """
    TMS Global Geodetic Profile
    ---------------------------

    Functions necessary for generation of global tiles in Plate Carre projection,
    EPSG:4326, "unprojected profile".

    Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters)
    and you can overlay the tiles on top of OpenLayers base map.

    Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left).

    What coordinate conversions do we need for TMS Global Geodetic tiles?

      Global Geodetic tiles are using geodetic coordinates (latitude,longitude)
      directly as planar coordinates XY (it is also called Unprojected or Plate
      Carre). We need only scaling to pixel pyramid and cutting to tiles.
      Pyramid has on top level two tiles, so it is not square but rectangle.
      Area [-180,-90,180,90] is scaled to 512x256 pixels.
      TMS has coordinate origin (for pixels and tiles) in bottom-left corner.
      Rasters are in EPSG:4326 and therefore are compatible with Google Earth.

         LatLon      <->      Pixels      <->     Tiles     

     WGS84 coordinates   Pixels in pyramid  Tiles in pyramid
         lat/lon         XY pixels Z zoom      XYZ from TMS 
        EPSG:4326                                           
         .----.                ----                         
        /      \     <->    /--------/    <->      TMS      
        \      /         /--------------/                   
         -----        /--------------------/                
       WMS, KML    Web Clients, Google Earth  TileMapService
    """

    def __init__(self, tileSize = 256):
        self.tileSize = tileSize

    def LatLonToPixels(self, lat, lon, zoom):
        "Converts lat/lon to pixel coordinates in given zoom of the EPSG:4326 pyramid"

        res = 180.0 / self.tileSize / 2**zoom
        px = (180 + lat) / res
        py = (90 + lon) / res
        return px, py

    def PixelsToTile(self, px, py):
        "Returns coordinates of the tile covering region in pixel coordinates"

        tx = int( math.ceil( px / float(self.tileSize) ) - 1 )
        ty = int( math.ceil( py / float(self.tileSize) ) - 1 )
        return tx, ty

    def LatLonToTile(self, lat, lon, zoom):
        "Returns the tile for zoom which covers given lat/lon coordinates"

        px, py = self.LatLonToPixels( lat, lon, zoom)
        return self.PixelsToTile(px,py)

    def Resolution(self, zoom ):
        "Resolution (arc/pixel) for given zoom level (measured at Equator)"

        return 180.0 / self.tileSize / 2**zoom
        #return 180 / float( 1 << (8+zoom) )

    def ZoomForPixelSize(self, pixelSize ):
        "Maximal scaledown zoom of the pyramid closest to the pixelSize."

        for i in range(MAXZOOMLEVEL):
            if pixelSize > self.Resolution(i):
                if i!=0:
                    return i-1
                else:
                    return 0 # We don't want to scale up

    def TileBounds(self, tx, ty, zoom):
        "Returns bounds of the given tile"
        res = 180.0 / self.tileSize / 2**zoom
        return (
            tx*self.tileSize*res - 180,
            ty*self.tileSize*res - 90,
            (tx+1)*self.tileSize*res - 180,
            (ty+1)*self.tileSize*res - 90
        )

    def TileLatLonBounds(self, tx, ty, zoom):
        "Returns bounds of the given tile in the SWNE form"
        b = self.TileBounds(tx, ty, zoom)
        return (b[1],b[0],b[3],b[2])

#---------------------
# TODO: Finish Zoomify implemtentation!!!
class Zoomify(object):
    """
    Tiles compatible with the Zoomify viewer
    ----------------------------------------
    """

    def __init__(self, width, height, tilesize = 256, tileformat='jpg'):
        """Initialization of the Zoomify tile tree"""

        self.tilesize = tilesize
        self.tileformat = tileformat
        imagesize = (width, height)
        tiles = ( math.ceil( width / tilesize ), math.ceil( height / tilesize ) )

        # Size (in tiles) for each tier of pyramid.
        self.tierSizeInTiles = []
        self.tierSizeInTiles.push( tiles )

        # Image size in pixels for each pyramid tierself
        self.tierImageSize = []
        self.tierImageSize.append( imagesize );

        while (imagesize[0] > tilesize or imageSize[1] > tilesize ):
            imagesize = (math.floor( imagesize[0] / 2 ), math.floor( imagesize[1] / 2) )
            tiles = ( math.ceil( imagesize[0] / tilesize ), math.ceil( imagesize[1] / tilesize ) )
            self.tierSizeInTiles.append( tiles )
            self.tierImageSize.append( imagesize )

        self.tierSizeInTiles.reverse()
        self.tierImageSize.reverse()

        # Depth of the Zoomify pyramid, number of tiers (zoom levels)
        self.numberOfTiers = len(self.tierSizeInTiles)

        # Number of tiles up to the given tier of pyramid.
        self.tileCountUpToTier = []
        self.tileCountUpToTier[0] = 0
        for i in range(1, self.numberOfTiers+1):
            self.tileCountUpToTier.append(
                self.tierSizeInTiles[i-1][0] * self.tierSizeInTiles[i-1][1] + self.tileCountUpToTier[i-1]
            )

    def tilefilename(self, x, y, z):
        """Returns filename for tile with given coordinates"""

        tileIndex = x + y * self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z]
        return os.path.join("TileGroup%.0f" % math.floor( tileIndex / 256 ),
            "%s-%s-%s.%s" % ( z, x, y, self.tileformat))

# =============================================================================
# =============================================================================
# =============================================================================

class GDAL2Tiles(object):

    # -------------------------------------------------------------------------
    def process(self):
        """The main processing function, runs all the main steps of processing"""

        # Opening and preprocessing of the input file
        self.open_input()

        # Generation of main metadata files and HTML viewers
        self.generate_metadata()

        # Generation of the lowest tiles
        self.generate_base_tiles()

        # Generation of the overview tiles (higher in the pyramid)
        self.generate_overview_tiles()

    # -------------------------------------------------------------------------
    def error(self, msg, details = "" ):
        """Print an error message and stop the processing"""

        if details:
            self.parser.error(msg + "\n\n" + details)
        else:
            self.parser.error(msg)

    # -------------------------------------------------------------------------
    def progressbar(self, complete = 0.0):
        """Print progressbar for float value 0..1"""

        gdal.TermProgress_nocb(complete)

    # -------------------------------------------------------------------------
    def stop(self):
        """Stop the rendering immediately"""
        self.stopped = True

    # -------------------------------------------------------------------------
    def __init__(self, arguments ):
        """Constructor function - initialization"""

        self.stopped = False
        self.input = None
        self.output = None

        # Tile format
        self.tilesize = 256
        self.tiledriver = 'PNG'
        self.tileext = 'png'

        # Should we read bigger window of the input raster and scale it down?
        # Note: Modified leter by open_input()
        # Not for 'near' resampling
        # Not for Wavelet based drivers (JPEG2000, ECW, MrSID)
        # Not for 'raster' profile
        self.scaledquery = True
        # How big should be query window be for scaling down
        # Later on reset according the chosen resampling algorightm
        self.querysize = 4 * self.tilesize

        # Should we use Read on the input file for generating overview tiles?
        # Note: Modified later by open_input()
        # Otherwise the overview tiles are generated from existing underlying tiles
        self.overviewquery = False

        # RUN THE ARGUMENT PARSER:

        self.optparse_init()
        self.options, self.args = self.parser.parse_args(args=arguments)
        if not self.args:
            self.error("No input file specified")

        # POSTPROCESSING OF PARSED ARGUMENTS:

        # Workaround for old versions of GDAL
        try:
            if (self.options.verbose and self.options.resampling == 'near') or gdal.TermProgress_nocb:
                pass
        except:
            self.error("This version of GDAL is not supported. Please upgrade to 1.6+.")
            #,"You can try run crippled version of gdal2tiles with parameters: -v -r 'near'")

        # Is output directory the last argument?

        # Test output directory, if it doesn't exist
        if os.path.isdir(self.args[-1]) or ( len(self.args) > 1 and not os.path.exists(self.args[-1])):
            self.output = self.args[-1]
            self.args = self.args[:-1]

        # More files on the input not directly supported yet

        if (len(self.args) > 1):
            self.error("Processing of several input files is not supported.",
            """Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the files:
gdal_vrtmerge.py -o merged.vrt %s""" % " ".join(self.args))
            # TODO: Call functions from gdal_vrtmerge.py directly

        self.input = self.args[0]

        # Default values for not given options

        if not self.output:
            # Directory with input filename without extension in actual directory
            self.output = os.path.splitext(os.path.basename( self.input ))[0]

        if not self.options.title:
            self.options.title = os.path.basename( self.input )

        if self.options.url and not self.options.url.endswith('/'):
            self.options.url += '/'
        if self.options.url:
            self.options.url += os.path.basename( self.output ) + '/'

        # Supported options

        self.resampling = None

        if self.options.resampling == 'average':
            try:
                if gdal.RegenerateOverview:
                    pass
            except:
                self.error("'average' resampling algorithm is not available.", "Please use -r 'near' argument or upgrade to newer version of GDAL.")

        elif self.options.resampling == 'antialias':
            try:
                if numpy:
                    pass
            except:
                self.error("'antialias' resampling algorithm is not available.", "Install PIL (Python Imaging Library) and numpy.")

        elif self.options.resampling == 'near':
            self.resampling = gdal.GRA_NearestNeighbour
            self.querysize = self.tilesize

        elif self.options.resampling == 'bilinear':
            self.resampling = gdal.GRA_Bilinear
            self.querysize = self.tilesize * 2

        elif self.options.resampling == 'cubic':
            self.resampling = gdal.GRA_Cubic

        elif self.options.resampling == 'cubicspline':
            self.resampling = gdal.GRA_CubicSpline

        elif self.options.resampling == 'lanczos':
            self.resampling = gdal.GRA_Lanczos

        # User specified zoom levels
        self.tminz = None
        self.tmaxz = None
        if self.options.zoom:
            minmax = self.options.zoom.split('-',1)
            minmax.extend([''])
            min, max = minmax[:2]
            self.tminz = int(min)
            if max:
                self.tmaxz = int(max)
            else:
                self.tmaxz = int(min) 

        # KML generation
        self.kml = self.options.kml

        # Output the results

        if self.options.verbose:
            print("Options:", self.options)
            print("Input:", self.input)
            print("Output:", self.output)
            print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024))
            print('')

    # -------------------------------------------------------------------------
    def optparse_init(self):
        """Prepare the option parser for input (argv)"""

        from optparse import OptionParser, OptionGroup
        usage = "Usage: %prog [options] input_file(s) [output]"
        p = OptionParser(usage, version="%prog "+ __version__)
        p.add_option("-p", "--profile", dest='profile', type='choice', choices=profile_list,
                          help="Tile cutting profile (%s) - default 'mercator' (Google Maps compatible)" % ",".join(profile_list))
        p.add_option("-r", "--resampling", dest="resampling", type='choice', choices=resampling_list,
                        help="Resampling method (%s) - default 'average'" % ",".join(resampling_list))
        p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS",
                          help="The spatial reference system used for the source input data")
        p.add_option('-z', '--zoom', dest="zoom",
                          help="Zoom levels to render (format:'2-5' or '10').")
        p.add_option('-e', '--resume', dest="resume", action="store_true",
                          help="Resume mode. Generate only missing files.")
        p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA",
                          help="NODATA transparency value to assign to the input data")
        p.add_option("-v", "--verbose",
                          action="store_true", dest="verbose",
                          help="Print status messages to stdout")

        # KML options 
        g = OptionGroup(p, "KML (Google Earth) options", "Options for generated Google Earth SuperOverlay metadata")
        g.add_option("-k", "--force-kml", dest='kml', action="store_true",
                          help="Generate KML for Google Earth - default for 'geodetic' profile and 'raster' in EPSG:4326. For a dataset with different projection use with caution!")
        g.add_option("-n", "--no-kml", dest='kml', action="store_false",
                          help="Avoid automatic generation of KML files for EPSG:4326")
        g.add_option("-u", "--url", dest='url',
                          help="URL address where the generated tiles are going to be published")
        p.add_option_group(g)

        # HTML options
        g = OptionGroup(p, "Web viewer options", "Options for generated HTML viewers a la Google Maps")
        g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list,
                          help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list))
        g.add_option("-t", "--title", dest='title',
                          help="Title of the map")
        g.add_option("-c", "--copyright", dest='copyright',
                          help="Copyright for the map")
        g.add_option("-g", "--googlekey", dest='googlekey',
                          help="Google Maps API key from http://code.google.com/apis/maps/signup.html")
        g.add_option("-b", "--bingkey", dest='bingkey',
                          help="Bing Maps API key from https://www.bingmapsportal.com/"),
        p.add_option_group(g)

        # TODO: MapFile + TileIndexes per zoom level for efficient MapServer WMS
            #g = OptionGroup(p, "WMS MapServer metadata", "Options for generated mapfile and tileindexes for MapServer")
            #g.add_option("-i", "--tileindex", dest='wms', action="store_true"
            #                 help="Generate tileindex and mapfile for MapServer (WMS)")
            # p.add_option_group(g)

        p.set_defaults(verbose=False, profile="mercator", kml=False, url='',
        webviewer='all', copyright='', resampling='average', resume=False,
        googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE')

        self.parser = p

    # -------------------------------------------------------------------------
    def open_input(self):
        """Initialization of the input raster, reprojection if necessary"""

        gdal.AllRegister()

        # Initialize necessary GDAL drivers

        self.out_drv = gdal.GetDriverByName( self.tiledriver )
        self.mem_drv = gdal.GetDriverByName( 'MEM' )

        if not self.out_drv:
            raise Exception("The '%s' driver was not found, is it available in this GDAL build?", self.tiledriver)
        if not self.mem_drv:
            raise Exception("The 'MEM' driver was not found, is it available in this GDAL build?")

        # Open the input file

        if self.input:
            self.in_ds = gdal.Open(self.input, gdal.GA_ReadOnly)
        else:
            raise Exception("No input file was specified")

        if self.options.verbose:
            print("Input file:", "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, self.in_ds.RasterCount))

        if not self.in_ds:
            # Note: GDAL prints the ERROR message too
            self.error("It is not possible to open the input file '%s'." % self.input )

        # Read metadata from the input file
        if self.in_ds.RasterCount == 0:
            self.error( "Input file '%s' has no raster band" % self.input )

        if self.in_ds.GetRasterBand(1).GetRasterColorTable():
            # TODO: Process directly paletted dataset by generating VRT in memory
            self.error( "Please convert this file to RGB/RGBA and run gdal2tiles on the result.",
            """From paletted file you can create RGBA file (temp.vrt) by:
gdal_translate -of vrt -expand rgba %s temp.vrt
then run:
gdal2tiles temp.vrt""" % self.input )

        # Get NODATA value
        self.in_nodata = []
        for i in range(1, self.in_ds.RasterCount+1):
            if self.in_ds.GetRasterBand(i).GetNoDataValue() != None:
                self.in_nodata.append( self.in_ds.GetRasterBand(i).GetNoDataValue() )
        if self.options.srcnodata:
            nds = list(map( float, self.options.srcnodata.split(',')))
            if len(nds) < self.in_ds.RasterCount:
                self.in_nodata = (nds * self.in_ds.RasterCount)[:self.in_ds.RasterCount]
            else:
                self.in_nodata = nds

        if self.options.verbose:
            print("NODATA: %s" % self.in_nodata)

        #
        # Here we should have RGBA input dataset opened in self.in_ds
        #

        if self.options.verbose:
            print("Preprocessed file:", "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, self.in_ds.RasterCount))

        # Spatial Reference System of the input raster


        self.in_srs = None

        if self.options.s_srs:
            self.in_srs = osr.SpatialReference()
            self.in_srs.SetFromUserInput(self.options.s_srs)
            self.in_srs_wkt = self.in_srs.ExportToWkt()
        else:
            self.in_srs_wkt = self.in_ds.GetProjection()
            if not self.in_srs_wkt and self.in_ds.GetGCPCount() != 0:
                self.in_srs_wkt = self.in_ds.GetGCPProjection()
            if self.in_srs_wkt:
                self.in_srs = osr.SpatialReference()
                self.in_srs.ImportFromWkt(self.in_srs_wkt)
            #elif self.options.profile != 'raster':
            #   self.error("There is no spatial reference system info included in the input file.","You should run gdal2tiles with --s_srs EPSG:XXXX or similar.")

        # Spatial Reference System of tiles

        self.out_srs = osr.SpatialReference()

        if self.options.profile == 'mercator':
            self.out_srs.ImportFromEPSG(900913)
        elif self.options.profile == 'geodetic':
            self.out_srs.ImportFromEPSG(4326)
        else:
            self.out_srs = self.in_srs

        # Are the reference systems the same? Reproject if necessary.

        self.out_ds = None
        
        if self.options.profile in ('mercator', 'geodetic'):
                        
            if (self.in_ds.GetGeoTransform() == (0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) and (self.in_ds.GetGCPCount() == 0):
                self.error("There is no georeference - neither affine transformation (worldfile) nor GCPs. You can generate only 'raster' profile tiles.",
                "Either gdal2tiles with parameter -p 'raster' or use another GIS software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs")

            if self.in_srs:

                if (self.in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or (self.in_ds.GetGCPCount() != 0):

                    # Generation of VRT dataset in tile projection, default 'nearest neighbour' warping
                    self.out_ds = gdal.AutoCreateWarpedVRT( self.in_ds, self.in_srs_wkt, self.out_srs.ExportToWkt() )

                    # TODO: HIGH PRIORITY: Correction of AutoCreateWarpedVRT according the max zoomlevel for correct direct warping!!!

                    if self.options.verbose:
                        print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')")
                        self.out_ds.GetDriver().CreateCopy("tiles.vrt", self.out_ds)

                    # Note: self.in_srs and self.in_srs_wkt contain still the non-warped reference system!!!

                    # Correction of AutoCreateWarpedVRT for NODATA values
                    if self.in_nodata != []:
                        import tempfile
                        tempfilename = tempfile.mktemp('-gdal2tiles.vrt')
                        self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds)
                        # open as a text file
                        s = open(tempfilename).read()
                        # Add the warping options
                        s = s.replace("""<GDALWarpOptions>""","""<GDALWarpOptions>
      <Option name="INIT_DEST">NO_DATA</Option>
      <Option name="UNIFIED_SRC_NODATA">YES</Option>""")
                        # replace BandMapping tag for NODATA bands....
                        for i in range(len(self.in_nodata)):
                            s = s.replace("""<BandMapping src="%i" dst="%i"/>""" % ((i+1),(i+1)),"""<BandMapping src="%i" dst="%i">
          <SrcNoDataReal>%i</SrcNoDataReal>
          <SrcNoDataImag>0</SrcNoDataImag>
          <DstNoDataReal>%i</DstNoDataReal>
          <DstNoDataImag>0</DstNoDataImag>
        </BandMapping>""" % ((i+1), (i+1), self.in_nodata[i], self.in_nodata[i])) # Or rewrite to white by: , 255 ))
                        # save the corrected VRT
                        open(tempfilename,"w").write(s)
                        # open by GDAL as self.out_ds
                        self.out_ds = gdal.Open(tempfilename) #, gdal.GA_ReadOnly)
                        # delete the temporary file
                        os.unlink(tempfilename)

                        # set NODATA_VALUE metadata
                        self.out_ds.SetMetadataItem('NODATA_VALUES','%i %i %i' % (self.in_nodata[0],self.in_nodata[1],self.in_nodata[2]))

                        if self.options.verbose:
                            print("Modified warping result saved into 'tiles1.vrt'")
                            open("tiles1.vrt","w").write(s)

                    # -----------------------------------
                    # Correction of AutoCreateWarpedVRT for Mono (1 band) and RGB (3 bands) files without NODATA:
                    # equivalent of gdalwarp -dstalpha
                    if self.in_nodata == [] and self.out_ds.RasterCount in [1,3]:
                        import tempfile
                        tempfilename = tempfile.mktemp('-gdal2tiles.vrt')
                        self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds)
                        # open as a text file
                        s = open(tempfilename).read()
                        # Add the warping options
                        s = s.replace("""<BlockXSize>""","""<VRTRasterBand dataType="Byte" band="%i" subClass="VRTWarpedRasterBand">
    <ColorInterp>Alpha</ColorInterp>
  </VRTRasterBand>
  <BlockXSize>""" % (self.out_ds.RasterCount + 1))
                        s = s.replace("""</GDALWarpOptions>""", """<DstAlphaBand>%i</DstAlphaBand>
  </GDALWarpOptions>""" % (self.out_ds.RasterCount + 1))
                        s = s.replace("""</WorkingDataType>""", """</WorkingDataType>
    <Option name="INIT_DEST">0</Option>""")
                        # save the corrected VRT
                        open(tempfilename,"w").write(s)
                        # open by GDAL as self.out_ds
                        self.out_ds = gdal.Open(tempfilename) #, gdal.GA_ReadOnly)
                        # delete the temporary file
                        os.unlink(tempfilename)

                        if self.options.verbose:
                            print("Modified -dstalpha warping result saved into 'tiles1.vrt'")
                            open("tiles1.vrt","w").write(s)
                    s = '''
                    '''

            else:
                self.error("Input file has unknown SRS.", "Use --s_srs ESPG:xyz (or similar) to provide source reference system." )

            if self.out_ds and self.options.verbose:
                print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % (self.out_ds.RasterXSize, self.out_ds.RasterYSize, self.out_ds.RasterCount))
        
        if not self.out_ds:
            self.out_ds = self.in_ds

        #
        # Here we should have a raster (out_ds) in the correct Spatial Reference system
        #

        # Get alpha band (either directly or from NODATA value)
        self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand()
        if (self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or self.out_ds.RasterCount==4 or self.out_ds.RasterCount==2:
            # TODO: Better test for alpha band in the dataset
            self.dataBandsCount = self.out_ds.RasterCount - 1
        else:
            self.dataBandsCount = self.out_ds.RasterCount

        # KML test
        self.isepsg4326 = False
        srs4326 = osr.SpatialReference()
        srs4326.ImportFromEPSG(4326)
        if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4():
            self.kml = True
            self.isepsg4326 = True
            if self.options.verbose:
                print("KML autotest OK!")

        # Read the georeference 

        self.out_gt = self.out_ds.GetGeoTransform()

        #originX, originY = self.out_gt[0], self.out_gt[3]
        #pixelSize = self.out_gt[1] # = self.out_gt[5]

        # Test the size of the pixel

        # MAPTILER - COMMENTED
        #if self.out_gt[1] != (-1 * self.out_gt[5]) and self.options.profile != 'raster':
            # TODO: Process corectly coordinates with are have swichted Y axis (display in OpenLayers too)
            #self.error("Size of the pixel in the output differ for X and Y axes.")

        # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile)
        if (self.out_gt[2], self.out_gt[4]) != (0,0):
            self.error("Georeference of the raster contains rotation or skew. Such raster is not supported. Please use gdalwarp first.")
            # TODO: Do the warping in this case automaticaly

        #
        # Here we expect: pixel is square, no rotation on the raster
        #

        # Output Bounds - coordinates in the output SRS
        self.ominx = self.out_gt[0]
        self.omaxx = self.out_gt[0]+self.out_ds.RasterXSize*self.out_gt[1]
        self.omaxy = self.out_gt[3]
        self.ominy = self.out_gt[3]-self.out_ds.RasterYSize*self.out_gt[1]
        # Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15

        if self.options.verbose:
            print("Bounds (output srs):", round(self.ominx, 13), self.ominy, self.omaxx, self.omaxy)

        #
        # Calculating ranges for tiles in different zoom levels
        #

        if self.options.profile == 'mercator':

            self.mercator = GlobalMercator() # from globalmaptiles.py

            # Function which generates SWNE in LatLong for given tile
            self.tileswne = self.mercator.TileLatLonBounds

            # Generate table with min max tile coordinates for all zoomlevels
            self.tminmax = list(range(0,32))
            for tz in range(0, 32):
                tminx, tminy = self.mercator.MetersToTile( self.ominx, self.ominy, tz )
                tmaxx, tmaxy = self.mercator.MetersToTile( self.omaxx, self.omaxy, tz )
                # crop tiles extending world limits (+-180,+-90)
                tminx, tminy = max(0, tminx), max(0, tminy)
                tmaxx, tmaxy = min(2**tz-1, tmaxx), min(2**tz-1, tmaxy)
                self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)

            # TODO: Maps crossing 180E (Alaska?)

            # Get the minimal zoom level (map covers area equivalent to one tile) 
            if self.tminz == None:
                self.tminz = self.mercator.ZoomForPixelSize( self.out_gt[1] * max( self.out_ds.RasterXSize, self.out_ds.RasterYSize) / float(self.tilesize) )

            # Get the maximal zoom level (closest possible zoom level up on the resolution of raster)
            if self.tmaxz == None:
                self.tmaxz = self.mercator.ZoomForPixelSize( self.out_gt[1] )

            if self.options.verbose:
                print("Bounds (latlong):", self.mercator.MetersToLatLon( self.ominx, self.ominy), self.mercator.MetersToLatLon( self.omaxx, self.omaxy))
                print('MinZoomLevel:', self.tminz)
                print("MaxZoomLevel:", self.tmaxz, "(", self.mercator.Resolution( self.tmaxz ),")")

        if self.options.profile == 'geodetic':

            self.geodetic = GlobalGeodetic() # from globalmaptiles.py

            # Function which generates SWNE in LatLong for given tile
            self.tileswne = self.geodetic.TileLatLonBounds

            # Generate table with min max tile coordinates for all zoomlevels
            self.tminmax = list(range(0,32))
            for tz in range(0, 32):
                tminx, tminy = self.geodetic.LatLonToTile( self.ominx, self.ominy, tz )
                tmaxx, tmaxy = self.geodetic.LatLonToTile( self.omaxx, self.omaxy, tz )
                # crop tiles extending world limits (+-180,+-90)
                tminx, tminy = max(0, tminx), max(0, tminy)
                tmaxx, tmaxy = min(2**(tz+1)-1, tmaxx), min(2**tz-1, tmaxy)
                self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)

            # TODO: Maps crossing 180E (Alaska?)

            # Get the maximal zoom level (closest possible zoom level up on the resolution of raster)
            if self.tminz == None:
                self.tminz = self.geodetic.ZoomForPixelSize( self.out_gt[1] * max( self.out_ds.RasterXSize, self.out_ds.RasterYSize) / float(self.tilesize) )

            # Get the maximal zoom level (closest possible zoom level up on the resolution of raster)
            if self.tmaxz == None:
                self.tmaxz = self.geodetic.ZoomForPixelSize( self.out_gt[1] )

            if self.options.verbose:
                print("Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy)

        if self.options.profile == 'raster':

            log2 = lambda x: math.log10(x) / math.log10(2) # log2 (base 2 logarithm)

            self.nativezoom = int(max( math.ceil(log2(self.out_ds.RasterXSize/float(self.tilesize))),
                                       math.ceil(log2(self.out_ds.RasterYSize/float(self.tilesize)))))

            if self.options.verbose:
                print("Native zoom of the raster:", self.nativezoom)

            # Get the minimal zoom level (whole raster in one tile)
            if self.tminz == None:
                self.tminz = 0

            # Get the maximal zoom level (native resolution of the raster)
            if self.tmaxz == None:
                self.tmaxz = self.nativezoom

            # Generate table with min max tile coordinates for all zoomlevels
            self.tminmax = list(range(0, self.tmaxz+1))
            self.tsize = list(range(0, self.tmaxz+1))
            for tz in range(0, self.tmaxz+1):
                tsize = 2.0**(self.nativezoom-tz)*self.tilesize
                tminx, tminy = 0, 0
                tmaxx = int(math.ceil( self.out_ds.RasterXSize / tsize )) - 1
                tmaxy = int(math.ceil( self.out_ds.RasterYSize / tsize )) - 1
                self.tsize[tz] = math.ceil(tsize)
                self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)

            # Function which generates SWNE in LatLong for given tile
            if self.kml and self.in_srs_wkt:
                self.ct = osr.CoordinateTransformation(self.in_srs, srs4326)

                def rastertileswne(x,y,z):
                    pixelsizex = (2**(self.tmaxz-z) * self.out_gt[1]) # X-pixel size in level
                    pixelsizey = (2**(self.tmaxz-z) * self.out_gt[1]) # Y-pixel size in level (usually -1*pixelsizex)
                    west = self.out_gt[0] + x*self.tilesize*pixelsizex
                    east = west + self.tilesize*pixelsizex
                    south = self.ominy + y*self.tilesize*pixelsizex
                    north = south + self.tilesize*pixelsizex
                    if not self.isepsg4326:
                        # Transformation to EPSG:4326 (WGS84 datum)
                        west, south = self.ct.TransformPoint(west, south)[:2]
                        east, north = self.ct.TransformPoint(east, north)[:2]
                    return south, west, north, east

                self.tileswne = rastertileswne
            else:
                self.tileswne = lambda x, y, z: (0,0,0,0)

    # -------------------------------------------------------------------------
    def generate_metadata(self):
        """Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing)."""

        if not os.path.exists(self.output):
            os.makedirs(self.output)

        if self.options.profile == 'mercator':

            south, west = self.mercator.MetersToLatLon( self.ominx, self.ominy)
            north, east = self.mercator.MetersToLatLon( self.omaxx, self.omaxy)
            south, west = max(-85.05112878, south), max(-180.0, west)
            north, east = min(85.05112878, north), min(180.0, east)
            self.swne = (south, west, north, east)

            # Generate googlemaps.html
            if self.options.webviewer in ('all','google') and self.options.profile == 'mercator':
                if not self.options.resume or not os.path.exists(os.path.join(self.output, 'googlemaps.html')):
                    f = open(os.path.join(self.output, 'googlemaps.html'), 'w')
                    f.write( self.generate_googlemaps() )
                    f.close()

            # Generate openlayers.html
            if self.options.webviewer in ('all','openlayers'):
                if not self.options.resume or not os.path.exists(os.path.join(self.output, 'openlayers.html')):
                    f = open(os.path.join(self.output, 'openlayers.html'), 'w')
                    f.write( self.generate_openlayers() )
                    f.close()

        elif self.options.profile == 'geodetic':

            west, south = self.ominx, self.ominy
            east, north = self.omaxx, self.omaxy
            south, west = max(-90.0, south), max(-180.0, west)
            north, east = min(90.0, north), min(180.0, east)
            self.swne = (south, west, north, east)

            # Generate openlayers.html
            if self.options.webviewer in ('all','openlayers'):
                if not self.options.resume or not os.path.exists(os.path.join(self.output, 'openlayers.html')):
                    f = open(os.path.join(self.output, 'openlayers.html'), 'w')
                    f.write( self.generate_openlayers() )
                    f.close()

        elif self.options.profile == 'raster':

            west, south = self.ominx, self.ominy
            east, north = self.omaxx, self.omaxy

            self.swne = (south, west, north, east)

            # Generate openlayers.html
            if self.options.webviewer in ('all','openlayers'):
                if not self.options.resume or not os.path.exists(os.path.join(self.output, 'openlayers.html')):
                    f = open(os.path.join(self.output, 'openlayers.html'), 'w')
                    f.write( self.generate_openlayers() )
                    f.close()


        # Generate tilemapresource.xml.
        if not self.options.resume or not os.path.exists(os.path.join(self.output, 'tilemapresource.xml')):
            f = open(os.path.join(self.output, 'tilemapresource.xml'), 'w')
            f.write( self.generate_tilemapresource())
            f.close()

        if self.kml:
            # TODO: Maybe problem for not automatically generated tminz
            # The root KML should contain links to all tiles in the tminz level
            children = []
            xmin, ymin, xmax, ymax = self.tminmax[self.tminz]
            for x in range(xmin, xmax+1):
                for y in range(ymin, ymax+1):
                    children.append( [ x, y, self.tminz ] ) 
            # Generate Root KML
            if self.kml:
                if not self.options.resume or not os.path.exists(os.path.join(self.output, 'doc.kml')):
                    f = open(os.path.join(self.output, 'doc.kml'), 'w')
                    f.write( self.generate_kml( None, None, None, children) )
                    f.close()

    # -------------------------------------------------------------------------
    def generate_base_tiles(self):
        """Generation of the base tiles (the lowest in the pyramid) directly from the input raster"""

        print("Generating Base Tiles:")

        if self.options.verbose:
            #mx, my = self.out_gt[0], self.out_gt[3] # OriginX, OriginY
            #px, py = self.mercator.MetersToPixels( mx, my, self.tmaxz)
            #print "Pixel coordinates:", px, py, (mx, my)
            print('')
            print("Tiles generated from the max zoom level:")
            print("----------------------------------------")
            print('')


        # Set the bounds
        tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz]

        # Just the center tile
        #tminx = tminx+ (tmaxx - tminx)/2
        #tminy = tminy+ (tmaxy - tminy)/2
        #tmaxx = tminx
        #tmaxy = tminy

        ds = self.out_ds
        tilebands = self.dataBandsCount + 1
        querysize = self.querysize

        if self.options.verbose:
            print("dataBandsCount: ", self.dataBandsCount)
            print("tilebands: ", tilebands)

        #print tminx, tminy, tmaxx, tmaxy
        tcount = (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy))
        #print tcount
        ti = 0

        tz = self.tmaxz
        for ty in range(tmaxy, tminy-1, -1): #range(tminy, tmaxy+1):
            for tx in range(tminx, tmaxx+1):

                if self.stopped:
                    break
                ti += 1
                tilefilename = os.path.join(self.output, str(tz), str(tx), "%s.%s" % (ty, self.tileext))
                if self.options.verbose:
                    print(ti,'/',tcount, tilefilename) #, "( TileMapService: z / x / y )"

                if self.options.resume and os.path.exists(tilefilename):
                    if self.options.verbose:
                        print("Tile generation skiped because of --resume")
                    else:
                        self.progressbar( ti / float(tcount) )
                    continue

                # Create directories for the tile
                if not os.path.exists(os.path.dirname(tilefilename)):
                    os.makedirs(os.path.dirname(tilefilename))

                if self.options.profile == 'mercator':
                    # Tile bounds in EPSG:900913
                    b = self.mercator.TileBounds(tx, ty, tz)
                elif self.options.profile == 'geodetic':
                    b = self.geodetic.TileBounds(tx, ty, tz)

                #print "\tgdalwarp -ts 256 256 -te %s %s %s %s %s %s_%s_%s.tif" % ( b[0], b[1], b[2], b[3], "tiles.vrt", tz, tx, ty)

                # Don't scale up by nearest neighbour, better change the querysize
                # to the native resolution (and return smaller query tile) for scaling

                if self.options.profile in ('mercator','geodetic'):
                    rb, wb = self.geo_query( ds, b[0], b[3], b[2], b[1])
                    nativesize = wb[0]+wb[2] # Pixel size in the raster covering query geo extent
                    if self.options.verbose:
                        print("\tNative Extent (querysize",nativesize,"): ", rb, wb)

                    # Tile bounds in raster coordinates for ReadRaster query
                    rb, wb = self.geo_query( ds, b[0], b[3], b[2], b[1], querysize=querysize)

                    rx, ry, rxsize, rysize = rb
                    wx, wy, wxsize, wysize = wb

                else: # 'raster' profile:

                    tsize = int(self.tsize[tz]) # tilesize in raster coordinates for actual zoom
                    xsize = self.out_ds.RasterXSize # size of the raster in pixels
                    ysize = self.out_ds.RasterYSize
                    if tz >= self.nativezoom:
                        querysize = self.tilesize # int(2**(self.nativezoom-tz) * self.tilesize)

                    rx = (tx) * tsize
                    rxsize = 0
                    if tx == tmaxx:
                        rxsize = xsize % tsize
                    if rxsize == 0:
                        rxsize = tsize

                    rysize = 0
                    if ty == tmaxy:
                        rysize = ysize % tsize
                    if rysize == 0:
                        rysize = tsize
                    ry = ysize - (ty * tsize) - rysize

                    wx, wy = 0, 0
                    wxsize, wysize = int(rxsize/float(tsize) * self.tilesize), int(rysize/float(tsize) * self.tilesize)
                    if wysize != self.tilesize:
                        wy = self.tilesize - wysize

                if self.options.verbose:
                    print("\tReadRaster Extent: ", (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize))

                # Query is in 'nearest neighbour' but can be bigger in then the tilesize
                # We scale down the query to the tilesize by supplied algorithm.

                # Tile dataset in memory
                dstile = self.mem_drv.Create('', self.tilesize, self.tilesize, tilebands)
                data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, band_list=list(range(1,self.dataBandsCount+1)))
                alpha = self.alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize)

                if self.tilesize == querysize:
                    # Use the ReadRaster result directly in tiles ('nearest neighbour' query)
                    dstile.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1,self.dataBandsCount+1)))
                    dstile.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])

                    # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, MrSID)
                    # the ReadRaster function returns high-quality raster (not ugly nearest neighbour)
                    # TODO: Use directly 'near' for WaveLet files
                else:
                    # Big ReadRaster query in memory scaled to the tilesize - all but 'near' algo
                    dsquery = self.mem_drv.Create('', querysize, querysize, tilebands)
                    # TODO: fill the null value in case a tile without alpha is produced (now only png tiles are supported)
                    #for i in range(1, tilebands+1):
                    #   dsquery.GetRasterBand(1).Fill(tilenodata)
                    dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1,self.dataBandsCount+1)))
                    dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])

                    self.scale_query_to_tile(dsquery, dstile, tilefilename)
                    del dsquery

                del data

                if self.options.resampling != 'antialias':
                    # Write a copy of tile to png/jpg
                    self.out_drv.CreateCopy(tilefilename, dstile, strict=0)

                del dstile

                # Create a KML file for this tile.
                if self.kml:
                    kmlfilename = os.path.join(self.output, str(tz), str(tx), '%d.kml' % ty)
                    if not self.options.resume or not os.path.exists(kmlfilename):
                        f = open( kmlfilename, 'w')
                        f.write( self.generate_kml( tx, ty, tz ))
                        f.close()

                if not self.options.verbose:
                    self.progressbar( ti / float(tcount) )

    # -------------------------------------------------------------------------
    def generate_overview_tiles(self):
        """Generation of the overview tiles (higher in the pyramid) based on existing tiles"""

        print("Generating Overview Tiles:")

        tilebands = self.dataBandsCount + 1

        # Usage of existing tiles: from 4 underlying tiles generate one as overview.

        tcount = 0
        for tz in range(self.tmaxz-1, self.tminz-1, -1):
            tminx, tminy, tmaxx, tmaxy = self.tminmax[tz]
            tcount += (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy))

        ti = 0

        # querysize = tilesize * 2

        for tz in range(self.tmaxz-1, self.tminz-1, -1):
            tminx, tminy, tmaxx, tmaxy = self.tminmax[tz]
            for ty in range(tmaxy, tminy-1, -1): #range(tminy, tmaxy+1):
                for tx in range(tminx, tmaxx+1):

                    if self.stopped:
                        break

                    ti += 1
                    tilefilename = os.path.join( self.output, str(tz), str(tx), "%s.%s" % (ty, self.tileext) )

                    if self.options.verbose:
                        print(ti,'/',tcount, tilefilename) #, "( TileMapService: z / x / y )"

                    if self.options.resume and os.path.exists(tilefilename):
                        if self.options.verbose:
                            print("Tile generation skiped because of --resume")
                        else:
                            self.progressbar( ti / float(tcount) )
                        continue

                    # Create directories for the tile
                    if not os.path.exists(os.path.dirname(tilefilename)):
                        os.makedirs(os.path.dirname(tilefilename))

                    dsquery = self.mem_drv.Create('', 2*self.tilesize, 2*self.tilesize, tilebands)
                    # TODO: fill the null value
                    #for i in range(1, tilebands+1):
                    #   dsquery.GetRasterBand(1).Fill(tilenodata)
                    dstile = self.mem_drv.Create('', self.tilesize, self.tilesize, tilebands)

                    # TODO: Implement more clever walking on the tiles with cache functionality
                    # probably walk should start with reading of four tiles from top left corner
                    # Hilbert curve

                    children = []
                    # Read the tiles and write them to query window
                    for y in range(2*ty,2*ty+2):
                        for x in range(2*tx,2*tx+2):
                            minx, miny, maxx, maxy = self.tminmax[tz+1]
                            if x >= minx and x <= maxx and y >= miny and y <= maxy:
                                dsquerytile = gdal.Open( os.path.join( self.output, str(tz+1), str(x), "%s.%s" % (y, self.tileext)), gdal.GA_ReadOnly)
                                if (ty==0 and y==1) or (ty!=0 and (y % (2*ty)) != 0):
                                    tileposy = 0
                                else:
                                    tileposy = self.tilesize
                                if tx:
                                    tileposx = x % (2*tx) * self.tilesize
                                elif tx==0 and x==1:
                                    tileposx = self.tilesize
                                else:
                                    tileposx = 0
                                dsquery.WriteRaster( tileposx, tileposy, self.tilesize, self.tilesize,
                                    dsquerytile.ReadRaster(0,0,self.tilesize,self.tilesize),
                                    band_list=list(range(1,tilebands+1)))
                                children.append( [x, y, tz+1] )

                    self.scale_query_to_tile(dsquery, dstile, tilefilename)
                    # Write a copy of tile to png/jpg
                    if self.options.resampling != 'antialias':
                        # Write a copy of tile to png/jpg
                        self.out_drv.CreateCopy(tilefilename, dstile, strict=0)

                    if self.options.verbose:
                        print("\tbuild from zoom", tz+1," tiles:", (2*tx, 2*ty), (2*tx+1, 2*ty),(2*tx, 2*ty+1), (2*tx+1, 2*ty+1))

                    # Create a KML file for this tile.
                    if self.kml:
                        f = open( os.path.join(self.output, '%d/%d/%d.kml' % (tz, tx, ty)), 'w')
                        f.write( self.generate_kml( tx, ty, tz, children ) )
                        f.close()

                    if not self.options.verbose:
                        self.progressbar( ti / float(tcount) )


    # -------------------------------------------------------------------------
    def geo_query(self, ds, ulx, uly, lrx, lry, querysize = 0):
        """For given dataset and query in cartographic coordinates
        returns parameters for ReadRaster() in raster coordinates and
        x/y shifts (for border tiles). If the querysize is not given, the
        extent is returned in the native resolution of dataset ds."""

        geotran = ds.GetGeoTransform()
        rx= int((ulx - geotran[0]) / geotran[1] + 0.001)
        ry= int((uly - geotran[3]) / geotran[5] + 0.001)
        rxsize= int((lrx - ulx) / geotran[1] + 0.5)
        rysize= int((lry - uly) / geotran[5] + 0.5)

        if not querysize:
            wxsize, wysize = rxsize, rysize
        else:
            wxsize, wysize = querysize, querysize

        # Coordinates should not go out of the bounds of the raster
        wx = 0
        if rx < 0:
            rxshift = abs(rx)
            wx = int( wxsize * (float(rxshift) / rxsize) )
            wxsize = wxsize - wx
            rxsize = rxsize - int( rxsize * (float(rxshift) / rxsize) )
            rx = 0
        if rx+rxsize > ds.RasterXSize:
            wxsize = int( wxsize * (float(ds.RasterXSize - rx) / rxsize) )
            rxsize = ds.RasterXSize - rx

        wy = 0
        if ry < 0:
            ryshift = abs(ry)
            wy = int( wysize * (float(ryshift) / rysize) )
            wysize = wysize - wy
            rysize = rysize - int( rysize * (float(ryshift) / rysize) )
            ry = 0
        if ry+rysize > ds.RasterYSize:
            wysize = int( wysize * (float(ds.RasterYSize - ry) / rysize) )
            rysize = ds.RasterYSize - ry

        return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)

    # -------------------------------------------------------------------------
    def scale_query_to_tile(self, dsquery, dstile, tilefilename=''):
        """Scales down query dataset to the tile dataset"""

        querysize = dsquery.RasterXSize
        tilesize = dstile.RasterXSize
        tilebands = dstile.RasterCount

        if self.options.resampling == 'average':

            # Function: gdal.RegenerateOverview()
            for i in range(1,tilebands+1):
                # Black border around NODATA
                #if i != 4:
                #   dsquery.GetRasterBand(i).SetNoDataValue(0)
                res = gdal.RegenerateOverview( dsquery.GetRasterBand(i),
                    dstile.GetRasterBand(i), 'average' )
                if res != 0:
                    self.error("RegenerateOverview() failed on %s, error %d" % (tilefilename, res))

        elif self.options.resampling == 'antialias':

            # Scaling by PIL (Python Imaging Library) - improved Lanczos
            array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
            for i in range(tilebands):
                array[:,:,i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), 0, 0, querysize, querysize)
            im = Image.fromarray(array, 'RGBA') # Always four bands
            im1 = im.resize((tilesize,tilesize), Image.ANTIALIAS)
            if os.path.exists(tilefilename):
                im0 = Image.open(tilefilename)
                im1 = Image.composite(im1, im0, im1) 
            im1.save(tilefilename,self.tiledriver)

        else:

            # Other algorithms are implemented by gdal.ReprojectImage().
            dsquery.SetGeoTransform( (0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize)) )
            dstile.SetGeoTransform( (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) )

            res = gdal.ReprojectImage(dsquery, dstile, None, None, self.resampling)
            if res != 0:
                self.error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))

    # -------------------------------------------------------------------------
    def generate_tilemapresource(self):
        """
        Template for tilemapresource.xml. Returns filled string. Expected variables:
          title, north, south, east, west, isepsg4326, projection, publishurl,
          zoompixels, tilesize, tileformat, profile
        """

        args = {}
        args['title'] = self.options.title
        args['south'], args['west'], args['north'], args['east'] = self.swne
        args['tilesize'] = self.tilesize
        args['tileformat'] = self.tileext
        args['publishurl'] = self.options.url
        args['profile'] = self.options.profile

        if self.options.profile == 'mercator':
            args['srs'] = "EPSG:900913"
        elif self.options.profile == 'geodetic':
            args['srs'] = "EPSG:4326"
        elif self.options.s_srs:
            args['srs'] = self.options.s_srs
        elif self.out_srs:
            args['srs'] = self.out_srs.ExportToWkt()
        else:
            args['srs'] = ""

        s = """<?xml version="1.0" encoding="utf-8"?>
    <TileMap version="1.0.0" tilemapservice="http://tms.osgeo.org/1.0.0">
      <Title>%(title)s</Title>
      <Abstract></Abstract>
      <SRS>%(srs)s</SRS>
      <BoundingBox minx="%(south).14f" miny="%(west).14f" maxx="%(north).14f" maxy="%(east).14f"/>
      <Origin x="%(south).14f" y="%(west).14f"/>
      <TileFormat width="%(tilesize)d" height="%(tilesize)d" mime-type="image/%(tileformat)s" extension="%(tileformat)s"/>
      <TileSets profile="%(profile)s">
""" % args
        for z in range(self.tminz, self.tmaxz+1):
            if self.options.profile == 'raster':
                s += """        <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" % (args['publishurl'], z, (2**(self.nativezoom-z) * self.out_gt[1]), z)
            elif self.options.profile == 'mercator':
                s += """        <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" % (args['publishurl'], z, 156543.0339/2**z, z)
            elif self.options.profile == 'geodetic':
                s += """        <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" % (args['publishurl'], z, 0.703125/2**z, z)
        s += """      </TileSets>
    </TileMap>
    """
        return s

    # -------------------------------------------------------------------------
    def generate_kml(self, tx, ty, tz, children = [], **args ):
        """
        Template for the KML. Returns filled string.
        """
        args['tx'], args['ty'], args['tz'] = tx, ty, tz
        args['tileformat'] = self.tileext
        if 'tilesize' not in args:
            args['tilesize'] = self.tilesize

        if 'minlodpixels' not in args:
            args['minlodpixels'] = int( args['tilesize'] / 2 ) # / 2.56) # default 128
        if 'maxlodpixels' not in args:
            args['maxlodpixels'] = int( args['tilesize'] * 8 ) # 1.7) # default 2048 (used to be -1)
        if children == []:
            args['maxlodpixels'] = -1

        if tx==None:
            tilekml = False
            args['title'] = self.options.title
        else:
            tilekml = True
            args['title'] = "%d/%d/%d.kml" % (tz, tx, ty)
            args['south'], args['west'], args['north'], args['east'] = self.tileswne(tx, ty, tz)

        if tx == 0: 
            args['drawOrder'] = 2 * tz + 1 
        elif tx != None: 
            args['drawOrder'] = 2 * tz
        else:
            args['drawOrder'] = 0

        url = self.options.url
        if not url:
            if tilekml:
                url = "../../"
            else:
                url = ""

        s = """<?xml version="1.0" encoding="utf-8"?>
    <kml xmlns="http://www.opengis.net/kml/2.2">
      <Document>
        <name>%(title)s</name>
        <description></description>
        <Style>
          <ListStyle id="hideChildren">
            <listItemType>checkHideChildren</listItemType>
          </ListStyle>
        </Style>""" % args
        if tilekml:
            s += """
        <Region>
          <LatLonAltBox>
            <north>%(north).14f</north>
            <south>%(south).14f</south>
            <east>%(east).14f</east>
            <west>%(west).14f</west>
          </LatLonAltBox>
          <Lod>
            <minLodPixels>%(minlodpixels)d</minLodPixels>
            <maxLodPixels>%(maxlodpixels)d</maxLodPixels>
          </Lod>
        </Region>
        <GroundOverlay>
          <drawOrder>%(drawOrder)d</drawOrder>
          <Icon>
            <href>%(ty)d.%(tileformat)s</href>
          </Icon>
          <LatLonBox>
            <north>%(north).14f</north>
            <south>%(south).14f</south>
            <east>%(east).14f</east>
            <west>%(west).14f</west>
          </LatLonBox>
        </GroundOverlay>
    """ % args

        for cx, cy, cz in children:
            csouth, cwest, cnorth, ceast = self.tileswne(cx, cy, cz)
            s += """
        <NetworkLink>
          <name>%d/%d/%d.%s</name>
          <Region>
            <LatLonAltBox>
              <north>%.14f</north>
              <south>%.14f</south>
              <east>%.14f</east>
              <west>%.14f</west>
            </LatLonAltBox>
            <Lod>
              <minLodPixels>%d</minLodPixels>
              <maxLodPixels>-1</maxLodPixels>
            </Lod>
          </Region>
          <Link>
            <href>%s%d/%d/%d.kml</href>
            <viewRefreshMode>onRegion</viewRefreshMode>
            <viewFormat/>
          </Link>
        </NetworkLink>
    """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, args['minlodpixels'], url, cz, cx, cy)

        s += """      </Document>
    </kml>
    """
        return s

    # -------------------------------------------------------------------------
    def generate_googlemaps(self):
        """
        Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile.
        It returns filled string. Expected variables:
        title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl
        """
        args = {}
        args['title'] = self.options.title
        args['googlemapskey'] = self.options.googlekey
        args['south'], args['west'], args['north'], args['east'] = self.swne
        args['minzoom'] = self.tminz
        args['maxzoom'] = self.tmaxz
        args['tilesize'] = self.tilesize
        args['tileformat'] = self.tileext
        args['publishurl'] = self.options.url
        args['copyright'] = self.options.copyright

        s = """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
            <html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml"> 
              <head>
                <title>%(title)s</title>
                <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
                <meta http-equiv='imagetoolbar' content='no'/>
                <style type="text/css"> v\:* {behavior:url(#default#VML);}
                    html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; }
                    body { margin: 10px; background: #fff; }
                    h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; }
                    #header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; }
              #subheader { height: 12px; text-align: right; font-size: 10px; color: #555;}
              #map { height: 95%%; border: 1px solid #888; }
          </style>
          <script src='http://maps.google.com/maps?file=api&amp;v=2&amp;key=%(googlemapskey)s'></script>
          <script>
          //<![CDATA[

          /*
                 * Constants for given map
                 * TODO: read it from tilemapresource.xml
                 */

                var mapBounds = new GLatLngBounds(new GLatLng(%(south)s, %(west)s), new GLatLng(%(north)s, %(east)s));
                var mapMinZoom = %(minzoom)s;
                var mapMaxZoom = %(maxzoom)s;

                var opacity = 0.75;
                var map;
                var hybridOverlay;

                /*
                 * Create a Custom Opacity GControl
                 * http://www.maptiler.org/google-maps-overlay-opacity-control/
                 */

                var CTransparencyLENGTH = 58; 
                // maximum width that the knob can move (slide width minus knob width)

                function CTransparencyControl( overlay ) {
                    this.overlay = overlay;
                    this.opacity = overlay.getTileLayer().getOpacity();
                }
                CTransparencyControl.prototype = new GControl();

                // This function positions the slider to match the specified opacity
                CTransparencyControl.prototype.setSlider = function(pos) {
                    var left = Math.round((CTransparencyLENGTH*pos));
                    this.slide.left = left;
                    this.knob.style.left = left+"px";
                    this.knob.style.top = "0px";
                }

                // This function reads the slider and sets the overlay opacity level
                CTransparencyControl.prototype.setOpacity = function() {
                    // set the global variable
                    opacity = this.slide.left/CTransparencyLENGTH;
                    this.map.clearOverlays();
                    this.map.addOverlay(this.overlay, { zPriority: 0 });
                    if (this.map.getCurrentMapType() == G_HYBRID_MAP) {
                        this.map.addOverlay(hybridOverlay);
                    }
                }

                // This gets called by the API when addControl(new CTransparencyControl())
                CTransparencyControl.prototype.initialize = function(map) {
                    var that=this;
                    this.map = map;

                    // Is this MSIE, if so we need to use AlphaImageLoader
                    var agent = navigator.userAgent.toLowerCase();
                    if ((agent.indexOf("msie") > -1) && (agent.indexOf("opera") < 1)){this.ie = true} else {this.ie = false}

                    // create the background graphic as a <div> containing an image
                    var container = document.createElement("div");
                    container.style.width="70px";
                    container.style.height="21px";

                    // Handle transparent PNG files in MSIE
                    if (this.ie) {
                      var loader = "filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');";
                      container.innerHTML = '<div style="height:21px; width:70px; ' +loader+ '" ></div>';
                    } else {
                      container.innerHTML = '<div style="height:21px; width:70px; background-image: url(http://www.maptiler.org/img/opacity-slider.png)" ></div>';
                    }

                    // create the knob as a GDraggableObject
                    // Handle transparent PNG files in MSIE
                    if (this.ie) {
                      var loader = "progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');";
                      this.knob = document.createElement("div"); 
                      this.knob.style.height="21px";
                      this.knob.style.width="13px";
                  this.knob.style.overflow="hidden";
                      this.knob_img = document.createElement("div"); 
                      this.knob_img.style.height="21px";
                      this.knob_img.style.width="83px";
                      this.knob_img.style.filter=loader;
                  this.knob_img.style.position="relative";
                  this.knob_img.style.left="-70px";
                      this.knob.appendChild(this.knob_img);
                    } else {
                      this.knob = document.createElement("div"); 
                      this.knob.style.height="21px";
                      this.knob.style.width="13px";
                      this.knob.style.backgroundImage="url(http://www.maptiler.org/img/opacity-slider.png)";
                      this.knob.style.backgroundPosition="-70px 0px";
                    }
                    container.appendChild(this.knob);
                    this.slide=new GDraggableObject(this.knob, {container:container});
                    this.slide.setDraggableCursor('pointer');
                    this.slide.setDraggingCursor('pointer');
                    this.container = container;

                    // attach the control to the map
                    map.getContainer().appendChild(container);

                    // init slider
                    this.setSlider(this.opacity);

                    // Listen for the slider being moved and set the opacity
                    GEvent.addListener(this.slide, "dragend", function() {that.setOpacity()});
                    //GEvent.addListener(this.container, "click", function( x, y ) { alert(x, y) });

                    return container;
                  }

                  // Set the default position for the control
                  CTransparencyControl.prototype.getDefaultPosition = function() {
                    return new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(7, 47));
                  }

                /*
                 * Full-screen Window Resize
                 */

                function getWindowHeight() {
                    if (self.innerHeight) return self.innerHeight;
                    if (document.documentElement && document.documentElement.clientHeight)
                        return document.documentElement.clientHeight;
                    if (document.body) return document.body.clientHeight;
                    return 0;
                }

                function getWindowWidth() {
                    if (self.innerWidth) return self.innerWidth;
                    if (document.documentElement && document.documentElement.clientWidth)
                        return document.documentElement.clientWidth;
                    if (document.body) return document.body.clientWidth;
                    return 0;
                }

                function resize() {
                    var map = document.getElementById("map");  
                    var header = document.getElementById("header");  
                    var subheader = document.getElementById("subheader");  
                    map.style.height = (getWindowHeight()-80) + "px";
                    map.style.width = (getWindowWidth()-20) + "px";
                    header.style.width = (getWindowWidth()-20) + "px";
                    subheader.style.width = (getWindowWidth()-20) + "px";
                    // map.checkResize();
                }


                /*
                 * Main load function:
                 */

                function load() {

                   if (GBrowserIsCompatible()) {

                      // Bug in the Google Maps: Copyright for Overlay is not correctly displayed
                      var gcr = GMapType.prototype.getCopyrights;
                      GMapType.prototype.getCopyrights = function(bounds,zoom) {
                          return ["%(copyright)s"].concat(gcr.call(this,bounds,zoom));
                      }

                      map = new GMap2( document.getElementById("map"), { backgroundColor: '#fff' } );

                      map.addMapType(G_PHYSICAL_MAP);
                      map.setMapType(G_PHYSICAL_MAP);

                      map.setCenter( mapBounds.getCenter(), map.getBoundsZoomLevel( mapBounds ));

                      hybridOverlay = new GTileLayerOverlay( G_HYBRID_MAP.getTileLayers()[1] );
                      GEvent.addListener(map, "maptypechanged", function() {
                        if (map.getCurrentMapType() == G_HYBRID_MAP) {
                            map.addOverlay(hybridOverlay);
                        } else {
                           map.removeOverlay(hybridOverlay);
                        }
                      } );

                      var tilelayer = new GTileLayer(GCopyrightCollection(''), mapMinZoom, mapMaxZoom);
                      var mercator = new GMercatorProjection(mapMaxZoom+1);
                      tilelayer.getTileUrl = function(tile,zoom) {
                          if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) {
                              return "http://www.maptiler.org/img/none.png";
                          }
                          var ymax = 1 << zoom;
                          var y = ymax - tile.y -1;
                          var tileBounds = new GLatLngBounds(
                              mercator.fromPixelToLatLng( new GPoint( (tile.x)*256, (tile.y+1)*256 ) , zoom ),
                              mercator.fromPixelToLatLng( new GPoint( (tile.x+1)*256, (tile.y)*256 ) , zoom )
                          );
                          if (mapBounds.intersects(tileBounds)) {
                              return zoom+"/"+tile.x+"/"+y+".png";
                          } else {
                              return "http://www.maptiler.org/img/none.png";
                          }
                      }
                      // IE 7-: support for PNG alpha channel
                      // Unfortunately, the opacity for whole overlay is then not changeable, either or...
                      tilelayer.isPng = function() { return true;};
                      tilelayer.getOpacity = function() { return opacity; }

                      overlay = new GTileLayerOverlay( tilelayer );
                      map.addOverlay(overlay);

                      map.addControl(new GLargeMapControl());
                      map.addControl(new GHierarchicalMapTypeControl());
                      map.addControl(new CTransparencyControl( overlay ));
        """ % args
        if self.kml:
            s += """
                      map.addMapType(G_SATELLITE_3D_MAP);
                      map.getEarthInstance(getEarthInstanceCB);
        """
        s += """

                      map.enableContinuousZoom();
                      map.enableScrollWheelZoom();

                      map.setMapType(G_HYBRID_MAP);
                   }
                   resize();
                }
        """
        if self.kml:
            s += """
                function getEarthInstanceCB(object) {
                   var ge = object;

                   if (ge) {
                       var url = document.location.toString();
                       url = url.substr(0,url.lastIndexOf('/'))+'/doc.kml';
                       var link = ge.createLink("");
                       if ("%(publishurl)s") { link.setHref("%(publishurl)s/doc.kml") }
                       else { link.setHref(url) };
                       var networkLink = ge.createNetworkLink("");
                       networkLink.setName("TMS Map Overlay");
                       networkLink.setFlyToView(true);  
                       networkLink.setLink(link);
                       ge.getFeatures().appendChild(networkLink);
                   } else {
                       // alert("You should open a KML in Google Earth");
                       // add div with the link to generated KML... - maybe JavaScript redirect to the URL of KML?
                   }
                }
        """ % args
        s += """
                onresize=function(){ resize(); };

                //]]>
                </script>
              </head>
              <body onload="load()">
                  <div id="header"><h1>%(title)s</h1></div>
                  <div id="subheader">Generated by <a href="http://www.maptiler.org/">MapTiler</a>/<a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>,  <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>
            <!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU -->
                  </div>
                   <div id="map"></div>
              </body>
            </html>
        """ % args

        return s


    # -------------------------------------------------------------------------
    def generate_openlayers( self ):
        """
        Template for openlayers.html implementing overlay of available Spherical Mercator layers.

        It returns filled string. Expected variables:
        title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl
        """

        args = {}
        args['title'] = self.options.title
        args['bingkey'] = self.options.bingkey
        args['south'], args['west'], args['north'], args['east'] = self.swne
        args['minzoom'] = self.tminz
        args['maxzoom'] = self.tmaxz
        args['tilesize'] = self.tilesize
        args['tileformat'] = self.tileext
        args['publishurl'] = self.options.url
        args['copyright'] = self.options.copyright
        if self.options.profile == 'raster':
            args['rasterzoomlevels'] = self.tmaxz+1
            args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1]

        s = """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
        <html xmlns="http://www.w3.org/1999/xhtml"
          <head>
            <title>%(title)s</title>
            <meta http-equiv='imagetoolbar' content='no'/>
            <style type="text/css"> v\:* {behavior:url(#default#VML);}
                html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; }
                body { margin: 10px; background: #fff; }
                h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; }
            #header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; }
            #subheader { height: 12px; text-align: right; font-size: 10px; color: #555;}
            #map { height: 95%%; border: 1px solid #888; }
            .olImageLoadError { display: none; }
            .olControlLayerSwitcher .layersDiv { border-radius: 10px 0 0 10px; } 
        </style>""" % args

        if self.options.profile == 'mercator':
          s += """
            <script src='http://maps.google.com/maps/api/js?sensor=false&v=3.7'></script>""" % args

        s += """
            <script src="http://www.openlayers.org/api/2.12/OpenLayers.js"></script>
            <script>
              var map;
              var mapBounds = new OpenLayers.Bounds( %(west)s, %(south)s, %(east)s, %(north)s);
              var mapMinZoom = %(minzoom)s;
              var mapMaxZoom = %(maxzoom)s;
              var emptyTileURL = "http://www.maptiler.org/img/none.png";
              OpenLayers.IMAGE_RELOAD_ATTEMPTS = 3;

              function init(){""" % args

        if self.options.profile == 'mercator':
          s += """
                  var options = {
                      div: "map",
                      controls: [],
                      projection: "EPSG:900913",
                      displayProjection: new OpenLayers.Projection("EPSG:4326"),
                      numZoomLevels: 20
                  };
                  map = new OpenLayers.Map(options);

                  // Create Google Mercator layers
                  var gmap = new OpenLayers.Layer.Google("Google Streets",
                  {
                      type: google.maps.MapTypeId.ROADMAP,
                      sphericalMercator: true
                  });
                  var gsat = new OpenLayers.Layer.Google("Google Satellite",
                  {
                      type: google.maps.MapTypeId.SATELLITE,
                      sphericalMercator: true
                  });
                  var ghyb = new OpenLayers.Layer.Google("Google Hybrid",
                  {
                      type: google.maps.MapTypeId.HYBRID,
                      sphericalMercator: true
                  });
                  var gter = new OpenLayers.Layer.Google("Google Terrain",
                  {
                      type: google.maps.MapTypeId.TERRAIN,
                      sphericalMercator: true
                  });

                  // Create Bing layers
                  var broad = new OpenLayers.Layer.Bing({
                      name: "Bing Roads",
                      key: "%(bingkey)s",
                      type: "Road",
                      sphericalMercator: true
                  });
                  var baer = new OpenLayers.Layer.Bing({
                      name: "Bing Aerial",
                      key: "%(bingkey)s",
                      type: "Aerial",
                      sphericalMercator: true
                  });
                  var bhyb = new OpenLayers.Layer.Bing({
                      name: "Bing Hybrid",
                      key: "%(bingkey)s",
                      type: "AerialWithLabels",
                      sphericalMercator: true
                  });

                  // Create OSM layer
                  var osm = new OpenLayers.Layer.OSM("OpenStreetMap");

                  // create TMS Overlay layer
                   var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "",
                  {
                      serviceVersion: '.',
                      layername: '.',
                      alpha: true,
                      type: '%(tileformat)s',
                      isBaseLayer: false,
                      getURL: getURL
                  });
                  if (OpenLayers.Util.alphaHack() == false) {
                      tmsoverlay.setOpacity(0.7);
                  }

                  map.addLayers([gmap, gsat, ghyb, gter,
                                 broad, baer, bhyb,
                                 osm, tmsoverlay]);

                  var switcherControl = new OpenLayers.Control.LayerSwitcher();
                  map.addControl(switcherControl);
                  switcherControl.maximizeControl();

                  map.zoomToExtent(mapBounds.transform(map.displayProjection, map.projection));
          """ % args

        elif self.options.profile == 'geodetic':
          s += """
                  var options = {
                      div: "map",
                      controls: [],
                      projection: "EPSG:4326"
                  };
                  map = new OpenLayers.Map(options);

                  var wms = new OpenLayers.Layer.WMS("VMap0",
                      "http://labs.metacarta.com/wms-c/Basic.py?",
                      {
                          layers: 'basic',
                          format: 'image/png'
                      }
                  );
                  var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "",
                  {
                      serviceVersion: '.',
                      layername: '.',
                      alpha: true,
                      type: '%(tileformat)s',
                      isBaseLayer: false,
                      getURL: getURL
                  });
                  if (OpenLayers.Util.alphaHack() == false) {
                      tmsoverlay.setOpacity(0.7);
                  }

                  map.addLayers([wms,tmsoverlay]);

                  var switcherControl = new OpenLayers.Control.LayerSwitcher();
                  map.addControl(switcherControl);
                  switcherControl.maximizeControl();

                  map.zoomToExtent(mapBounds);
           """ % args

        elif self.options.profile == 'raster':
          s += """
                  var options = {
                      div: "map",
                      controls: [],
                      maxExtent: new OpenLayers.Bounds(%(west)s, %(south)s, %(east)s, %(north)s),
                      maxResolution: %(rastermaxresolution)f,
                      numZoomLevels: %(rasterzoomlevels)d
                  };
                  map = new OpenLayers.Map(options);
      
                  var layer = new OpenLayers.Layer.TMS("TMS Layer", "",
                  {
                      serviceVersion: '.',
                      layername: '.',
                      alpha: true,
                      type: '%(tileformat)s',
                      getURL: getURL
                  });

                  map.addLayer(layer);
                  map.zoomToExtent(mapBounds);
        """ % args


        s += """
                  map.addControls([new OpenLayers.Control.PanZoomBar(),
                                   new OpenLayers.Control.Navigation(),
                                   new OpenLayers.Control.MousePosition(),
                                   new OpenLayers.Control.ArgParser(),
                                   new OpenLayers.Control.Attribution()]);
              }
          """ % args

        if self.options.profile == 'mercator':
          s += """
              function getURL(bounds) {
                  bounds = this.adjustBounds(bounds);
                  var res = this.getServerResolution();
                  var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
                  var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
                  var z = this.getServerZoom();
                  if (this.map.baseLayer.CLASS_NAME === 'OpenLayers.Layer.Bing') {
                      z+=1;
                  }
                  var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; 
                  var url = this.url;
                  if (OpenLayers.Util.isArray(url)) {
                      url = this.selectUrl(path, url);
                  }
                  if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
                      return url + path;
                  } else {
                      return emptyTileURL;
                  }
              } 
          """ % args

        elif self.options.profile == 'geodetic':
          s += """
              function getURL(bounds) {
                  bounds = this.adjustBounds(bounds);
                  var res = this.getServerResolution();
                  var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
                  var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
                  var z = this.getServerZoom()-1;
                  var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; 
                  var url = this.url;
                  if (OpenLayers.Util.isArray(url)) {
                      url = this.selectUrl(path, url);
                  }
                  if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
                      return url + path;
                  } else {
                      return emptyTileURL;
                  }
              }
          """ % args

        elif self.options.profile == 'raster':
          s += """
              function getURL(bounds) {
                  bounds = this.adjustBounds(bounds);
                  var res = this.getServerResolution();
                  var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
                  var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
                  var z = this.getServerZoom();
                  var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; 
                  var url = this.url;
                  if (OpenLayers.Util.isArray(url)) {
                      url = this.selectUrl(path, url);
                  }
                  if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
                      return url + path;
                  } else {
                      return emptyTileURL;
                  }
              }
          """ % args

        s += """
           function getWindowHeight() {
                if (self.innerHeight) return self.innerHeight;
                    if (document.documentElement && document.documentElement.clientHeight)
                        return document.documentElement.clientHeight;
                    if (document.body) return document.body.clientHeight;
                        return 0;
                }

                function getWindowWidth() {
                    if (self.innerWidth) return self.innerWidth;
                    if (document.documentElement && document.documentElement.clientWidth)
                        return document.documentElement.clientWidth;
                    if (document.body) return document.body.clientWidth;
                        return 0;
                }

                function resize() {  
                    var map = document.getElementById("map");  
                    var header = document.getElementById("header");  
                    var subheader = document.getElementById("subheader");  
                    map.style.height = (getWindowHeight()-80) + "px";
                    map.style.width = (getWindowWidth()-20) + "px";
                    header.style.width = (getWindowWidth()-20) + "px";
                    subheader.style.width = (getWindowWidth()-20) + "px";
                    if (map.updateSize) { map.updateSize(); };
                }

                onresize=function(){ resize(); };

                </script>
              </head>
              <body onload="init()">
                <div id="header"><h1>%(title)s</h1></div>
                <div id="subheader">Generated by <a href="http://www.maptiler.org/">MapTiler</a>/<a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>,  <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>
                <!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU -->
                </div>
                <div id="map"></div>
                <script type="text/javascript" >resize()</script>
              </body>
            </html>""" % args

        return s

# =============================================================================
# =============================================================================
# =============================================================================

if __name__=='__main__':
    argv = gdal.GeneralCmdLineProcessor( sys.argv )
    if argv:
        gdal2tiles = GDAL2Tiles( argv[1:] )
        gdal2tiles.process()