File: geometryreader.cpp

package info (click to toggle)
gdal 3.10.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 87,476 kB
  • sloc: cpp: 1,151,435; ansic: 215,362; python: 26,401; java: 5,972; xml: 4,596; sh: 3,263; cs: 2,503; yacc: 1,090; makefile: 289
file content (507 lines) | stat: -rw-r--r-- 15,834 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/******************************************************************************
 *
 * Project:  FlatGeobuf driver
 * Purpose:  Implements GeometryReader class.
 * Author:   Björn Harrtell <bjorn at wololo dot org>
 *
 ******************************************************************************
 * Copyright (c) 2018-2019, Björn Harrtell <bjorn at wololo dot org>
 *
 * SPDX-License-Identifier: MIT
 ****************************************************************************/

#include "ogrsf_frmts.h"
#include "ogr_p.h"

#include "geometryreader.h"
#include "cplerrors.h"
#include "ogr_flatgeobuf.h"

using namespace flatbuffers;
using namespace FlatGeobuf;
using namespace ogr_flatgeobuf;

static std::nullptr_t CPLErrorInvalidLength(const char *message)
{
    CPLError(CE_Failure, CPLE_AppDefined, "Invalid length detected: %s",
             message);
    return nullptr;
}

OGRPoint *GeometryReader::readPoint()
{
    const auto offsetXy = m_offset * 2;
    if (offsetXy >= m_length)
        return CPLErrorInvalidLength("XY data");
    if (m_hasZ)
    {
        const auto z = m_geometry->z();
        if (z == nullptr)
            return CPLErrorInvalidPointer("Z data");
        if (m_offset >= z->size())
            return CPLErrorInvalidLength("Z data");
        const auto aZ = z->data();
        if (m_hasM)
        {
            const auto pM = m_geometry->m();
            if (pM == nullptr)
                return CPLErrorInvalidPointer("M data");
            if (m_offset >= pM->size())
                return CPLErrorInvalidLength("M data");
            const auto aM = pM->data();
            return new OGRPoint{EndianScalar(m_xy[offsetXy + 0]),
                                EndianScalar(m_xy[offsetXy + 1]),
                                EndianScalar(aZ[m_offset]),
                                EndianScalar(aM[m_offset])};
        }
        else
        {
            return new OGRPoint{EndianScalar(m_xy[offsetXy + 0]),
                                EndianScalar(m_xy[offsetXy + 1]),
                                EndianScalar(aZ[m_offset])};
        }
    }
    else if (m_hasM)
    {
        const auto pM = m_geometry->m();
        if (pM == nullptr)
            return CPLErrorInvalidPointer("M data");
        if (m_offset >= pM->size())
            return CPLErrorInvalidLength("M data");
        const auto aM = pM->data();
        return OGRPoint::createXYM(EndianScalar(m_xy[offsetXy + 0]),
                                   EndianScalar(m_xy[offsetXy + 1]),
                                   EndianScalar(aM[m_offset]));
    }
    else
    {
        return new OGRPoint{EndianScalar(m_xy[offsetXy + 0]),
                            EndianScalar(m_xy[offsetXy + 1])};
    }
}

OGRMultiPoint *GeometryReader::readMultiPoint()
{
    auto length = m_length / 2;
    if (length >= feature_max_buffer_size)
        return CPLErrorInvalidLength("MultiPoint");
    auto mp = std::make_unique<OGRMultiPoint>();
    for (uint32_t i = 0; i < length; i++)
    {
        m_offset = i;
        const auto p = readPoint();
        if (p == nullptr)
            return nullptr;
        mp->addGeometryDirectly(p);
    }
    return mp.release();
}

OGRMultiLineString *GeometryReader::readMultiLineString()
{
    const auto ends = m_geometry->ends();
    auto mls = std::make_unique<OGRMultiLineString>();
    if (ends == nullptr || ends->size() < 2)
    {
        m_length = m_length / 2;
        const auto part = readSimpleCurve<OGRLineString>();
        if (part == nullptr)
            return nullptr;
        mls->addGeometryDirectly(part);
    }
    else
    {
        m_offset = 0;
        for (uint32_t i = 0; i < ends->size(); i++)
        {
            const auto e = ends->Get(i);
            if (e < m_offset)
                return CPLErrorInvalidLength("MultiLineString");
            m_length = e - m_offset;
            const auto ls = readSimpleCurve<OGRLineString>();
            if (ls == nullptr)
                return nullptr;
            mls->addGeometryDirectly(ls);
            m_offset = e;
        }
    }
    return mls.release();
}

OGRErr GeometryReader::readSimpleCurve(OGRSimpleCurve *sc)
{
    if (m_offset > feature_max_buffer_size ||
        m_length > feature_max_buffer_size - m_offset)
        return CPLErrorInvalidSize("curve offset max");
    const uint32_t offsetLen = m_length + m_offset;
    if (offsetLen > m_xylength / 2)
        return CPLErrorInvalidSize("curve XY offset");
    const auto ogrXY = reinterpret_cast<const OGRRawPoint *>(m_xy) + m_offset;
    if (m_hasZ)
    {
        const auto pZ = m_geometry->z();
        if (pZ == nullptr)
        {
            CPLErrorInvalidPointer("Z data");
            return OGRERR_CORRUPT_DATA;
        }
        if (offsetLen > pZ->size())
            return CPLErrorInvalidSize("curve Z offset");
        const auto aZ = pZ->data();
        if (m_hasM)
        {
            const auto pM = m_geometry->m();
            if (pM == nullptr)
            {
                CPLErrorInvalidPointer("M data");
                return OGRERR_CORRUPT_DATA;
            }
            if (offsetLen > pM->size())
                return CPLErrorInvalidSize("curve M offset");
            const auto aM = pM->data();
#if CPL_IS_LSB
            sc->setPoints(m_length, ogrXY, aZ + m_offset, aM + m_offset);
#else
            sc->setNumPoints(m_length, false);
            for (uint32_t i = 0; i < m_length; i++)
            {
                sc->setPoint(i, EndianScalar(ogrXY[i].x),
                             EndianScalar(ogrXY[i].y),
                             EndianScalar(aZ[m_offset + i]),
                             EndianScalar(aM[m_offset + i]));
            }
#endif
        }
        else
        {
#if CPL_IS_LSB
            sc->setPoints(m_length, ogrXY, aZ + m_offset);
#else
            sc->setNumPoints(m_length, false);
            for (uint32_t i = 0; i < m_length; i++)
            {
                sc->setPoint(i, EndianScalar(ogrXY[i].x),
                             EndianScalar(ogrXY[i].y),
                             EndianScalar(aZ[m_offset + i]));
            }
#endif
        }
    }
    else if (m_hasM)
    {
        const auto pM = m_geometry->m();
        if (pM == nullptr)
        {
            CPLErrorInvalidPointer("M data");
            return OGRERR_CORRUPT_DATA;
        }
        if (offsetLen > pM->size())
            return CPLErrorInvalidSize("curve M offset");
        const auto aM = pM->data();
#if CPL_IS_LSB
        sc->setPointsM(m_length, ogrXY, aM + m_offset);
#else
        sc->setNumPoints(m_length, false);
        for (uint32_t i = 0; i < m_length; i++)
        {
            sc->setPointM(i, EndianScalar(ogrXY[i].x), EndianScalar(ogrXY[i].y),
                          EndianScalar(aM[m_offset + i]));
        }
#endif
    }
    else
    {
#if CPL_IS_LSB
        sc->setPoints(m_length, ogrXY);
#else
        sc->setNumPoints(m_length, false);
        for (uint32_t i = 0; i < m_length; i++)
        {
            sc->setPoint(i, EndianScalar(ogrXY[i].x), EndianScalar(ogrXY[i].y));
        }
#endif
    }
    return OGRERR_NONE;
}

OGRPolygon *GeometryReader::readPolygon()
{
    const auto ends = m_geometry->ends();
    auto p = std::make_unique<OGRPolygon>();
    if (ends == nullptr || ends->size() < 2)
    {
        m_length = m_length / 2;
        const auto lr = readSimpleCurve<OGRLinearRing>();
        if (lr == nullptr)
            return nullptr;
        p->addRingDirectly(lr);
    }
    else
    {
        for (uint32_t i = 0; i < ends->size(); i++)
        {
            const auto e = ends->Get(i);
            if (e < m_offset)
                return CPLErrorInvalidLength("Polygon");
            m_length = e - m_offset;
            const auto lr = readSimpleCurve<OGRLinearRing>();
            m_offset = e;
            if (lr == nullptr)
                continue;
            p->addRingDirectly(lr);
        }
        if (p->IsEmpty())
            return nullptr;
    }
    return p.release();
}

OGRMultiPolygon *GeometryReader::readMultiPolygon()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto mp = std::make_unique<OGRMultiPolygon>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(
            readPart(parts->Get(i), GeometryType::Polygon));
        if (g == nullptr)
            return nullptr;
        mp->addGeometryDirectly(g.release()->toPolygon());
    }
    return mp.release();
}

OGRGeometryCollection *GeometryReader::readGeometryCollection()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto gc = std::make_unique<OGRGeometryCollection>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(readPart(parts->Get(i)));
        if (g == nullptr)
            return nullptr;
        gc->addGeometryDirectly(g.release());
    }
    return gc.release();
}

OGRCompoundCurve *GeometryReader::readCompoundCurve()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto cc = std::make_unique<OGRCompoundCurve>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(readPart(parts->Get(i)));
        if (dynamic_cast<OGRCurve *>(g.get()) == nullptr)
            return nullptr;
        auto poCurve = g.release()->toCurve();
        if (cc->addCurveDirectly(poCurve) != OGRERR_NONE)
        {
            delete poCurve;
            return nullptr;
        }
    }
    return cc.release();
}

OGRCurvePolygon *GeometryReader::readCurvePolygon()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto cp = std::make_unique<OGRCurvePolygon>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(readPart(parts->Get(i)));
        if (dynamic_cast<OGRCurve *>(g.get()) == nullptr)
            return nullptr;
        auto poCurve = g.release()->toCurve();
        if (cp->addRingDirectly(poCurve) != OGRERR_NONE)
        {
            delete poCurve;
            return nullptr;
        }
    }
    return cp.release();
}

OGRMultiCurve *GeometryReader::readMultiCurve()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto mc = std::make_unique<OGRMultiCurve>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(readPart(parts->Get(i)));
        if (dynamic_cast<OGRCurve *>(g.get()) == nullptr)
            return nullptr;
        mc->addGeometryDirectly(g.release());
    }
    return mc.release();
}

OGRMultiSurface *GeometryReader::readMultiSurface()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto ms = std::make_unique<OGRMultiSurface>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(readPart(parts->Get(i)));
        if (dynamic_cast<OGRSurface *>(g.get()) == nullptr)
            return nullptr;
        auto poSubGeom = g.release();
        if (ms->addGeometryDirectly(poSubGeom) != OGRERR_NONE)
        {
            delete poSubGeom;
            return nullptr;
        }
    }
    return ms.release();
}

OGRPolyhedralSurface *GeometryReader::readPolyhedralSurface()
{
    auto parts = m_geometry->parts();
    if (parts == nullptr)
        return CPLErrorInvalidPointer("parts data");
    auto ps = std::make_unique<OGRPolyhedralSurface>();
    for (uoffset_t i = 0; i < parts->size(); i++)
    {
        auto g = std::unique_ptr<OGRGeometry>(readPart(parts->Get(i)));
        if (g == nullptr)
            return nullptr;
        auto poSubGeom = g.release();
        if (ps->addGeometryDirectly(poSubGeom) != OGRERR_NONE)
        {
            delete poSubGeom;
            return nullptr;
        }
    }
    return ps.release();
}

OGRTriangulatedSurface *GeometryReader::readTIN()
{
    const auto ends = m_geometry->ends();
    auto ts = std::make_unique<OGRTriangulatedSurface>();
    if (ends == nullptr || ends->size() < 2)
    {
        m_length = m_length / 2;
        if (m_length != 4)
            return CPLErrorInvalidLength("TIN");
        const auto lr = readSimpleCurve<OGRLinearRing>();
        if (lr == nullptr)
            return nullptr;
        auto t = new OGRTriangle();
        t->addRingDirectly(lr);
        ts->addGeometryDirectly(t);
    }
    else
    {
        for (uint32_t i = 0; i < ends->size(); i++)
        {
            const auto e = ends->Get(i);
            if (e < m_offset)
                return CPLErrorInvalidLength("TIN");
            m_length = e - m_offset;
            if (m_length != 4)
                return CPLErrorInvalidLength("TIN");
            const auto lr = readSimpleCurve<OGRLinearRing>();
            m_offset = e;
            if (lr == nullptr)
                continue;
            auto t = new OGRTriangle();
            t->addRingDirectly(lr);
            ts->addGeometryDirectly(t);
        }
        if (ts->IsEmpty())
            return nullptr;
    }
    return ts.release();
}

OGRTriangle *GeometryReader::readTriangle()
{
    m_length = m_length / 2;
    if (m_length != 4)
        return CPLErrorInvalidLength("readTriangle");
    auto lr = readSimpleCurve<OGRLinearRing>();
    if (lr == nullptr)
        return nullptr;
    auto t = new OGRTriangle();
    t->addRingDirectly(lr);
    return t;
}

OGRGeometry *GeometryReader::read()
{
    // nested types
    switch (m_geometryType)
    {
        case GeometryType::GeometryCollection:
            return readGeometryCollection();
        case GeometryType::MultiPolygon:
            return readMultiPolygon();
        case GeometryType::CompoundCurve:
            return readCompoundCurve();
        case GeometryType::CurvePolygon:
            return readCurvePolygon();
        case GeometryType::MultiCurve:
            return readMultiCurve();
        case GeometryType::MultiSurface:
            return readMultiSurface();
        case GeometryType::PolyhedralSurface:
            return readPolyhedralSurface();
        default:
            break;
    }

    // if not nested must have geometry data
    const auto pXy = m_geometry->xy();
    if (pXy == nullptr)
        return CPLErrorInvalidPointer("XY data");
    if (m_hasZ && m_geometry->z() == nullptr)
        return CPLErrorInvalidPointer("Z data");
    if (m_hasM && m_geometry->m() == nullptr)
        return CPLErrorInvalidPointer("M data");
    const auto xySize = pXy->size();
    if (xySize >= (feature_max_buffer_size / sizeof(OGRRawPoint)))
        return CPLErrorInvalidLength("XY data");
    m_length = xySize;
    m_xylength = m_length;
    m_xy = pXy->data();

    switch (m_geometryType)
    {
        case GeometryType::Point:
            return readPoint();
        case GeometryType::MultiPoint:
            return readMultiPoint();
        case GeometryType::LineString:
            return readSimpleCurve<OGRLineString>(true);
        case GeometryType::MultiLineString:
            return readMultiLineString();
        case GeometryType::Polygon:
            return readPolygon();
        case GeometryType::CircularString:
            return readSimpleCurve<OGRCircularString>(true);
        case GeometryType::Triangle:
            return readTriangle();
        case GeometryType::TIN:
            return readTIN();
        default:
            CPLError(CE_Failure, CPLE_AppDefined,
                     "GeometryReader::read: Unknown type %d",
                     (int)m_geometryType);
    }
    return nullptr;
}