File: array.h

package info (click to toggle)
gdal 3.11.3%2Bdfsg-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 89,016 kB
  • sloc: cpp: 1,165,048; ansic: 208,864; python: 26,958; java: 5,972; xml: 4,611; sh: 3,776; cs: 2,508; yacc: 1,306; makefile: 213
file content (243 lines) | stat: -rw-r--r-- 8,770 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 * Copyright 2021 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef FLATBUFFERS_ARRAY_H_
#define FLATBUFFERS_ARRAY_H_

#include "flatbuffers/base.h"
#include "flatbuffers/stl_emulation.h"
#include "flatbuffers/vector.h"

namespace flatbuffers {

// This is used as a helper type for accessing arrays.
template<typename T, uint16_t length> class Array {
  // Array<T> can carry only POD data types (scalars or structs).
  typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value>
      scalar_tag;
  typedef
      typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type
          IndirectHelperType;

 public:
  typedef uint16_t size_type;
  typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
  typedef VectorIterator<T, return_type> const_iterator;
  typedef VectorReverseIterator<const_iterator> const_reverse_iterator;

  // If T is a LE-scalar or a struct (!scalar_tag::value).
  static FLATBUFFERS_CONSTEXPR bool is_span_observable =
      (scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1)) ||
      !scalar_tag::value;

  FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; }

  return_type Get(uoffset_t i) const {
    FLATBUFFERS_ASSERT(i < size());
    return IndirectHelper<IndirectHelperType>::Read(Data(), i);
  }

  return_type operator[](uoffset_t i) const { return Get(i); }

  // If this is a Vector of enums, T will be its storage type, not the enum
  // type. This function makes it convenient to retrieve value with enum
  // type E.
  template<typename E> E GetEnum(uoffset_t i) const {
    return static_cast<E>(Get(i));
  }

  const_iterator begin() const { return const_iterator(Data(), 0); }
  const_iterator end() const { return const_iterator(Data(), size()); }

  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  const_iterator cbegin() const { return begin(); }
  const_iterator cend() const { return end(); }

  const_reverse_iterator crbegin() const { return rbegin(); }
  const_reverse_iterator crend() const { return rend(); }

  // Get a mutable pointer to elements inside this array.
  // This method used to mutate arrays of structs followed by a @p Mutate
  // operation. For primitive types use @p Mutate directly.
  // @warning Assignments and reads to/from the dereferenced pointer are not
  //  automatically converted to the correct endianness.
  typename flatbuffers::conditional<scalar_tag::value, void, T *>::type
  GetMutablePointer(uoffset_t i) const {
    FLATBUFFERS_ASSERT(i < size());
    return const_cast<T *>(&data()[i]);
  }

  // Change elements if you have a non-const pointer to this object.
  void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); }

  // The raw data in little endian format. Use with care.
  const uint8_t *Data() const { return data_; }

  uint8_t *Data() { return data_; }

  // Similarly, but typed, much like std::vector::data
  const T *data() const { return reinterpret_cast<const T *>(Data()); }
  T *data() { return reinterpret_cast<T *>(Data()); }

  // Copy data from a span with endian conversion.
  // If this Array and the span overlap, the behavior is undefined.
  void CopyFromSpan(flatbuffers::span<const T, length> src) {
    const auto p1 = reinterpret_cast<const uint8_t *>(src.data());
    const auto p2 = Data();
    FLATBUFFERS_ASSERT(!(p1 >= p2 && p1 < (p2 + length)) &&
                       !(p2 >= p1 && p2 < (p1 + length)));
    (void)p1;
    (void)p2;
    CopyFromSpanImpl(flatbuffers::bool_constant<is_span_observable>(), src);
  }

 protected:
  void MutateImpl(flatbuffers::true_type, uoffset_t i, const T &val) {
    FLATBUFFERS_ASSERT(i < size());
    WriteScalar(data() + i, val);
  }

  void MutateImpl(flatbuffers::false_type, uoffset_t i, const T &val) {
    *(GetMutablePointer(i)) = val;
  }

  void CopyFromSpanImpl(flatbuffers::true_type,
                        flatbuffers::span<const T, length> src) {
    // Use std::memcpy() instead of std::copy() to avoid performance degradation
    // due to aliasing if T is char or unsigned char.
    // The size is known at compile time, so memcpy would be inlined.
    std::memcpy(data(), src.data(), length * sizeof(T));
  }

  // Copy data from flatbuffers::span with endian conversion.
  void CopyFromSpanImpl(flatbuffers::false_type,
                        flatbuffers::span<const T, length> src) {
    for (size_type k = 0; k < length; k++) { Mutate(k, src[k]); }
  }

  // This class is only used to access pre-existing data. Don't ever
  // try to construct these manually.
  // 'constexpr' allows us to use 'size()' at compile time.
  // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on
  //  a constructor.
#if defined(__cpp_constexpr)
  constexpr Array();
#else
  Array();
#endif

  uint8_t data_[length * sizeof(T)];

 private:
  // This class is a pointer. Copying will therefore create an invalid object.
  // Private and unimplemented copy constructor.
  Array(const Array &);
  Array &operator=(const Array &);
};

// Specialization for Array[struct] with access using Offset<void> pointer.
// This specialization used by idl_gen_text.cpp.
template<typename T, uint16_t length> class Array<Offset<T>, length> {
  static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");

 public:
  typedef const void *return_type;

  const uint8_t *Data() const { return data_; }

  // Make idl_gen_text.cpp::PrintContainer happy.
  return_type operator[](uoffset_t) const {
    FLATBUFFERS_ASSERT(false);
    return nullptr;
  }

 private:
  // This class is only used to access pre-existing data.
  Array();
  Array(const Array &);
  Array &operator=(const Array &);

  uint8_t data_[1];
};

template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U, N> make_span(Array<U, N> &arr)
    FLATBUFFERS_NOEXCEPT {
  static_assert(
      Array<U, N>::is_span_observable,
      "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
  return span<U, N>(arr.data(), N);
}

template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U, N> make_span(
    const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
  static_assert(
      Array<U, N>::is_span_observable,
      "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
  return span<const U, N>(arr.data(), N);
}

template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t, sizeof(U) * N>
make_bytes_span(Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
  static_assert(Array<U, N>::is_span_observable,
                "internal error, Array<T> might hold only scalars or structs");
  return span<uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
}

template<class U, uint16_t N>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t, sizeof(U) * N>
make_bytes_span(const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
  static_assert(Array<U, N>::is_span_observable,
                "internal error, Array<T> might hold only scalars or structs");
  return span<const uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
}

// Cast a raw T[length] to a raw flatbuffers::Array<T, length>
// without endian conversion. Use with care.
// TODO: move these Cast-methods to `internal` namespace.
template<typename T, uint16_t length>
Array<T, length> &CastToArray(T (&arr)[length]) {
  return *reinterpret_cast<Array<T, length> *>(arr);
}

template<typename T, uint16_t length>
const Array<T, length> &CastToArray(const T (&arr)[length]) {
  return *reinterpret_cast<const Array<T, length> *>(arr);
}

template<typename E, typename T, uint16_t length>
Array<E, length> &CastToArrayOfEnum(T (&arr)[length]) {
  static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
  return *reinterpret_cast<Array<E, length> *>(arr);
}

template<typename E, typename T, uint16_t length>
const Array<E, length> &CastToArrayOfEnum(const T (&arr)[length]) {
  static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
  return *reinterpret_cast<const Array<E, length> *>(arr);
}

}  // namespace flatbuffers

#endif  // FLATBUFFERS_ARRAY_H_