1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*
* Copyright (c) 1988-1997 Sam Leffler
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the names of
* Sam Leffler and Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Sam Leffler and Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
/*
* CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
* from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
* the permission of John Cupitt, the VIPS author.
*/
/*
* TIFF Library.
*
* Color space conversion routines.
*/
#include "tiffiop.h"
#include <math.h>
/*
* Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
*/
void TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32_t l, int32_t a, int32_t b,
float *X, float *Y, float *Z)
{
TIFFCIELab16ToXYZ(cielab, l * 257, a * 256, b * 256, X, Y, Z);
}
/*
* For CIELab encoded in 16 bits, L is an unsigned integer range [0,65535].
* The a* and b* components are signed integers range [-32768,32767]. The 16
* bit chrominance values are encoded as 256 times the 1976 CIE a* and b*
* values
*/
void TIFFCIELab16ToXYZ(TIFFCIELabToRGB *cielab, uint32_t l, int32_t a,
int32_t b, float *X, float *Y, float *Z)
{
float L = (float)l * 100.0F / 65535.0F;
float cby, tmp;
if (L < 8.856F)
{
*Y = (L * cielab->Y0) / 903.292F;
cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
}
else
{
cby = (L + 16.0F) / 116.0F;
*Y = cielab->Y0 * cby * cby * cby;
}
tmp = (float)a / 256.0F / 500.0F + cby;
if (tmp < 0.2069F)
*X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
else
*X = cielab->X0 * tmp * tmp * tmp;
tmp = cby - (float)b / 256.0F / 200.0F;
if (tmp < 0.2069F)
*Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
else
*Z = cielab->Z0 * tmp * tmp * tmp;
}
#define RINT(R) ((uint32_t)((R) > 0 ? ((R) + 0.5) : ((R)-0.5)))
/*
* Convert color value from the XYZ space to RGB.
*/
void TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
uint32_t *r, uint32_t *g, uint32_t *b)
{
size_t i;
float Yr, Yg, Yb;
float *matrix = &cielab->display.d_mat[0][0];
/* Multiply through the matrix to get luminosity values. */
Yr = matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
Yg = matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
Yb = matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
/* Clip input */
Yr = TIFFmax(Yr, cielab->display.d_Y0R);
Yg = TIFFmax(Yg, cielab->display.d_Y0G);
Yb = TIFFmax(Yb, cielab->display.d_Y0B);
/* Avoid overflow in case of wrong input values */
Yr = TIFFmin(Yr, cielab->display.d_YCR);
Yg = TIFFmin(Yg, cielab->display.d_YCG);
Yb = TIFFmin(Yb, cielab->display.d_YCB);
/* Turn luminosity to colour value. */
i = (size_t)((Yr - cielab->display.d_Y0R) / cielab->rstep);
i = TIFFmin((size_t)cielab->range, i);
*r = RINT(cielab->Yr2r[i]);
i = (size_t)((Yg - cielab->display.d_Y0G) / cielab->gstep);
i = TIFFmin((size_t)cielab->range, i);
*g = RINT(cielab->Yg2g[i]);
i = (size_t)((Yb - cielab->display.d_Y0B) / cielab->bstep);
i = TIFFmin((size_t)cielab->range, i);
*b = RINT(cielab->Yb2b[i]);
/* Clip output. */
*r = TIFFmin(*r, cielab->display.d_Vrwr);
*g = TIFFmin(*g, cielab->display.d_Vrwg);
*b = TIFFmin(*b, cielab->display.d_Vrwb);
}
#undef RINT
/*
* Allocate conversion state structures and make look_up tables for
* the Yr,Yb,Yg <=> r,g,b conversions.
*/
int TIFFCIELabToRGBInit(TIFFCIELabToRGB *cielab, const TIFFDisplay *display,
float *refWhite)
{
size_t i;
double dfGamma;
cielab->range = CIELABTORGB_TABLE_RANGE;
_TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
/* Red */
dfGamma = 1.0 / cielab->display.d_gammaR;
cielab->rstep =
(cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
for (i = 0; i <= (size_t)cielab->range; i++)
{
cielab->Yr2r[i] = cielab->display.d_Vrwr *
((float)pow((double)i / cielab->range, dfGamma));
}
/* Green */
dfGamma = 1.0 / cielab->display.d_gammaG;
cielab->gstep =
(cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
for (i = 0; i <= (size_t)cielab->range; i++)
{
cielab->Yg2g[i] = cielab->display.d_Vrwg *
((float)pow((double)i / cielab->range, dfGamma));
}
/* Blue */
dfGamma = 1.0 / cielab->display.d_gammaB;
cielab->bstep =
(cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
for (i = 0; i <= (size_t)cielab->range; i++)
{
cielab->Yb2b[i] = cielab->display.d_Vrwb *
((float)pow((double)i / cielab->range, dfGamma));
}
/* Init reference white point */
cielab->X0 = refWhite[0];
cielab->Y0 = refWhite[1];
cielab->Z0 = refWhite[2];
return 0;
}
/*
* Convert color value from the YCbCr space to RGB.
* The colorspace conversion algorithm comes from the IJG v5a code;
* see below for more information on how it works.
*/
#define SHIFT 16
#define FIX(x) ((int32_t)((x) * (1L << SHIFT) + 0.5))
#define ONE_HALF ((int32_t)(1 << (SHIFT - 1)))
#define Code2V(c, RB, RW, CR) \
((((c) - (int32_t)(RB)) * (float)(CR)) / \
(float)(((RW) - (RB) != 0) ? ((RW) - (RB)) : 1))
/* !((f)>=(min)) written that way to deal with NaN */
#define CLAMP(f, min, max) \
((!((f) >= (min))) ? (min) : (f) > (max) ? (max) : (f))
#define HICLAMP(f, max) ((f) > (max) ? (max) : (f))
void TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32_t Y, int32_t Cb, int32_t Cr,
uint32_t *r, uint32_t *g, uint32_t *b)
{
int32_t i;
/* XXX: Only 8-bit YCbCr input supported for now */
Y = HICLAMP(Y, 255);
Cb = CLAMP(Cb, 0, 255);
Cr = CLAMP(Cr, 0, 255);
i = ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr];
*r = CLAMP(i, 0, 255);
i = ycbcr->Y_tab[Y] +
(int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT);
*g = CLAMP(i, 0, 255);
i = ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb];
*b = CLAMP(i, 0, 255);
}
/* Clamp function for sanitization purposes. Normally clamping should not */
/* occur for well behaved chroma and refBlackWhite coefficients */
static float CLAMPw(float v, float vmin, float vmax)
{
if (v < vmin)
{
/* printf("%f clamped to %f\n", v, vmin); */
return vmin;
}
if (v > vmax)
{
/* printf("%f clamped to %f\n", v, vmax); */
return vmax;
}
return v;
}
/*
* Initialize the YCbCr->RGB conversion tables. The conversion
* is done according to the 6.0 spec:
*
* R = Y + Cr*(2 - 2*LumaRed)
* B = Y + Cb*(2 - 2*LumaBlue)
* G = Y
* - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
* - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
*
* To avoid floating point arithmetic the fractional constants that
* come out of the equations are represented as fixed point values
* in the range 0...2^16. We also eliminate multiplications by
* pre-calculating possible values indexed by Cb and Cr (this code
* assumes conversion is being done for 8-bit samples).
*/
int TIFFYCbCrToRGBInit(TIFFYCbCrToRGB *ycbcr, float *luma, float *refBlackWhite)
{
TIFFRGBValue *clamptab;
int i;
#define LumaRed luma[0]
#define LumaGreen luma[1]
#define LumaBlue luma[2]
clamptab =
(TIFFRGBValue *)((uint8_t *)ycbcr +
TIFFroundup_32(sizeof(TIFFYCbCrToRGB), sizeof(long)));
_TIFFmemset(clamptab, 0, 256); /* v < 0 => 0 */
ycbcr->clamptab = (clamptab += 256);
for (i = 0; i < 256; i++)
clamptab[i] = (TIFFRGBValue)i;
_TIFFmemset(clamptab + 256, 255, 2 * 256); /* v > 255 => 255 */
ycbcr->Cr_r_tab = (int *)(clamptab + 3 * 256);
ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
ycbcr->Cr_g_tab = (int32_t *)(ycbcr->Cb_b_tab + 256);
ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
{
float f1 = 2 - 2 * LumaRed;
int32_t D1 = FIX(CLAMP(f1, 0.0F, 2.0F));
float f2 = LumaRed * f1 / LumaGreen;
int32_t D2 = -FIX(CLAMP(f2, 0.0F, 2.0F));
float f3 = 2 - 2 * LumaBlue;
int32_t D3 = FIX(CLAMP(f3, 0.0F, 2.0F));
float f4 = LumaBlue * f3 / LumaGreen;
int32_t D4 = -FIX(CLAMP(f4, 0.0F, 2.0F));
int x;
#undef LumaBlue
#undef LumaGreen
#undef LumaRed
/*
* i is the actual input pixel value in the range 0..255
* Cb and Cr values are in the range -128..127 (actually
* they are in a range defined by the ReferenceBlackWhite
* tag) so there is some range shifting to do here when
* constructing tables indexed by the raw pixel data.
*/
for (i = 0, x = -128; i < 256; i++, x++)
{
int32_t Cr = (int32_t)CLAMPw(Code2V(x, refBlackWhite[4] - 128.0F,
refBlackWhite[5] - 128.0F, 127),
-128.0F * 32, 128.0F * 32);
int32_t Cb = (int32_t)CLAMPw(Code2V(x, refBlackWhite[2] - 128.0F,
refBlackWhite[3] - 128.0F, 127),
-128.0F * 32, 128.0F * 32);
ycbcr->Cr_r_tab[i] = (int32_t)((D1 * Cr + ONE_HALF) >> SHIFT);
ycbcr->Cb_b_tab[i] = (int32_t)((D3 * Cb + ONE_HALF) >> SHIFT);
ycbcr->Cr_g_tab[i] = D2 * Cr;
ycbcr->Cb_g_tab[i] = D4 * Cb + ONE_HALF;
ycbcr->Y_tab[i] = (int32_t)CLAMPw(
Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255),
-128.0F * 32, 128.0F * 32);
}
}
return 0;
}
#undef HICLAMP
#undef CLAMP
#undef Code2V
#undef SHIFT
#undef ONE_HALF
#undef FIX
|