1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/******************************************************************************
*
* Project: CPL - Common Portability Library
* Purpose: Implement SHA1
* Author: Even Rouault, even.rouault at spatialys.com
*
* SHA1 computation coming from Public Domain code at:
* https://github.com/B-Con/crypto-algorithms/blob/master/sha1.c
* by Brad Conte (brad AT bradconte.com)
*
******************************************************************************
* Copyright (c) 2017, Even Rouault <even.rouault at spatialys.com>
*
* SPDX-License-Identifier: MIT
****************************************************************************/
#include <string.h>
#include "cpl_sha1.h"
typedef struct
{
GByte data[64];
GUInt32 datalen;
GUIntBig bitlen;
GUInt32 state[5];
} CPL_SHA1Context;
#define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))
/************************************************************************/
/* sha1_transform() */
/************************************************************************/
CPL_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static void sha1_transform(CPL_SHA1Context *ctx, const GByte data[])
{
GUInt32 a, b, c, d, e, i, j, t, m[80];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) +
(data[j + 3]);
for (; i < 80; ++i)
{
m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
m[i] = (m[i] << 1) | (m[i] >> 31);
}
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
for (i = 0; i < 20; ++i)
{
t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + 0x5a827999U + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for (; i < 40; ++i)
{
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + 0x6ed9eba1U + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for (; i < 60; ++i)
{
t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + 0x8f1bbcdcU +
m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for (; i < 80; ++i)
{
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + 0xca62c1d6U + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
}
/************************************************************************/
/* CPL_SHA1Init() */
/************************************************************************/
static void CPL_SHA1Init(CPL_SHA1Context *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x67452301U;
ctx->state[1] = 0xEFCDAB89U;
ctx->state[2] = 0x98BADCFEU;
ctx->state[3] = 0x10325476U;
ctx->state[4] = 0xc3d2e1f0U;
}
/************************************************************************/
/* CPL_SHA1Update() */
/************************************************************************/
static void CPL_SHA1Update(CPL_SHA1Context *ctx, const GByte data[], size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
{
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64)
{
sha1_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
/************************************************************************/
/* CPL_SHA1Final() */
/************************************************************************/
static void CPL_SHA1Final(CPL_SHA1Context *ctx, GByte hash[CPL_SHA1_HASH_SIZE])
{
GUInt32 i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56)
{
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else
{
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha1_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = static_cast<GByte>((ctx->bitlen) & 0xFFU);
ctx->data[62] = static_cast<GByte>((ctx->bitlen >> 8) & 0xFFU);
ctx->data[61] = static_cast<GByte>((ctx->bitlen >> 16) & 0xFFU);
ctx->data[60] = static_cast<GByte>((ctx->bitlen >> 24) & 0xFFU);
ctx->data[59] = static_cast<GByte>((ctx->bitlen >> 32) & 0xFFU);
ctx->data[58] = static_cast<GByte>((ctx->bitlen >> 40) & 0xFFU);
ctx->data[57] = static_cast<GByte>((ctx->bitlen >> 48) & 0xFFU);
ctx->data[56] = static_cast<GByte>((ctx->bitlen >> 56) & 0xFFU);
sha1_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and MD uses
// big endian, reverse all the bytes when copying the final state to the
// output hash.
for (i = 0; i < 4; ++i)
{
hash[i] =
static_cast<GByte>((ctx->state[0] >> (24 - i * 8)) & 0x000000ffU);
hash[i + 4] =
static_cast<GByte>((ctx->state[1] >> (24 - i * 8)) & 0x000000ffU);
hash[i + 8] =
static_cast<GByte>((ctx->state[2] >> (24 - i * 8)) & 0x000000ffU);
hash[i + 12] =
static_cast<GByte>((ctx->state[3] >> (24 - i * 8)) & 0x000000ffU);
hash[i + 16] =
static_cast<GByte>((ctx->state[4] >> (24 - i * 8)) & 0x000000ffU);
}
}
/************************************************************************/
/* CPL_SHA1() */
/************************************************************************/
void CPL_SHA1(const void *data, size_t len, GByte hash[CPL_SHA1_HASH_SIZE])
{
CPL_SHA1Context sSHA1Ctxt;
CPL_SHA1Init(&sSHA1Ctxt);
CPL_SHA1Update(&sSHA1Ctxt, static_cast<const GByte *>(data), len);
CPL_SHA1Final(&sSHA1Ctxt, hash);
memset(&sSHA1Ctxt, 0, sizeof(sSHA1Ctxt));
}
/************************************************************************/
/* CPL_HMAC_SHA1() */
/************************************************************************/
#define CPL_HMAC_SHA1_BLOCKSIZE 64U
// See
// https://en.wikipedia.org/wiki/Hash-based_message_authentication_code#Implementation
void CPL_HMAC_SHA1(const void *pKey, size_t nKeyLen, const void *pabyMessage,
size_t nMessageLen, GByte abyDigest[CPL_SHA1_HASH_SIZE])
{
GByte abyPad[CPL_HMAC_SHA1_BLOCKSIZE] = {};
if (nKeyLen > CPL_HMAC_SHA1_BLOCKSIZE)
{
CPL_SHA1(pKey, nKeyLen, abyPad);
}
else
{
memcpy(abyPad, pKey, nKeyLen);
}
// Compute ipad.
for (size_t i = 0; i < CPL_HMAC_SHA1_BLOCKSIZE; i++)
abyPad[i] = 0x36 ^ abyPad[i];
CPL_SHA1Context sSHA1Ctxt;
CPL_SHA1Init(&sSHA1Ctxt);
CPL_SHA1Update(&sSHA1Ctxt, abyPad, CPL_HMAC_SHA1_BLOCKSIZE);
CPL_SHA1Update(&sSHA1Ctxt, static_cast<const GByte *>(pabyMessage),
nMessageLen);
CPL_SHA1Final(&sSHA1Ctxt, abyDigest);
// Compute opad.
for (size_t i = 0; i < CPL_HMAC_SHA1_BLOCKSIZE; i++)
abyPad[i] = (0x36 ^ 0x5C) ^ abyPad[i];
CPL_SHA1Init(&sSHA1Ctxt);
CPL_SHA1Update(&sSHA1Ctxt, abyPad, CPL_HMAC_SHA1_BLOCKSIZE);
CPL_SHA1Update(&sSHA1Ctxt, abyDigest, CPL_SHA1_HASH_SIZE);
CPL_SHA1Final(&sSHA1Ctxt, abyDigest);
memset(&sSHA1Ctxt, 0, sizeof(sSHA1Ctxt));
memset(abyPad, 0, CPL_HMAC_SHA1_BLOCKSIZE);
}
|