1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/******************************************************************************
*
* Purpose: Implementation of ReflectanceCalculator class. Calculate
* reflectance values from radiance, for visual bands.
* Author: Bas Retsios, retsios@itc.nl
*
******************************************************************************
* Copyright (c) 2004, ITC
*
* SPDX-License-Identifier: MIT
******************************************************************************/
#include "cpl_port.h" // Must be first.
#include "reflectancecalculator.h"
#include <cmath>
#include <cstdlib>
using namespace std;
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
ReflectanceCalculator::ReflectanceCalculator(const std::string &sTimeStamp,
double rRTOA)
: m_rRTOA(rRTOA)
{
std::string sYear(sTimeStamp.substr(0, 4));
std::string sMonth(sTimeStamp.substr(4, 2));
std::string sDay(sTimeStamp.substr(6, 2));
std::string sHours(sTimeStamp.substr(8, 2));
std::string sMins(sTimeStamp.substr(10, 2));
m_iYear = atoi(sYear.c_str());
int iMonth = atoi(sMonth.c_str());
m_iDay = atoi(sDay.c_str());
for (int i = 1; i < iMonth; ++i)
m_iDay += iDaysInMonth(i, m_iYear);
int iHours = atoi(sHours.c_str());
int iMins = atoi(sMins.c_str());
m_rHours = iHours + iMins / 60.0;
}
ReflectanceCalculator::~ReflectanceCalculator()
{
}
double ReflectanceCalculator::rGetReflectance(double rRadiance, double rLat,
double rLon) const
{
double phi = rLat * M_PI / 180;
// double lam = rLon * M_PI / 180;
double rSunDist = rSunDistance();
double ReflectanceNumerator = rRadiance * rSunDist * rSunDist;
double zenithAngle = rZenithAngle(phi, rDeclination(), rHourAngle(rLon));
double ReflectanceDenominator = m_rRTOA * cos(zenithAngle * M_PI / 180);
double Reflectance = ReflectanceNumerator / ReflectanceDenominator;
return Reflectance;
}
double ReflectanceCalculator::rZenithAngle(double phi, double rDeclin,
double l_rHourAngle)
{
double rCosZen =
(sin(phi) * sin(rDeclin) + cos(phi) * cos(rDeclin) * cos(l_rHourAngle));
double zenithAngle = acos(rCosZen) * 180 / M_PI;
return zenithAngle;
}
double ReflectanceCalculator::rDeclination() const
{
double rJulianDay = m_iDay - 1;
double yearFraction = (rJulianDay + m_rHours / 24) / iDaysInYear(m_iYear);
double T = 2 * M_PI * yearFraction;
double declin = 0.006918 - 0.399912 * cos(T) + 0.070257 * sin(T) -
0.006758 * cos(2 * T) + 0.000907 * sin(2 * T) -
0.002697 * cos(3 * T) + 0.00148 * sin(3 * T);
return declin;
}
double ReflectanceCalculator::rHourAngle(double rLon) const
{
// In: rLon (in degrees)
// Out: hourAngle (in radians)
double rJulianDay = m_iDay - 1;
double yearFraction = (rJulianDay + m_rHours / 24) / iDaysInYear(m_iYear);
double T = 2 * M_PI * yearFraction;
double EOT2 = 229.18 * (0.000075 + 0.001868 * cos(T) - 0.032077 * sin(T));
double EOT3 = 229.18 * (-0.014615 * cos(2 * T) - 0.040849 * sin(2 * T));
double EOT = EOT2 + EOT3;
double TimeOffset = EOT + (4. * rLon);
// True solar time in minutes:
double TrueSolarTime = m_rHours * 60 + TimeOffset;
// Solar hour angle in degrees and in radians:
double HaDegr = (TrueSolarTime / 4. - 180.);
double hourAngle = HaDegr * M_PI / 180;
return hourAngle;
}
double ReflectanceCalculator::rSunDistance() const
{
int iJulianDay = m_iDay - 1;
double theta = 2 * M_PI * (iJulianDay - 3) / 365.25;
// rE0 is the inverse of the square of the sun-distance ratio
double rE0 = 1.000110 + 0.034221 * cos(theta) + 0.00128 * sin(theta) +
0.000719 * cos(2 * theta) + 0.000077 * sin(2 * theta);
// The calculated distance is expressed as a factor of the "average
// sun-distance" (on 1 Jan approx. 0.98, on 1 Jul approx. 1.01)
return 1 / sqrt(rE0);
}
int ReflectanceCalculator::iDaysInYear(int iYear)
{
bool fLeapYear = iDaysInMonth(2, iYear) == 29;
if (fLeapYear)
return 366;
else
return 365;
}
int ReflectanceCalculator::iDaysInMonth(int iMonth, int iYear)
{
int iDays;
if ((iMonth == 4) || (iMonth == 6) || (iMonth == 9) || (iMonth == 11))
iDays = 30;
else if (iMonth == 2)
{
iDays = 28;
if (iYear % 100 == 0) // century year
{
if (iYear % 400 == 0) // century leap year
++iDays;
}
else
{
if (iYear % 4 == 0) // normal leap year
++iDays;
}
}
else
iDays = 31;
return iDays;
}
|