File: directedacyclicgraph.hpp

package info (click to toggle)
gdal 3.11.3%2Bdfsg-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 89,016 kB
  • sloc: cpp: 1,165,048; ansic: 208,864; python: 26,958; java: 5,972; xml: 4,611; sh: 3,776; cs: 2,508; yacc: 1,306; makefile: 213
file content (257 lines) | stat: -rw-r--r-- 7,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/******************************************************************************
 *
 * Project:  GDAL
 * Purpose:  Implementation of topologic sorting over a directed acyclic graph
 * Author:   Even Rouault
 *
 ******************************************************************************
 * Copyright (c) 2021, Even Rouault <even dot rouault at spatialys dot com>
 *
 * SPDX-License-Identifier: MIT
 ****************************************************************************/

#ifndef DIRECTEDACYCLICGRAPH_INCLUDED_H
#define DIRECTEDACYCLICGRAPH_INCLUDED_H

#include <algorithm>
#include <list>
#include <map>
#include <set>
#include <stack>
#include <string>
#include <vector>

#include <cassert>

namespace gdal
{

// See https://en.wikipedia.org/wiki/Directed_acyclic_graph
template <class T, class V = std::string> class DirectedAcyclicGraph
{
    std::set<T> nodes{};
    std::map<T, std::set<T>>
        incomingNodes{};  // incomingNodes[j][i] means an edge from i to j
    std::map<T, std::set<T>>
        outgoingNodes{};  // outgoingNodes[i][j] means an edge from i to j
    std::map<T, V> names{};

  public:
    DirectedAcyclicGraph() = default;

    void clear()
    {
        nodes.clear();
        incomingNodes.clear();
        outgoingNodes.clear();
        names.clear();
    }

    void addNode(const T &i, const V &s)
    {
        nodes.insert(i);
        names[i] = s;
    }

    void removeNode(const T &i);
    const char *addEdge(const T &i, const T &j);
    const char *removeEdge(const T &i, const T &j);
    bool isTherePathFromTo(const T &i, const T &j) const;
    std::vector<T> findStartingNodes() const;
    std::vector<T> getTopologicalOrdering();
};

template <class T, class V>
void DirectedAcyclicGraph<T, V>::removeNode(const T &i)
{
    nodes.erase(i);
    names.erase(i);

    {
        auto incomingIter = incomingNodes.find(i);
        if (incomingIter != incomingNodes.end())
        {
            for (const T &j : incomingIter->second)
            {
                auto outgoingIter = outgoingNodes.find(j);
                assert(outgoingIter != outgoingNodes.end());
                auto iterJI = outgoingIter->second.find(i);
                assert(iterJI != outgoingIter->second.end());
                outgoingIter->second.erase(iterJI);
                if (outgoingIter->second.empty())
                    outgoingNodes.erase(outgoingIter);
            }
            incomingNodes.erase(incomingIter);
        }
    }

    {
        auto outgoingIter = outgoingNodes.find(i);
        if (outgoingIter != outgoingNodes.end())
        {
            for (const T &j : outgoingIter->second)
            {
                auto incomingIter = incomingNodes.find(j);
                assert(incomingIter != incomingNodes.end());
                auto iterJI = incomingIter->second.find(i);
                assert(iterJI != incomingIter->second.end());
                incomingIter->second.erase(iterJI);
                if (incomingIter->second.empty())
                    incomingNodes.erase(incomingIter);
            }
            outgoingNodes.erase(outgoingIter);
        }
    }
}

template <class T, class V>
const char *DirectedAcyclicGraph<T, V>::addEdge(const T &i, const T &j)
{
    if (i == j)
    {
        return "self cycle";
    }
    const auto iterI = outgoingNodes.find(i);
    if (iterI != outgoingNodes.end() &&
        iterI->second.find(j) != iterI->second.end())
    {
        return "already inserted edge";
    }

    if (!cpl::contains(nodes, i))
    {
        return "node i unknown";
    }
    if (!cpl::contains(nodes, j))
    {
        return "node j unknown";
    }

    if (isTherePathFromTo(j, i))
    {
        return "can't add edge: this would cause a cycle";
    }

    outgoingNodes[i].insert(j);
    incomingNodes[j].insert(i);
    return nullptr;
}

template <class T, class V>
const char *DirectedAcyclicGraph<T, V>::removeEdge(const T &i, const T &j)
{
    auto iterI = outgoingNodes.find(i);
    if (iterI == outgoingNodes.end())
        return "no outgoing nodes from i";
    auto iterIJ = iterI->second.find(j);
    if (iterIJ == iterI->second.end())
        return "no outgoing node from i to j";
    iterI->second.erase(iterIJ);
    if (iterI->second.empty())
        outgoingNodes.erase(iterI);

    auto iterJ = incomingNodes.find(j);
    assert(iterJ != incomingNodes.end());
    auto iterJI = iterJ->second.find(i);
    assert(iterJI != iterJ->second.end());
    iterJ->second.erase(iterJI);
    if (iterJ->second.empty())
        incomingNodes.erase(iterJ);

    return nullptr;
}

template <class T, class V>
bool DirectedAcyclicGraph<T, V>::isTherePathFromTo(const T &i, const T &j) const
{
    std::set<T> plannedForVisit;
    std::stack<T> toVisit;
    toVisit.push(i);
    plannedForVisit.insert(i);
    while (!toVisit.empty())
    {
        const T n = toVisit.top();
        toVisit.pop();
        if (n == j)
            return true;
        const auto iter = outgoingNodes.find(n);
        if (iter != outgoingNodes.end())
        {
            for (const T &k : iter->second)
            {
                if (!cpl::contains(plannedForVisit, k))
                {
                    plannedForVisit.insert(k);
                    toVisit.push(k);
                }
            }
        }
    }
    return false;
}

template <class T, class V>
std::vector<T> DirectedAcyclicGraph<T, V>::findStartingNodes() const
{
    std::vector<T> ret;
    for (const auto &i : nodes)
    {
        if (!cpl::contains(incomingNodes, i))
            ret.emplace_back(i);
    }
    return ret;
}

// Kahn's algorithm:
// https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm
template <class T, class V>
std::vector<T> DirectedAcyclicGraph<T, V>::getTopologicalOrdering()
{
    std::vector<T> ret;
    ret.reserve(nodes.size());

    const auto cmp = [this](const T &a, const T &b)
    { return names.find(a)->second < names.find(b)->second; };
    std::set<T, decltype(cmp)> S(cmp);

    const auto sn = findStartingNodes();
    for (const auto &i : sn)
        S.insert(i);

    while (true)
    {
        auto iterFirst = S.begin();
        if (iterFirst == S.end())
            break;
        const auto n = *iterFirst;
        S.erase(iterFirst);
        ret.emplace_back(n);

        const auto iter = outgoingNodes.find(n);
        if (iter != outgoingNodes.end())
        {
            // Need to take a copy as we remove edges during iteration
            const std::set<T> myOutgoingNodes = iter->second;
            for (const T &m : myOutgoingNodes)
            {
                const char *retRemoveEdge = removeEdge(n, m);
                (void)retRemoveEdge;
                assert(retRemoveEdge == nullptr);
                if (!cpl::contains(incomingNodes, m))
                {
                    S.insert(m);
                }
            }
        }
    }

    // Should not happen for a direct acyclic graph
    assert(incomingNodes.empty());
    assert(outgoingNodes.empty());

    return ret;
}

}  // namespace gdal

#endif  // DIRECTEDACYCLICGRAPH_INCLUDED_H