1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/******************************************************************************
* $Id: gdalgridavx.cpp 31631 2015-11-18 17:55:29Z rouault $
*
* Project: GDAL Gridding API.
* Purpose: Implementation of GDAL scattered data gridder.
* Author: Even Rouault, <even dot rouault at mines dash paris dot org>
*
******************************************************************************
* Copyright (c) 2013, Even Rouault <even dot rouault at mines-paris dot org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
****************************************************************************/
#include "gdalgrid.h"
#include "gdalgrid_priv.h"
#ifdef HAVE_AVX_AT_COMPILE_TIME
#include <immintrin.h>
CPL_CVSID("$Id: gdalgridavx.cpp 31631 2015-11-18 17:55:29Z rouault $");
/************************************************************************/
/* GDALGridInverseDistanceToAPower2NoSmoothingNoSearchAVX() */
/************************************************************************/
#define GDAL_mm256_load1_ps(x) _mm256_set_ps(x, x, x, x, x, x, x, x)
CPLErr
GDALGridInverseDistanceToAPower2NoSmoothingNoSearchAVX(
const void *poOptions,
GUInt32 nPoints,
CPL_UNUSED const double *unused_padfX,
CPL_UNUSED const double *unused_padfY,
CPL_UNUSED const double *unused_padfZ,
double dfXPoint, double dfYPoint,
double *pdfValue,
void* hExtraParamsIn )
{
size_t i = 0;
GDALGridExtraParameters* psExtraParams = (GDALGridExtraParameters*) hExtraParamsIn;
const float* pafX = psExtraParams->pafX;
const float* pafY = psExtraParams->pafY;
const float* pafZ = psExtraParams->pafZ;
const float fEpsilon = 0.0000000000001f;
const float fXPoint = (float)dfXPoint;
const float fYPoint = (float)dfYPoint;
const __m256 ymm_small = GDAL_mm256_load1_ps(fEpsilon);
const __m256 ymm_x = GDAL_mm256_load1_ps(fXPoint);
const __m256 ymm_y = GDAL_mm256_load1_ps(fYPoint);
__m256 ymm_nominator = _mm256_setzero_ps();
__m256 ymm_denominator = _mm256_setzero_ps();
int mask = 0;
#undef LOOP_SIZE
#if defined(__x86_64) || defined(_M_X64)
/* This would also work in 32bit mode, but there are only 8 XMM registers */
/* whereas we have 16 for 64bit */
#define LOOP_SIZE 16
size_t nPointsRound = (nPoints / LOOP_SIZE) * LOOP_SIZE;
for ( i = 0; i < nPointsRound; i += LOOP_SIZE )
{
__m256 ymm_rx = _mm256_sub_ps(_mm256_load_ps(pafX + i), ymm_x); /* rx = pafX[i] - fXPoint */
__m256 ymm_rx_8 = _mm256_sub_ps(_mm256_load_ps(pafX + i + 8), ymm_x);
__m256 ymm_ry = _mm256_sub_ps(_mm256_load_ps(pafY + i), ymm_y); /* ry = pafY[i] - fYPoint */
__m256 ymm_ry_8 = _mm256_sub_ps(_mm256_load_ps(pafY + i + 8), ymm_y);
__m256 ymm_r2 = _mm256_add_ps(_mm256_mul_ps(ymm_rx, ymm_rx), /* r2 = rx * rx + ry * ry */
_mm256_mul_ps(ymm_ry, ymm_ry));
__m256 ymm_r2_8 = _mm256_add_ps(_mm256_mul_ps(ymm_rx_8, ymm_rx_8),
_mm256_mul_ps(ymm_ry_8, ymm_ry_8));
__m256 ymm_invr2 = _mm256_rcp_ps(ymm_r2); /* invr2 = 1.0f / r2 */
__m256 ymm_invr2_8 = _mm256_rcp_ps(ymm_r2_8);
ymm_nominator = _mm256_add_ps(ymm_nominator, /* nominator += invr2 * pafZ[i] */
_mm256_mul_ps(ymm_invr2, _mm256_load_ps(pafZ + i)));
ymm_nominator = _mm256_add_ps(ymm_nominator,
_mm256_mul_ps(ymm_invr2_8, _mm256_load_ps(pafZ + i + 8)));
ymm_denominator = _mm256_add_ps(ymm_denominator, ymm_invr2); /* denominator += invr2 */
ymm_denominator = _mm256_add_ps(ymm_denominator, ymm_invr2_8);
mask = _mm256_movemask_ps(_mm256_cmp_ps(ymm_r2, ymm_small, _CMP_LT_OS)) | /* if( r2 < fEpsilon) */
(_mm256_movemask_ps(_mm256_cmp_ps(ymm_r2_8, ymm_small, _CMP_LT_OS)) << 8);
if( mask )
break;
}
#else
#define LOOP_SIZE 8
size_t nPointsRound = (nPoints / LOOP_SIZE) * LOOP_SIZE;
for ( i = 0; i < nPointsRound; i += LOOP_SIZE )
{
__m256 ymm_rx = _mm256_sub_ps(_mm256_load_ps((float*)pafX + i), ymm_x); /* rx = pafX[i] - fXPoint */
__m256 ymm_ry = _mm256_sub_ps(_mm256_load_ps((float*)pafY + i), ymm_y); /* ry = pafY[i] - fYPoint */
__m256 ymm_r2 = _mm256_add_ps(_mm256_mul_ps(ymm_rx, ymm_rx), /* r2 = rx * rx + ry * ry */
_mm256_mul_ps(ymm_ry, ymm_ry));
__m256 ymm_invr2 = _mm256_rcp_ps(ymm_r2); /* invr2 = 1.0f / r2 */
ymm_nominator = _mm256_add_ps(ymm_nominator, /* nominator += invr2 * pafZ[i] */
_mm256_mul_ps(ymm_invr2, _mm256_load_ps((float*)pafZ + i)));
ymm_denominator = _mm256_add_ps(ymm_denominator, ymm_invr2); /* denominator += invr2 */
mask = _mm256_movemask_ps(_mm256_cmp_ps(ymm_r2, ymm_small, _CMP_LT_OS)); /* if( r2 < fEpsilon) */
if( mask )
break;
}
#endif
/* Find which i triggered r2 < fEpsilon */
if( mask )
{
for(int j = 0; j < LOOP_SIZE; j++ )
{
if( mask & (1 << j) )
{
(*pdfValue) = (pafZ)[i + j];
// GCC and MSVC need explicit zeroing
#if !defined(__clang__)
_mm256_zeroupper();
#endif
return CE_None;
}
}
}
#undef LOOP_SIZE
/* Get back nominator and denominator values for YMM registers */
float afNominator[8], afDenominator[8];
_mm256_storeu_ps(afNominator, ymm_nominator);
_mm256_storeu_ps(afDenominator, ymm_denominator);
// MSVC doesn't emit AVX afterwards but may use SSE, so clear upper bits
// Other compilers will continue using AVX for the below floating points operations
#if defined(_MSC_FULL_VER)
_mm256_zeroupper();
#endif
float fNominator = afNominator[0] + afNominator[1] +
afNominator[2] + afNominator[3] +
afNominator[4] + afNominator[5] +
afNominator[6] + afNominator[7];
float fDenominator = afDenominator[0] + afDenominator[1] +
afDenominator[2] + afDenominator[3] +
afDenominator[4] + afDenominator[5] +
afDenominator[6] + afDenominator[7];
/* Do the few remaining loop iterations */
for ( ; i < nPoints; i++ )
{
const float fRX = pafX[i] - fXPoint;
const float fRY = pafY[i] - fYPoint;
const float fR2 =
fRX * fRX + fRY * fRY;
// If the test point is close to the grid node, use the point
// value directly as a node value to avoid singularity.
if ( fR2 < 0.0000000000001 )
{
break;
}
else
{
const float fInvR2 = 1.0f / fR2;
fNominator += fInvR2 * pafZ[i];
fDenominator += fInvR2;
}
}
if( i != nPoints )
{
(*pdfValue) = pafZ[i];
}
else
if ( fDenominator == 0.0 )
{
(*pdfValue) =
((GDALGridInverseDistanceToAPowerOptions*)poOptions)->dfNoDataValue;
}
else
(*pdfValue) = fNominator / fDenominator;
// GCC needs explicit zeroing
#if defined(__GNUC__) && !defined(__clang__)
_mm256_zeroupper();
#endif
return CE_None;
}
#endif /* HAVE_AVX_AT_COMPILE_TIME */
|