File: thinplatespline.cpp

package info (click to toggle)
gdal 2.1.2%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 88,596 kB
  • ctags: 83,118
  • sloc: cpp: 905,174; ansic: 184,486; python: 19,037; cs: 13,347; sh: 11,615; perl: 7,012; java: 5,382; php: 3,187; xml: 2,401; yacc: 1,154; makefile: 517; sql: 112
file content (857 lines) | stat: -rw-r--r-- 26,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/******************************************************************************
 * $Id: thinplatespline.cpp 33715 2016-03-13 08:52:06Z goatbar $
 *
 * Project:  GDAL Warp API
 * Purpose:  Implemenentation of 2D Thin Plate Spline transformer.
 * Author:   VIZRT Development Team.
 *
 * This code was provided by Gilad Ronnen (gro at visrt dot com) with
 * permission to reuse under the following license.
 *
 ******************************************************************************
 * Copyright (c) 2004, VIZRT Inc.
 * Copyright (c) 2008-2014, Even Rouault <even dot rouault at mines-paris dot org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 ****************************************************************************/

#ifdef HAVE_ARMADILLO
/* Include before #define A(r,c) because armadillo uses A in its include files */
#include "armadillo"
#endif

#include "thinplatespline.h"

//////////////////////////////////////////////////////////////////////////////
//// vizGeorefSpline2D
//////////////////////////////////////////////////////////////////////////////

#define A(r,c) _AA[ _nof_eqs * (r) + (c) ]
#define Ainv(r,c) _Ainv[ _nof_eqs * (r) + (c) ]


#define VIZ_GEOREF_SPLINE_DEBUG 0

#ifndef HAVE_ARMADILLO
static int matrixInvert( int N, double input[], double output[] );
#endif

bool VizGeorefSpline2D::grow_points()

{
    int new_max = _max_nof_points*2 + 2 + 3;
    int i;

    double *new_x = (double *) VSI_REALLOC_VERBOSE( x, sizeof(double) * new_max );
    if( !new_x ) return false;
    x = new_x;
    double *new_y = (double *) VSI_REALLOC_VERBOSE( y, sizeof(double) * new_max );
    if( !new_y ) return false;
    y = new_y;
    double *new_u = (double *) VSI_REALLOC_VERBOSE( u, sizeof(double) * new_max );
    if( !new_u ) return false;
    u = new_u;
    int *new_unused = (int *) VSI_REALLOC_VERBOSE( unused, sizeof(int) * new_max );
    if( !new_unused ) return false;
    unused = new_unused;
    int *new_index = (int *) VSI_REALLOC_VERBOSE( index, sizeof(int) * new_max );
    if( !new_index ) return false;
    index = new_index;
    for( i = 0; i < _nof_vars; i++ )
    {
        double* rhs_i_new = (double *)
            VSI_REALLOC_VERBOSE( rhs[i], sizeof(double) * new_max );
        if( !rhs_i_new ) return false;
        rhs[i] = rhs_i_new;
        double* coef_i_new = (double *)
            VSI_REALLOC_VERBOSE( coef[i], sizeof(double) * new_max );
        if( !coef_i_new ) return false;
        coef[i] = coef_i_new;
        if( _max_nof_points == 0 )
        {
            memset(rhs[i], 0, 3 * sizeof(double));
            memset(coef[i], 0, 3 * sizeof(double));
        }
    }

    _max_nof_points = new_max - 3;
    return true;
}

bool VizGeorefSpline2D::add_point( const double Px, const double Py, const double *Pvars )
{
    type = VIZ_GEOREF_SPLINE_POINT_WAS_ADDED;
    int i;

    if( _nof_points == _max_nof_points )
    {
        if( !grow_points() )
            return false;
    }

    i = _nof_points;
    //A new point is added
    x[i] = Px;
    y[i] = Py;
    for ( int j = 0; j < _nof_vars; j++ )
        rhs[j][i+3] = Pvars[j];
    _nof_points++;
    return true;
}

#if 0
bool VizGeorefSpline2D::change_point(int index, double Px, double Py, double* Pvars)
{
    if ( index < _nof_points )
    {
        int i = index;
        x[i] = Px;
        y[i] = Py;
        for ( int j = 0; j < _nof_vars; j++ )
            rhs[j][i+3] = Pvars[j];
    }

    return( true );
}

bool VizGeorefSpline2D::get_xy(int index, double& outX, double& outY)
{
    bool ok;

    if ( index < _nof_points )
    {
        ok = true;
        outX = x[index];
        outY = y[index];
    }
    else
    {
        ok = false;
        outX = outY = 0.0f;
    }

    return(ok);
}

int VizGeorefSpline2D::delete_point(const double Px, const double Py )
{
    for ( int i = 0; i < _nof_points; i++ )
    {
        if ( ( fabs(Px - x[i]) <= _tx ) && ( fabs(Py - y[i]) <= _ty ) )
        {
            for ( int j = i; j < _nof_points - 1; j++ )
            {
                x[j] = x[j+1];
                y[j] = y[j+1];
                for ( int k = 0; k < _nof_vars; k++ )
                    rhs[k][j+3] = rhs[k][j+3+1];
            }
            _nof_points--;
            type = VIZ_GEOREF_SPLINE_POINT_WAS_DELETED;
            return(1);
        }
    }
    return(0);
}
#endif

#define SQ(x) ((x)*(x))

static CPL_INLINE double VizGeorefSpline2DBase_func( const double x1, const double y1,
                          const double x2, const double y2 )
{
    double dist  = SQ( x2 - x1 )  + SQ( y2 - y1 );
    return dist ? dist * log( dist ) : 0.0;
}

#if defined(__GNUC__) && defined(__x86_64__)
/* Some versions of ICC fail to compile VizGeorefSpline2DBase_func4 (#6350) */
#if defined(__INTEL_COMPILER)
#if __INTEL_COMPILER >=1500
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#else
#if (__INTEL_COMPILER == 1200) || (__INTEL_COMPILER == 1210)
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#else
#undef USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#endif
#endif
#else // defined(__INTEL_COMPILER)
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#endif // defined(__INTEL_COMPILER)
#endif

#if defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)

/* Derived and adapted from code originating from: */

/* @(#)e_log.c 1.3 95/01/18 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* __ieee754_log(x)
 * Return the logarithm of x
 *
 * Method:
 *   1. Argument Reduction: find k and f such that
 *                      x = 2^k * (1+f),
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *   2. Approximation of log(1+f).
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *               = 2s + s*R
 *      We use a special Reme algorithm on [0,0.1716] to generate
 *      a polynomial of degree 14 to approximate R The maximum error
 *      of this polynomial approximation is bounded by 2**-58.45. In
 *      other words,
 *                      2      4      6      8      10      12      14
 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 *      (the values of Lg1 to Lg7 are listed in the program)
 *      and
 *          |      2          14          |     -58.45
 *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 *          |                             |
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 *      In order to guarantee error in log below 1ulp, we compute log
 *      by
 *              log(1+f) = f - s*(f - R)        (if f is not too large)
 *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
 *
 *      3. Finally,  log(x) = k*ln2 + log(1+f).
 *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 *         Here ln2 is split into two floating point number:
 *                      ln2_hi + ln2_lo,
 *         where n*ln2_hi is always exact for |n| < 2000.
 *
 * Special cases:
 *      log(x) is NaN with signal if x < 0 (including -INF) ;
 *      log(+INF) is +INF; log(0) is -INF with signal;
 *      log(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

typedef double V2DF __attribute__ ((__vector_size__ (16)));
typedef union
{
    V2DF v2;
    double d[2];
} v2dfunion;

typedef union
{
    int i[2];
    long long li;
} i64union;

static const V2DF
v2_ln2_div_2pow20 = {6.93147180559945286e-01 / 1048576, 6.93147180559945286e-01 / 1048576},
v2_Lg1 = {6.666666666666735130e-01, 6.666666666666735130e-01},
v2_Lg2 = {3.999999999940941908e-01, 3.999999999940941908e-01},
v2_Lg3 = {2.857142874366239149e-01, 2.857142874366239149e-01},
v2_Lg4 = {2.222219843214978396e-01, 2.222219843214978396e-01},
v2_Lg5 = {1.818357216161805012e-01, 1.818357216161805012e-01},
v2_Lg6 = {1.531383769920937332e-01, 1.531383769920937332e-01},
/*v2_Lg7 = {1.479819860511658591e-01, 1.479819860511658591e-01}, */
v2_one = { 1.0, 1.0 },
v2_const1023_mul_2pow20 = { 1023.0 * 1048576, 1023.0 * 1048576};

#define GET_HIGH_WORD(hx,x) memcpy(&hx,((char*)&x+4),4)
#define SET_HIGH_WORD(x,hx) memcpy(((char*)&x+4),&hx,4)

#define MAKE_WIDE_CST(x) ((((long long)(x)) << 32) | (x))
static const long long cst_expmask = MAKE_WIDE_CST(0xfff00000);
static const long long cst_0x95f64 = MAKE_WIDE_CST(0x00095f64);
static const long long cst_0x100000 = MAKE_WIDE_CST(0x00100000);
static const long long cst_0x3ff00000 = MAKE_WIDE_CST(0x3ff00000);

/* Modified version of __ieee754_log(), less precise than log() but a bit */
/* faster, and computing 4 log() at a time. Assumes that the values are > 0 */
static void FastApproxLog4Val(v2dfunion* x)
{
    V2DF f[2],s[2],z[2],R[2],w[2],t1[2],t2[2];
    v2dfunion dk[2];
    i64union k[2], hx[2], i[2];

    GET_HIGH_WORD(hx[0].i[0],x[0].d[0]);
    GET_HIGH_WORD(hx[0].i[1],x[0].d[1]);
    /* coverity[uninit_use] */
    k[0].li = hx[0].li & cst_expmask;
    hx[0].li &= ~cst_expmask;
    i[0].li = (hx[0].li + cst_0x95f64) & cst_0x100000;
    hx[0].li |= i[0].li ^ cst_0x3ff00000;
    SET_HIGH_WORD(x[0].d[0],hx[0].i[0]);     /* normalize x or x/2 */
    SET_HIGH_WORD(x[0].d[1],hx[0].i[1]);     /* normalize x or x/2 */
    k[0].li += i[0].li;
    dk[0].d[0] = (double)k[0].i[0];
    dk[0].d[1] = (double)k[0].i[1];

    GET_HIGH_WORD(hx[1].i[0],x[1].d[0]);
    GET_HIGH_WORD(hx[1].i[1],x[1].d[1]);
    k[1].li = hx[1].li & cst_expmask;
    hx[1].li &= ~cst_expmask;
    i[1].li = (hx[1].li + cst_0x95f64) & cst_0x100000;
    hx[1].li |= i[1].li ^ cst_0x3ff00000;
    SET_HIGH_WORD(x[1].d[0],hx[1].i[0]);     /* normalize x or x/2 */
    SET_HIGH_WORD(x[1].d[1],hx[1].i[1]);     /* normalize x or x/2 */
    k[1].li += i[1].li;
    dk[1].d[0] = (double)k[1].i[0];
    dk[1].d[1] = (double)k[1].i[1];

    f[0] = x[0].v2-v2_one;
    s[0] = f[0]/(x[0].v2+v2_one);
    z[0] = s[0]*s[0];
    w[0] = z[0]*z[0];
    /* coverity[ptr_arith] */
    t1[0]= w[0]*(v2_Lg2+w[0]*(v2_Lg4+w[0]*v2_Lg6));
    /* coverity[ptr_arith] */
    t2[0]= z[0]*(v2_Lg1+w[0]*(v2_Lg3+w[0]*(v2_Lg5/*+w[0]*v2_Lg7*/)));
    R[0] = t2[0]+t1[0];
    x[0].v2 = ((dk[0].v2 - v2_const1023_mul_2pow20)*v2_ln2_div_2pow20-(s[0]*(f[0]-R[0])-f[0]));

    f[1] = x[1].v2-v2_one;
    s[1] = f[1]/(x[1].v2+v2_one);
    z[1] = s[1]*s[1];
    w[1] = z[1]*z[1];
    /* coverity[ptr_arith] */
    t1[1]= w[1]*(v2_Lg2+w[1]*(v2_Lg4+w[1]*v2_Lg6));
    /* coverity[ptr_arith] */
    t2[1]= z[1]*(v2_Lg1+w[1]*(v2_Lg3+w[1]*(v2_Lg5/*+w[1]*v2_Lg7*/)));
    R[1] = t2[1]+t1[1];
    x[1].v2 = ((dk[1].v2- v2_const1023_mul_2pow20)*v2_ln2_div_2pow20-(s[1]*(f[1]-R[1])-f[1]));
}

static CPL_INLINE void VizGeorefSpline2DBase_func4( double* res,
                                         const double* pxy,
                                         const double* xr, const double* yr )
{
    v2dfunion x1v, y1v, xv[2], yv[2], dist[2], resv[2];
    xv[0].d[0] = xr[0];
    xv[0].d[1] = xr[1];
    xv[1].d[0] = xr[2];
    xv[1].d[1] = xr[3];
    yv[0].d[0] = yr[0];
    yv[0].d[1] = yr[1];
    yv[1].d[0] = yr[2];
    yv[1].d[1] = yr[3];
    x1v.d[0] = pxy[0];
    x1v.d[1] = pxy[0];
    y1v.d[0] = pxy[1];
    y1v.d[1] = pxy[1];
    dist[0].v2 = SQ( xv[0].v2 - x1v.v2 ) + SQ( yv[0].v2 - y1v.v2 );
    dist[1].v2 = SQ( xv[1].v2 - x1v.v2 ) + SQ( yv[1].v2 - y1v.v2 );
    resv[0] = dist[0];
    resv[1] = dist[1];
    FastApproxLog4Val(dist);
    resv[0].v2 *= dist[0].v2;
    resv[1].v2 *= dist[1].v2;
    res[0] = resv[0].d[0];
    res[1] = resv[0].d[1];
    res[2] = resv[1].d[0];
    res[3] = resv[1].d[1];
}
#else // defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)
static void VizGeorefSpline2DBase_func4( double* res,
                                         const double* pxy,
                                         const double* xr, const double* yr )
{
    double dist0  = SQ( xr[0] - pxy[0] ) + SQ( yr[0] - pxy[1] );
    res[0] = dist0 ? dist0 * log(dist0) : 0.0;
    double dist1  = SQ( xr[1] - pxy[0] ) + SQ( yr[1] - pxy[1] );
    res[1] = dist1 ? dist1 * log(dist1) : 0.0;
    double dist2  = SQ( xr[2] - pxy[0] ) + SQ( yr[2] - pxy[1] );
    res[2] = dist2 ? dist2 * log(dist2) : 0.0;
    double dist3  = SQ( xr[3] - pxy[0] ) + SQ( yr[3] - pxy[1] );
    res[3] = dist3 ? dist3 * log(dist3) : 0.0;
}
#endif // defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)

int VizGeorefSpline2D::solve(void)
{
    int r, c;
    int p;

    //	No points at all
    if ( _nof_points < 1 )
    {
        type = VIZ_GEOREF_SPLINE_ZERO_POINTS;
        return(0);
    }

    // Only one point
    if ( _nof_points == 1 )
    {
        type = VIZ_GEOREF_SPLINE_ONE_POINT;
        return(1);
    }
    // Just 2 points - it is necessarily 1D case
    if ( _nof_points == 2 )
    {
        _dx = x[1] - x[0];
        _dy = y[1] - y[0];
        double fact = 1.0 / ( _dx * _dx + _dy * _dy );
        _dx *= fact;
        _dy *= fact;

        type = VIZ_GEOREF_SPLINE_TWO_POINTS;
        return(2);
    }

    // More than 2 points - first we have to check if it is 1D or 2D case

    double xmax = x[0], xmin = x[0], ymax = y[0], ymin = y[0];
    double delx, dely;
    double xx, yy;
    double sumx = 0.0f, sumy= 0.0f, sumx2 = 0.0f, sumy2 = 0.0f, sumxy = 0.0f;
    double SSxx, SSyy, SSxy;

    for ( p = 0; p < _nof_points; p++ )
    {
        xx = x[p];
        yy = y[p];

        xmax = MAX( xmax, xx );
        xmin = MIN( xmin, xx );
        ymax = MAX( ymax, yy );
        ymin = MIN( ymin, yy );

        sumx  += xx;
        sumx2 += xx * xx;
        sumy  += yy;
        sumy2 += yy * yy;
        sumxy += xx * yy;
    }
    delx = xmax - xmin;
    dely = ymax - ymin;

    SSxx = sumx2 - sumx * sumx / _nof_points;
    SSyy = sumy2 - sumy * sumy / _nof_points;
    SSxy = sumxy - sumx * sumy / _nof_points;

    if ( delx < 0.001 * dely || dely < 0.001 * delx ||
         fabs ( SSxy * SSxy / ( SSxx * SSyy ) ) > 0.99 )
    {
        int p1;

        type = VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL;

        _dx = _nof_points * sumx2 - sumx * sumx;
        _dy = _nof_points * sumy2 - sumy * sumy;
        double fact = 1.0 / sqrt( _dx * _dx + _dy * _dy );
        _dx *= fact;
        _dy *= fact;

        for ( p = 0; p < _nof_points; p++ )
        {
            double dxp = x[p] - x[0];
            double dyp = y[p] - y[0];
            u[p] = _dx * dxp + _dy * dyp;
            unused[p] = 1;
        }

        for ( p = 0; p < _nof_points; p++ )
        {
            int min_index = -1;
            double min_u = 0;
            for ( p1 = 0; p1 < _nof_points; p1++ )
            {
                if ( unused[p1] )
                {
                    if ( min_index < 0 || u[p1] < min_u )
                    {
                        min_index = p1;
                        min_u = u[p1];
                    }
                }
            }
            index[p] = min_index;
            unused[min_index] = 0;
        }

        return(3);
    }

    type = VIZ_GEOREF_SPLINE_FULL;
    // Make the necessary memory allocations

    _nof_eqs = _nof_points + 3;

    if( _nof_eqs > INT_MAX / _nof_eqs )
    {
        CPLError(CE_Failure, CPLE_AppDefined, "Too many coefficients. Computation aborted.");
        return 0;
    }

    double* _AA = ( double * )VSI_CALLOC_VERBOSE( _nof_eqs * _nof_eqs, sizeof( double ) );
    double* _Ainv = ( double * )VSI_CALLOC_VERBOSE( _nof_eqs * _nof_eqs, sizeof( double ) );

    if( _AA == NULL || _Ainv == NULL )
    {
        VSIFree(_AA);
        VSIFree(_Ainv);
        return 0;
    }

    // Calc the values of the matrix A
    for ( r = 0; r < 3; r++ )
        for ( c = 0; c < 3; c++ )
            A(r,c) = 0.0;

    for ( c = 0; c < _nof_points; c++ )
    {
        A(0,c+3) = 1.0;
        A(1,c+3) = x[c];
        A(2,c+3) = y[c];

        A(c+3,0) = 1.0;
        A(c+3,1) = x[c];
        A(c+3,2) = y[c];
    }

    for ( r = 0; r < _nof_points; r++ )
        for ( c = r; c < _nof_points; c++ )
        {
            A(r+3,c+3) = VizGeorefSpline2DBase_func( x[r], y[r], x[c], y[c] );
            if ( r != c )
                A(c+3,r+3 ) = A(r+3,c+3);
        }

#if VIZ_GEOREF_SPLINE_DEBUG

    for ( r = 0; r < _nof_eqs; r++ )
    {
        for ( c = 0; c < _nof_eqs; c++ )
            fprintf(stderr, "%f", A(r,c));
        fprintf(stderr, "\n");
    }

#endif

    int ret  = 4;
#ifdef HAVE_ARMADILLO
    try
    {
        arma::mat matA(_AA,_nof_eqs,_nof_eqs,false);
        arma::mat matRHS(_nof_eqs, _nof_vars);
        int row, col;
        for(row = 0; row < _nof_eqs; row++)
            for(col = 0; col < _nof_vars; col++)
                matRHS.at(row, col) = rhs[col][row];
        arma::mat matCoefs(_nof_vars, _nof_eqs);
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
        if( !arma::solve(matCoefs, matA, matRHS) )
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#pragma GCC diagnostic pop
#endif
        {
            CPLError(CE_Failure, CPLE_AppDefined, "There is a problem inverting the interpolation matrix.");
            ret = 0;
        }
        else
        {
            for(row = 0; row < _nof_eqs; row++)
                for(col = 0; col < _nof_vars; col++)
                    coef[col][row] = matCoefs.at(row, col);
        }
    }
    catch(...)
    {
        CPLError(CE_Failure, CPLE_AppDefined, "There is a problem inverting the interpolation matrix.");
        ret = 0;
    }
#else
    int status = matrixInvert( _nof_eqs, _AA, _Ainv );

    if ( !status )
    {
        CPLError(CE_Failure, CPLE_AppDefined, "There is a problem inverting the interpolation matrix.");
        ret = 0;
    }
    else
    {
        // calc the coefs
        for ( int v = 0; v < _nof_vars; v++ )
            for ( r = 0; r < _nof_eqs; r++ )
            {
                coef[v][r] = 0.0;
                for ( c = 0; c < _nof_eqs; c++ )
                    coef[v][r] += Ainv(r,c) * rhs[v][c];
            }
    }
#endif

    VSIFree(_AA);
    VSIFree(_Ainv);

    return(ret);
}

int VizGeorefSpline2D::get_point( const double Px, const double Py, double *vars )
{
	int v, r;
	double tmp, Pu;
	double fact;
	int leftP=0, rightP=0, found = 0;

	switch ( type )
	{
	case VIZ_GEOREF_SPLINE_ZERO_POINTS :
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = 0.0;
		break;
	case VIZ_GEOREF_SPLINE_ONE_POINT :
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = rhs[v][3];
		break;
	case VIZ_GEOREF_SPLINE_TWO_POINTS :
		fact = _dx * ( Px - x[0] ) + _dy * ( Py - y[0] );
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = ( 1 - fact ) * rhs[v][3] + fact * rhs[v][4];
		break;
	case VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL :
		Pu = _dx * ( Px - x[0] ) + _dy * ( Py - y[0] );
		if ( Pu <= u[index[0]] )
		{
			leftP = index[0];
			rightP = index[1];
		}
		else if ( Pu >= u[index[_nof_points-1]] )
		{
			leftP = index[_nof_points-2];
			rightP = index[_nof_points-1];
		}
		else
		{
			for ( r = 1; !found && r < _nof_points; r++ )
			{
				leftP = index[r-1];
				rightP = index[r];
				if ( Pu >= u[leftP] && Pu <= u[rightP] )
					found = 1;
			}
		}

		fact = ( Pu - u[leftP] ) / ( u[rightP] - u[leftP] );
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = ( 1.0 - fact ) * rhs[v][leftP+3] +
			fact * rhs[v][rightP+3];
		break;
	case VIZ_GEOREF_SPLINE_FULL :
    {
        double Pxy[2] = { Px, Py };
        for ( v = 0; v < _nof_vars; v++ )
            vars[v] = coef[v][0] + coef[v][1] * Px + coef[v][2] * Py;

        for ( r = 0; r < (_nof_points & (~3)); r+=4 )
        {
            double dfTmp[4];
            VizGeorefSpline2DBase_func4( dfTmp, Pxy, &x[r], &y[r] );
            for ( v= 0; v < _nof_vars; v++ )
                vars[v] += coef[v][r+3] * dfTmp[0] +
                        coef[v][r+3+1] * dfTmp[1] +
                        coef[v][r+3+2] * dfTmp[2] +
                        coef[v][r+3+3] * dfTmp[3];
        }
        for ( ; r < _nof_points; r++ )
        {
            tmp = VizGeorefSpline2DBase_func( Px, Py, x[r], y[r] );
            for ( v= 0; v < _nof_vars; v++ )
                vars[v] += coef[v][r+3] * tmp;
        }
        break;
    }
	case VIZ_GEOREF_SPLINE_POINT_WAS_ADDED :
		fprintf(stderr, " A point was added after the last solve\n");
		fprintf(stderr, " NO interpolation - return values are zero\n");
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = 0.0;
		return(0);
		break;
	case VIZ_GEOREF_SPLINE_POINT_WAS_DELETED :
		fprintf(stderr, " A point was deleted after the last solve\n");
		fprintf(stderr, " NO interpolation - return values are zero\n");
		for ( v = 0; v < _nof_vars; v++ )
			vars[v] = 0.0;
		return(0);
		break;
	default :
		return(0);
		break;
	}
	return(1);
}

#ifndef HAVE_ARMADILLO
static int matrixInvert( int N, double input[], double output[] )
{
    // Receives an array of dimension NxN as input.  This is passed as a one-
    // dimensional array of N-squared size.  It produces the inverse of the
    // input matrix, returned as output, also of size N-squared.  The Gauss-
    // Jordan Elimination method is used.  (Adapted from a BASIC routine in
    // "Basic Scientific Subroutines Vol. 1", courtesy of Scott Edwards.)

    // Array elements 0...N-1 are for the first row, N...2N-1 are for the
    // second row, etc.

    // We need to have a temporary array of size N x 2N.  We'll refer to the
    // "left" and "right" halves of this array.

    int row, col;

#if 0
    fprintf(stderr, "Matrix Inversion input matrix (N=%d)\n", N);
    for ( row=0; row<N; row++ )
    {
        for ( col=0; col<N; col++ )
        {
            fprintf(stderr, "%5.2f ", input[row*N + col ]  );
        }
        fprintf(stderr, "\n");
    }
#endif

    int tempSize = 2 * N * N;
    double* temp = (double*) new double[ tempSize ];
    double ftemp;

    if (temp == NULL) {

        CPLError(CE_Failure, CPLE_AppDefined, "matrixInvert(): ERROR - memory allocation failed.");
        return false;
    }

    // First create a double-width matrix with the input array on the left
    // and the identity matrix on the right.

    for ( row=0; row<N; row++ )
    {
        for ( col=0; col<N; col++ )
        {
            // Our index into the temp array is X2 because it's twice as wide
            // as the input matrix.

            temp[ 2*row*N + col ] = input[ row*N+col ];	// left = input matrix
            temp[ 2*row*N + col + N ] = 0.0f;			// right = 0
        }
        temp[ 2*row*N + row + N ] = 1.0f;		// 1 on the diagonal of RHS
    }

    // Now perform row-oriented operations to convert the left hand side
    // of temp to the identity matrix.  The inverse of input will then be
    // on the right.

    int max;
    int k=0;
    for (k = 0; k < N; k++)
    {
        if (k+1 < N)	// if not on the last row
        {
            max = k;
            for (row = k+1; row < N; row++) // find the maximum element
            {
                if (fabs( temp[row*2*N + k] ) > fabs( temp[max*2*N + k] ))
                {
                    max = row;
                }
            }

            if (max != k)	// swap all the elements in the two rows
            {
                for (col=k; col<2*N; col++)
                {
                    ftemp = temp[k*2*N + col];
                    temp[k*2*N + col] = temp[max*2*N + col];
                    temp[max*2*N + col] = ftemp;
                }
            }
        }

        ftemp = temp[ k*2*N + k ];
        if ( ftemp == 0.0f ) // matrix cannot be inverted
        {
            delete[] temp;
            return false;
        }

        for ( col=k; col<2*N; col++ )
        {
            temp[ k*2*N + col ] /= ftemp;
        }

        int i2 = k*2*N ;
        for ( row=0; row<N; row++ )
        {
            if ( row != k )
            {
                int i1 = row*2*N;
                ftemp = temp[ i1 + k ];
                for ( col=k; col<2*N; col++ )
                {
                    temp[ i1 + col ] -= ftemp * temp[ i2 + col ];
                }
            }
        }
    }

    // Retrieve inverse from the right side of temp

    for (row = 0; row < N; row++)
    {
        for (col = 0; col < N; col++)
        {
            output[row*N + col] = temp[row*2*N + col + N ];
        }
    }

#if 0
    fprintf(stderr, "Matrix Inversion result matrix:\n");
    for ( row=0; row<N; row++ )
    {
        for ( col=0; col<N; col++ )
        {
            fprintf(stderr, "%5.2f ", output[row*N + col ]  );
        }
        fprintf(stderr, "\n");
    }
#endif

    delete [] temp;       // free memory
    return true;
}
#endif