File: stl_emulation.h

package info (click to toggle)
gdal 3.11.3%2Bdfsg-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 89,016 kB
  • sloc: cpp: 1,165,048; ansic: 208,864; python: 26,958; java: 5,972; xml: 4,611; sh: 3,776; cs: 2,508; yacc: 1,306; makefile: 213
file content (509 lines) | stat: -rw-r--r-- 18,540 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/*
 * Copyright 2017 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef FLATBUFFERS_STL_EMULATION_H_
#define FLATBUFFERS_STL_EMULATION_H_

// clang-format off
#include "flatbuffers/base.h"

#include <string>
#include <type_traits>
#include <vector>
#include <memory>
#include <limits>

#ifndef FLATBUFFERS_USE_STD_OPTIONAL
  // Detect C++17 compatible compiler.
  // __cplusplus >= 201703L - a compiler has support of 'static inline' variables.
  #if (defined(__cplusplus) && __cplusplus >= 201703L) \
      || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
    #define FLATBUFFERS_USE_STD_OPTIONAL 1
  #else
    #define FLATBUFFERS_USE_STD_OPTIONAL 0
  #endif // (defined(__cplusplus) && __cplusplus >= 201703L) ...
#endif // FLATBUFFERS_USE_STD_OPTIONAL

#if FLATBUFFERS_USE_STD_OPTIONAL
  #include <optional>
#endif

// The __cpp_lib_span is the predefined feature macro.
#if defined(FLATBUFFERS_USE_STD_SPAN)
    #include <span>
#elif defined(__cpp_lib_span) && defined(__has_include)
  #if __has_include(<span>)
    #include <span>
    #define FLATBUFFERS_USE_STD_SPAN
  #endif
#else
  // Disable non-trivial ctors if FLATBUFFERS_SPAN_MINIMAL defined.
  #if !defined(FLATBUFFERS_TEMPLATES_ALIASES)
    #define FLATBUFFERS_SPAN_MINIMAL
  #else
    // Enable implicit construction of a span<T,N> from a std::array<T,N>.
    #include <array>
  #endif
#endif // defined(FLATBUFFERS_USE_STD_SPAN)

// This header provides backwards compatibility for older versions of the STL.
namespace flatbuffers {

#if defined(FLATBUFFERS_TEMPLATES_ALIASES)
  template <typename T>
  using numeric_limits = std::numeric_limits<T>;
#else
  template <typename T> class numeric_limits :
    public std::numeric_limits<T> {};
#endif  // defined(FLATBUFFERS_TEMPLATES_ALIASES)

#if defined(FLATBUFFERS_TEMPLATES_ALIASES)
  template <typename T> using is_scalar = std::is_scalar<T>;
  template <typename T, typename U> using is_same = std::is_same<T,U>;
  template <typename T> using is_floating_point = std::is_floating_point<T>;
  template <typename T> using is_unsigned = std::is_unsigned<T>;
  template <typename T> using is_enum = std::is_enum<T>;
  template <typename T> using make_unsigned = std::make_unsigned<T>;
  template<bool B, class T, class F>
  using conditional = std::conditional<B, T, F>;
  template<class T, T v>
  using integral_constant = std::integral_constant<T, v>;
  template <bool B>
  using bool_constant = integral_constant<bool, B>;
  using true_type  = std::true_type;
  using false_type = std::false_type;
#else
  // MSVC 2010 doesn't support C++11 aliases.
  template <typename T> struct is_scalar : public std::is_scalar<T> {};
  template <typename T, typename U> struct is_same : public std::is_same<T,U> {};
  template <typename T> struct is_floating_point :
        public std::is_floating_point<T> {};
  template <typename T> struct is_unsigned : public std::is_unsigned<T> {};
  template <typename T> struct is_enum : public std::is_enum<T> {};
  template <typename T> struct make_unsigned : public std::make_unsigned<T> {};
  template<bool B, class T, class F>
  struct conditional : public std::conditional<B, T, F> {};
  template<class T, T v>
  struct integral_constant : public std::integral_constant<T, v> {};
  template <bool B>
  struct bool_constant : public integral_constant<bool, B> {};
  typedef bool_constant<true>  true_type;
  typedef bool_constant<false> false_type;
#endif  // defined(FLATBUFFERS_TEMPLATES_ALIASES)

#if defined(FLATBUFFERS_TEMPLATES_ALIASES)
  template <class T> using unique_ptr = std::unique_ptr<T>;
#else
  // MSVC 2010 doesn't support C++11 aliases.
  // We're manually "aliasing" the class here as we want to bring unique_ptr
  // into the flatbuffers namespace.  We have unique_ptr in the flatbuffers
  // namespace we have a completely independent implementation (see below)
  // for C++98 STL implementations.
  template <class T> class unique_ptr : public std::unique_ptr<T> {
    public:
    unique_ptr() {}
    explicit unique_ptr(T* p) : std::unique_ptr<T>(p) {}
    unique_ptr(std::unique_ptr<T>&& u) { *this = std::move(u); }
    unique_ptr(unique_ptr&& u) { *this = std::move(u); }
    unique_ptr& operator=(std::unique_ptr<T>&& u) {
      std::unique_ptr<T>::reset(u.release());
      return *this;
    }
    unique_ptr& operator=(unique_ptr&& u) {
      std::unique_ptr<T>::reset(u.release());
      return *this;
    }
    unique_ptr& operator=(T* p) {
      return std::unique_ptr<T>::operator=(p);
    }
  };
#endif  // defined(FLATBUFFERS_TEMPLATES_ALIASES)

#if FLATBUFFERS_USE_STD_OPTIONAL
template<class T>
using Optional = std::optional<T>;
using nullopt_t = std::nullopt_t;
inline constexpr nullopt_t nullopt = std::nullopt;

#else
// Limited implementation of Optional<T> type for a scalar T.
// This implementation limited by trivial types compatible with
// std::is_arithmetic<T> or std::is_enum<T> type traits.

// A tag to indicate an empty flatbuffers::optional<T>.
struct nullopt_t {
  explicit FLATBUFFERS_CONSTEXPR_CPP11 nullopt_t(int) {}
};

#if defined(FLATBUFFERS_CONSTEXPR_DEFINED)
  namespace internal {
    template <class> struct nullopt_holder {
      static constexpr nullopt_t instance_ = nullopt_t(0);
    };
    template<class Dummy>
    constexpr nullopt_t nullopt_holder<Dummy>::instance_;
  }
  static constexpr const nullopt_t &nullopt = internal::nullopt_holder<void>::instance_;

#else
  namespace internal {
    template <class> struct nullopt_holder {
      static const nullopt_t instance_;
    };
    template<class Dummy>
    const nullopt_t nullopt_holder<Dummy>::instance_  = nullopt_t(0);
  }
  static const nullopt_t &nullopt = internal::nullopt_holder<void>::instance_;

#endif

template<class T>
class Optional FLATBUFFERS_FINAL_CLASS {
  // Non-scalar 'T' would extremely complicated Optional<T>.
  // Use is_scalar<T> checking because flatbuffers flatbuffers::is_arithmetic<T>
  // isn't implemented.
  static_assert(flatbuffers::is_scalar<T>::value, "unexpected type T");

 public:
  ~Optional() {}

  FLATBUFFERS_CONSTEXPR_CPP11 Optional() FLATBUFFERS_NOEXCEPT
    : value_(), has_value_(false) {}

  FLATBUFFERS_CONSTEXPR_CPP11 Optional(nullopt_t) FLATBUFFERS_NOEXCEPT
    : value_(), has_value_(false) {}

  FLATBUFFERS_CONSTEXPR_CPP11 Optional(T val) FLATBUFFERS_NOEXCEPT
    : value_(val), has_value_(true) {}

  FLATBUFFERS_CONSTEXPR_CPP11 Optional(const Optional &other) FLATBUFFERS_NOEXCEPT
    : value_(other.value_), has_value_(other.has_value_) {}

  FLATBUFFERS_CONSTEXPR_CPP14 Optional &operator=(const Optional &other) FLATBUFFERS_NOEXCEPT {
    value_ = other.value_;
    has_value_ = other.has_value_;
    return *this;
  }

  FLATBUFFERS_CONSTEXPR_CPP14 Optional &operator=(nullopt_t) FLATBUFFERS_NOEXCEPT {
    value_ = T();
    has_value_ = false;
    return *this;
  }

  FLATBUFFERS_CONSTEXPR_CPP14 Optional &operator=(T val) FLATBUFFERS_NOEXCEPT {
    value_ = val;
    has_value_ = true;
    return *this;
  }

  void reset() FLATBUFFERS_NOEXCEPT {
    *this = nullopt;
  }

  void swap(Optional &other) FLATBUFFERS_NOEXCEPT {
    std::swap(value_, other.value_);
    std::swap(has_value_, other.has_value_);
  }

  FLATBUFFERS_CONSTEXPR_CPP11 FLATBUFFERS_EXPLICIT_CPP11 operator bool() const FLATBUFFERS_NOEXCEPT {
    return has_value_;
  }

  FLATBUFFERS_CONSTEXPR_CPP11 bool has_value() const FLATBUFFERS_NOEXCEPT {
    return has_value_;
  }

  FLATBUFFERS_CONSTEXPR_CPP11 const T& operator*() const FLATBUFFERS_NOEXCEPT {
    return value_;
  }

  const T& value() const {
    FLATBUFFERS_ASSERT(has_value());
    return value_;
  }

  T value_or(T default_value) const FLATBUFFERS_NOEXCEPT {
    return has_value() ? value_ : default_value;
  }

 private:
  T value_;
  bool has_value_;
};

template<class T>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const Optional<T>& opt, nullopt_t) FLATBUFFERS_NOEXCEPT {
  return !opt;
}
template<class T>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(nullopt_t, const Optional<T>& opt) FLATBUFFERS_NOEXCEPT {
  return !opt;
}

template<class T, class U>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const Optional<T>& lhs, const U& rhs) FLATBUFFERS_NOEXCEPT {
  return static_cast<bool>(lhs) && (*lhs == rhs);
}

template<class T, class U>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const T& lhs, const Optional<U>& rhs) FLATBUFFERS_NOEXCEPT {
  return static_cast<bool>(rhs) && (lhs == *rhs);
}

template<class T, class U>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) FLATBUFFERS_NOEXCEPT {
  return static_cast<bool>(lhs) != static_cast<bool>(rhs)
              ? false
              : !static_cast<bool>(lhs) ? false : (*lhs == *rhs);
}
#endif // FLATBUFFERS_USE_STD_OPTIONAL


// Very limited and naive partial implementation of C++20 std::span<T,Extent>.
#if defined(FLATBUFFERS_USE_STD_SPAN)
  inline constexpr std::size_t dynamic_extent = std::dynamic_extent;
  template<class T, std::size_t Extent = std::dynamic_extent>
  using span = std::span<T, Extent>;

#else // !defined(FLATBUFFERS_USE_STD_SPAN)
FLATBUFFERS_CONSTEXPR std::size_t dynamic_extent = static_cast<std::size_t>(-1);

// Exclude this code if MSVC2010 or non-STL Android is active.
// The non-STL Android doesn't have `std::is_convertible` required for SFINAE.
#if !defined(FLATBUFFERS_SPAN_MINIMAL)
namespace internal {
  // This is SFINAE helper class for checking of a common condition:
  // > This overload only participates in overload resolution
  // > Check whether a pointer to an array of U can be converted
  // > to a pointer to an array of E.
  // This helper is used for checking of 'U -> const U'.
  template<class E, std::size_t Extent, class U, std::size_t N>
  struct is_span_convertable {
    using type =
      typename std::conditional<std::is_convertible<U (*)[], E (*)[]>::value
                                && (Extent == dynamic_extent || N == Extent),
                                int, void>::type;
  };

  template<typename T>
  struct SpanIterator {
    // TODO: upgrade to std::random_access_iterator_tag.
    using iterator_category = std::forward_iterator_tag;
    using difference_type  = std::ptrdiff_t;
    using value_type = typename std::remove_cv<T>::type;
    using reference = T&;
    using pointer   = T*;

    // Convince MSVC compiler that this iterator is trusted (it is verified).
    #ifdef _MSC_VER
      using _Unchecked_type = pointer;
    #endif // _MSC_VER

    SpanIterator(pointer ptr) : ptr_(ptr) {}
    reference operator*() const { return *ptr_; }
    pointer operator->() { return ptr_; }
    SpanIterator& operator++() { ptr_++; return *this; }  
    SpanIterator  operator++(int) { auto tmp = *this; ++(*this); return tmp; }

    friend bool operator== (const SpanIterator& lhs, const SpanIterator& rhs) { return lhs.ptr_ == rhs.ptr_; }
    friend bool operator!= (const SpanIterator& lhs, const SpanIterator& rhs) { return lhs.ptr_ != rhs.ptr_; }

   private:
    pointer ptr_;
  };
}  // namespace internal
#endif  // !defined(FLATBUFFERS_SPAN_MINIMAL)

// T - element type; must be a complete type that is not an abstract
// class type.
// Extent - the number of elements in the sequence, or dynamic.
template<class T, std::size_t Extent = dynamic_extent>
class span FLATBUFFERS_FINAL_CLASS {
 public:
  typedef T element_type;
  typedef T& reference;
  typedef const T& const_reference;
  typedef T* pointer;
  typedef const T* const_pointer;
  typedef std::size_t size_type;

  static FLATBUFFERS_CONSTEXPR size_type extent = Extent;

  // Returns the number of elements in the span.
  FLATBUFFERS_CONSTEXPR_CPP11 size_type size() const FLATBUFFERS_NOEXCEPT {
    return count_;
  }

  // Returns the size of the sequence in bytes.
  FLATBUFFERS_CONSTEXPR_CPP11
  size_type size_bytes() const FLATBUFFERS_NOEXCEPT {
    return size() * sizeof(element_type);
  }

  // Checks if the span is empty.
  FLATBUFFERS_CONSTEXPR_CPP11 bool empty() const FLATBUFFERS_NOEXCEPT {
    return size() == 0;
  }

  // Returns a pointer to the beginning of the sequence.
  FLATBUFFERS_CONSTEXPR_CPP11 pointer data() const FLATBUFFERS_NOEXCEPT {
    return data_;
  }

  #if !defined(FLATBUFFERS_SPAN_MINIMAL)
    using Iterator = internal::SpanIterator<T>;

    Iterator begin() const { return Iterator(data()); }
    Iterator end() const   { return Iterator(data() + size()); }
  #endif

  // Returns a reference to the idx-th element of the sequence.
  // The behavior is undefined if the idx is greater than or equal to size().
  FLATBUFFERS_CONSTEXPR_CPP11 reference operator[](size_type idx) const {
    return data()[idx];
  }

  FLATBUFFERS_CONSTEXPR_CPP11 span(const span &other) FLATBUFFERS_NOEXCEPT
      : data_(other.data_), count_(other.count_) {}

  FLATBUFFERS_CONSTEXPR_CPP14 span &operator=(const span &other)
      FLATBUFFERS_NOEXCEPT {
    data_ = other.data_;
    count_ = other.count_;
  }

  // Limited implementation of
  // `template <class It> constexpr std::span(It first, size_type count);`.
  //
  // Constructs a span that is a view over the range [first, first + count);
  // the resulting span has: data() == first and size() == count.
  // The behavior is undefined if [first, first + count) is not a valid range,
  // or if (extent != flatbuffers::dynamic_extent && count != extent).
  FLATBUFFERS_CONSTEXPR_CPP11
  explicit span(pointer first, size_type count) FLATBUFFERS_NOEXCEPT
    : data_ (Extent == dynamic_extent ? first : (Extent == count ? first : nullptr)),
      count_(Extent == dynamic_extent ? count : (Extent == count ? Extent : 0)) {
      // Make span empty if the count argument is incompatible with span<T,N>.
  }

  // Exclude this code if MSVC2010 is active. The MSVC2010 isn't C++11
  // compliant, it doesn't support default template arguments for functions.
  #if defined(FLATBUFFERS_SPAN_MINIMAL)
  FLATBUFFERS_CONSTEXPR_CPP11 span() FLATBUFFERS_NOEXCEPT : data_(nullptr),
                                                            count_(0) {
    static_assert(extent == 0 || extent == dynamic_extent, "invalid span");
  }

  #else
  // Constructs an empty span whose data() == nullptr and size() == 0.
  // This overload only participates in overload resolution if
  // extent == 0 || extent == flatbuffers::dynamic_extent.
  // A dummy template argument N is need dependency for SFINAE.
  template<std::size_t N = 0,
    typename internal::is_span_convertable<element_type, Extent, element_type, (N - N)>::type = 0>
  FLATBUFFERS_CONSTEXPR_CPP11 span() FLATBUFFERS_NOEXCEPT : data_(nullptr),
                                                            count_(0) {
    static_assert(extent == 0 || extent == dynamic_extent, "invalid span");
  }

  // Constructs a span that is a view over the array arr; the resulting span
  // has size() == N and data() == std::data(arr). These overloads only
  // participate in overload resolution if
  // extent == std::dynamic_extent || N == extent is true and
  // std::remove_pointer_t<decltype(std::data(arr))>(*)[]
  // is convertible to element_type (*)[].
  template<std::size_t N,
    typename internal::is_span_convertable<element_type, Extent, element_type, N>::type = 0>
  FLATBUFFERS_CONSTEXPR_CPP11 span(element_type (&arr)[N]) FLATBUFFERS_NOEXCEPT
      : data_(arr), count_(N) {}

  template<class U, std::size_t N,
    typename internal::is_span_convertable<element_type, Extent, U, N>::type = 0>
  FLATBUFFERS_CONSTEXPR_CPP11 span(std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT
     : data_(arr.data()), count_(N) {}

  //template<class U, std::size_t N,
  //  int = 0>
  //FLATBUFFERS_CONSTEXPR_CPP11 span(std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT
  //   : data_(arr.data()), count_(N) {}

  template<class U, std::size_t N,
    typename internal::is_span_convertable<element_type, Extent, U, N>::type = 0>
  FLATBUFFERS_CONSTEXPR_CPP11 span(const std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT
    : data_(arr.data()), count_(N) {}

  // Converting constructor from another span s;
  // the resulting span has size() == s.size() and data() == s.data().
  // This overload only participates in overload resolution
  // if extent == std::dynamic_extent || N == extent is true and U (*)[]
  // is convertible to element_type (*)[].
  template<class U, std::size_t N,
    typename internal::is_span_convertable<element_type, Extent, U, N>::type = 0>
  FLATBUFFERS_CONSTEXPR_CPP11 span(const flatbuffers::span<U, N> &s) FLATBUFFERS_NOEXCEPT
      : span(s.data(), s.size()) {
  }

  #endif  // !defined(FLATBUFFERS_SPAN_MINIMAL)

 private:
  // This is a naive implementation with 'count_' member even if (Extent != dynamic_extent).
  pointer const data_;
  size_type count_;
};
#endif  // defined(FLATBUFFERS_USE_STD_SPAN)

#if !defined(FLATBUFFERS_SPAN_MINIMAL)
template<class U, std::size_t N>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<U, N> make_span(U(&arr)[N]) FLATBUFFERS_NOEXCEPT {
  return span<U, N>(arr);
}

template<class U, std::size_t N>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<const U, N> make_span(const U(&arr)[N]) FLATBUFFERS_NOEXCEPT {
  return span<const U, N>(arr);
}

template<class U, std::size_t N>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<U, N> make_span(std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
  return span<U, N>(arr);
}

template<class U, std::size_t N>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<const U, N> make_span(const std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
  return span<const U, N>(arr);
}

template<class U, std::size_t N>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<U, dynamic_extent> make_span(U *first, std::size_t count) FLATBUFFERS_NOEXCEPT {
  return span<U, dynamic_extent>(first, count);
}

template<class U, std::size_t N>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<const U, dynamic_extent> make_span(const U *first, std::size_t count) FLATBUFFERS_NOEXCEPT {
  return span<const U, dynamic_extent>(first, count);
}
#endif // !defined(FLATBUFFERS_SPAN_MINIMAL)

}  // namespace flatbuffers

#endif  // FLATBUFFERS_STL_EMULATION_H_