1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/*
* Copyright 2021 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_ARRAY_H_
#define FLATBUFFERS_ARRAY_H_
#include "flatbuffers/base.h"
#include "flatbuffers/stl_emulation.h"
#include "flatbuffers/vector.h"
namespace flatbuffers {
// This is used as a helper type for accessing arrays.
template<typename T, uint16_t length> class Array {
// Array<T> can carry only POD data types (scalars or structs).
typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value>
scalar_tag;
typedef
typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type
IndirectHelperType;
public:
typedef uint16_t size_type;
typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
typedef VectorIterator<T, return_type> const_iterator;
typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
// If T is a LE-scalar or a struct (!scalar_tag::value).
static FLATBUFFERS_CONSTEXPR bool is_span_observable =
(scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1)) ||
!scalar_tag::value;
FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; }
return_type Get(uoffset_t i) const {
FLATBUFFERS_ASSERT(i < size());
return IndirectHelper<IndirectHelperType>::Read(Data(), i);
}
return_type operator[](uoffset_t i) const { return Get(i); }
// If this is a Vector of enums, T will be its storage type, not the enum
// type. This function makes it convenient to retrieve value with enum
// type E.
template<typename E> E GetEnum(uoffset_t i) const {
return static_cast<E>(Get(i));
}
const_iterator begin() const { return const_iterator(Data(), 0); }
const_iterator end() const { return const_iterator(Data(), size()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
const_reverse_iterator crbegin() const { return rbegin(); }
const_reverse_iterator crend() const { return rend(); }
// Get a mutable pointer to elements inside this array.
// This method used to mutate arrays of structs followed by a @p Mutate
// operation. For primitive types use @p Mutate directly.
// @warning Assignments and reads to/from the dereferenced pointer are not
// automatically converted to the correct endianness.
typename flatbuffers::conditional<scalar_tag::value, void, T *>::type
GetMutablePointer(uoffset_t i) const {
FLATBUFFERS_ASSERT(i < size());
return const_cast<T *>(&data()[i]);
}
// Change elements if you have a non-const pointer to this object.
void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); }
// The raw data in little endian format. Use with care.
const uint8_t *Data() const { return data_; }
uint8_t *Data() { return data_; }
// Similarly, but typed, much like std::vector::data
const T *data() const { return reinterpret_cast<const T *>(Data()); }
T *data() { return reinterpret_cast<T *>(Data()); }
// Copy data from a span with endian conversion.
// If this Array and the span overlap, the behavior is undefined.
void CopyFromSpan(flatbuffers::span<const T, length> src) {
const auto p1 = reinterpret_cast<const uint8_t *>(src.data());
const auto p2 = Data();
FLATBUFFERS_ASSERT(!(p1 >= p2 && p1 < (p2 + length)) &&
!(p2 >= p1 && p2 < (p1 + length)));
(void)p1;
(void)p2;
CopyFromSpanImpl(flatbuffers::bool_constant<is_span_observable>(), src);
}
protected:
void MutateImpl(flatbuffers::true_type, uoffset_t i, const T &val) {
FLATBUFFERS_ASSERT(i < size());
WriteScalar(data() + i, val);
}
void MutateImpl(flatbuffers::false_type, uoffset_t i, const T &val) {
*(GetMutablePointer(i)) = val;
}
void CopyFromSpanImpl(flatbuffers::true_type,
flatbuffers::span<const T, length> src) {
// Use std::memcpy() instead of std::copy() to avoid performance degradation
// due to aliasing if T is char or unsigned char.
// The size is known at compile time, so memcpy would be inlined.
std::memcpy(data(), src.data(), length * sizeof(T));
}
// Copy data from flatbuffers::span with endian conversion.
void CopyFromSpanImpl(flatbuffers::false_type,
flatbuffers::span<const T, length> src) {
for (size_type k = 0; k < length; k++) { Mutate(k, src[k]); }
}
// This class is only used to access pre-existing data. Don't ever
// try to construct these manually.
// 'constexpr' allows us to use 'size()' at compile time.
// @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on
// a constructor.
#if defined(__cpp_constexpr)
constexpr Array();
#else
Array();
#endif
uint8_t data_[length * sizeof(T)];
private:
// This class is a pointer. Copying will therefore create an invalid object.
// Private and unimplemented copy constructor.
Array(const Array &);
Array &operator=(const Array &);
};
// Specialization for Array[struct] with access using Offset<void> pointer.
// This specialization used by idl_gen_text.cpp.
template<typename T, uint16_t length> class Array<Offset<T>, length> {
static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");
public:
typedef const void *return_type;
const uint8_t *Data() const { return data_; }
// Make idl_gen_text.cpp::PrintContainer happy.
return_type operator[](uoffset_t) const {
FLATBUFFERS_ASSERT(false);
return nullptr;
}
private:
// This class is only used to access pre-existing data.
Array();
Array(const Array &);
Array &operator=(const Array &);
uint8_t data_[1];
};
template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U, N> make_span(Array<U, N> &arr)
FLATBUFFERS_NOEXCEPT {
static_assert(
Array<U, N>::is_span_observable,
"wrong type U, only plain struct, LE-scalar, or byte types are allowed");
return span<U, N>(arr.data(), N);
}
template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U, N> make_span(
const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
static_assert(
Array<U, N>::is_span_observable,
"wrong type U, only plain struct, LE-scalar, or byte types are allowed");
return span<const U, N>(arr.data(), N);
}
template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t, sizeof(U) * N>
make_bytes_span(Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
static_assert(Array<U, N>::is_span_observable,
"internal error, Array<T> might hold only scalars or structs");
return span<uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
}
template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t, sizeof(U) * N>
make_bytes_span(const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
static_assert(Array<U, N>::is_span_observable,
"internal error, Array<T> might hold only scalars or structs");
return span<const uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
}
// Cast a raw T[length] to a raw flatbuffers::Array<T, length>
// without endian conversion. Use with care.
// TODO: move these Cast-methods to `internal` namespace.
template<typename T, uint16_t length>
Array<T, length> &CastToArray(T (&arr)[length]) {
return *reinterpret_cast<Array<T, length> *>(arr);
}
template<typename T, uint16_t length>
const Array<T, length> &CastToArray(const T (&arr)[length]) {
return *reinterpret_cast<const Array<T, length> *>(arr);
}
template<typename E, typename T, uint16_t length>
Array<E, length> &CastToArrayOfEnum(T (&arr)[length]) {
static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
return *reinterpret_cast<Array<E, length> *>(arr);
}
template<typename E, typename T, uint16_t length>
const Array<E, length> &CastToArrayOfEnum(const T (&arr)[length]) {
static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
return *reinterpret_cast<const Array<E, length> *>(arr);
}
} // namespace flatbuffers
#endif // FLATBUFFERS_ARRAY_H_
|