File: intronurbs.cpp

package info (click to toggle)
gdal 3.11.3%2Bdfsg-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 89,016 kB
  • sloc: cpp: 1,165,048; ansic: 208,864; python: 26,958; java: 5,972; xml: 4,611; sh: 3,776; cs: 2,508; yacc: 1,306; makefile: 213
file content (472 lines) | stat: -rw-r--r-- 15,927 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/******************************************************************************
 *
 * Project:  DXF Translator
 * Purpose:  Low level spline interpolation.
 * Author:   David F. Rogers
 *
 ******************************************************************************

This code is derived from the code associated with the book "An Introduction
to NURBS" by David F. Rogers.  More information on the book and the code is
available at:

  http://www.nar-associates.com/nurbs/

David F. Rogers agreed explicitly that the subset of his code in this file to
be used under the following license (cf
https://github.com/OSGeo/gdal/issues/6524)

Copyright (c) 2009, David F. Rogers
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the name of David F. Rogers nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/

#include <stdio.h>
#include <vector>
#include "cpl_port.h"

/* used by ogrdxflayer.cpp */
void rbspline2(int npts, int k, int p1, double b[], double h[],
               bool bCalculateKnots, double x[], double p[]);

/* used by ogrdxf_leader.cpp */
void basis(int c, double t, int npts, double x[], double N[]);

/* used by DWG driver */
void rbspline(int npts, int k, int p1, double b[], double h[], double p[]);
void rbsplinu(int npts, int k, int p1, double b[], double h[], double p[]);

/************************************************************************/
/*                               knotu()                                */
/************************************************************************/

/*  Subroutine to generate a B-spline uniform (periodic) knot vector.

    c            = order of the basis function
    n            = the number of defining polygon vertices
    nplus2       = index of x() for the first occurrence of the maximum knot
   vector value nplusc       = maximum value of the knot vector -- $n + c$ x[]
   = array containing the knot vector
*/

static void knotu(int n, int c, double x[])

{
    int nplusc, /* nplus2, */ i;

    nplusc = n + c;
    /* nplus2 = n + 2; */

    x[1] = 0;
    for (i = 2; i <= nplusc; i++)
    {
        x[i] = i - 1;
    }
}

/************************************************************************/
/*                                knot()                                */
/************************************************************************/

/*
    Subroutine to generate a B-spline open knot vector with multiplicity
    equal to the order at the ends.

    c            = order of the basis function
    n            = the number of defining polygon vertices
    nplus2       = index of x() for the first occurrence of the maximum knot
   vector value nplusc       = maximum value of the knot vector -- $n + c$ x()
   = array containing the knot vector
*/

static void knot(int n, int c, double x[])

{
    const int nplusc = n + c;
    const int nplus2 = n + 2;

    x[1] = 0.0;
    for (int i = 2; i <= nplusc; i++)
    {
        if ((i > c) && (i < nplus2))
            x[i] = x[i - 1] + 1.0;
        else
            x[i] = x[i - 1];
    }
}

/************************************************************************/
/*                                basis()                               */
/************************************************************************/

/*  Subroutine to generate B-spline basis functions--open knot vector

        C code for An Introduction to NURBS
        by David F. Rogers. Copyright (C) 2000 David F. Rogers,
        All rights reserved.

        Name: rbasis (split into rbasis and basis by AT)
        Language: C
        Subroutines called: none
        Book reference: Chapter 4, Sec. 4. , p 296

    c        = order of the B-spline basis function
    d        = first term of the basis function recursion relation
    e        = second term of the basis function recursion relation
    h[]      = array containing the homogeneous weights
    npts     = number of defining polygon vertices
    nplusc   = constant -- npts + c -- maximum number of knot values
    r[]      = array containing the rationalbasis functions
               r[1] contains the basis function associated with B1 etc.
    t        = parameter value
    N[]      = array output from bbasis containing the values of the
               basis functions; should have capacity npts + c + 1
    x[]      = knot vector
*/

void basis(int c, double t, int npts, double x[], double N[])

{
    const int nplusc = npts + c;

    /* calculate the first order nonrational basis functions n[i] */

    for (int i = 1; i <= nplusc - 1; i++)
    {
        if ((t >= x[i]) && (t < x[i + 1]))
            N[i] = 1.0;
        else
            N[i] = 0.0;
    }

    /* calculate the higher order nonrational basis functions */

    for (int k = 2; k <= c; k++)
    {
        for (int i = 1; i <= nplusc - k; i++)
        {
            double d = 0.0;
            double e = 0.0;
            if (N[i] != 0) /* if the lower order basis function is zero skip the
                              calculation */
            {
                double denom = x[i + k - 1] - x[i];
                if (denom != 0)
                    d = ((t - x[i]) * N[i]) / denom;
            }
            // else
            //    d = 0.0 ;

            if (N[i + 1] != 0) /* if the lower order basis function is zero skip
                                  the calculation */
            {
                double denom = x[i + k] - x[i + 1];
                if (denom != 0)
                    e = ((x[i + k] - t) * N[i + 1]) / denom;
            }
            // else
            //     e = 0.0;

            N[i] = d + e;
        }
    }

    if (t == (double)x[nplusc])
    { /* pick up last point */
        N[npts] = 1;
    }
}

/************************************************************************/
/*                               rbasis()                               */
/*                                                                      */
/*      Subroutine to generate rational B-spline basis functions.       */
/*      See the comment for basis() above.                              */
/************************************************************************/

static void rbasis(int c, double t, int npts, double x[], double h[],
                   double r[])

{
    const int nplusc = npts + c;

    std::vector<double> temp;
    temp.resize(nplusc + 1);

    basis(c, t, npts, x, &temp[0]);

    /* calculate sum for denominator of rational basis functions */

    double sum = 0.0;
    for (int i = 1; i <= npts; i++)
    {
        sum = sum + temp[i] * h[i];
    }

    /* form rational basis functions and put in r vector */

    for (int i = 1; i <= npts; i++)
    {
        if (sum != 0)
        {
            r[i] = (temp[i] * h[i]) / (sum);
        }
        else
        {
            r[i] = 0;
        }
    }
}

/************************************************************************/
/*                             rbspline2()                              */
/************************************************************************/

/*  Subroutine to generate a rational B-spline curve.

    C code for An Introduction to NURBS
    by David F. Rogers. Copyright (C) 2000 David F. Rogers,
    All rights reserved.

    Name: rbspline.c
    Language: C
    Subroutines called: knot.c, rbasis.c, fmtmul.c
    Book reference: Chapter 4, Alg. p. 297

    b[]         = array containing the defining polygon vertices
                  b[1] contains the x-component of the vertex
                  b[2] contains the y-component of the vertex
                  b[3] contains the z-component of the vertex
    h[]         = array containing the homogeneous weighting factors
    k           = order of the B-spline basis function
    nbasis      = array containing the basis functions for a single value of t
    nplusc      = number of knot values
    npts        = number of defining polygon vertices
    p[,]        = array containing the curve points
                  p[1] contains the x-component of the point
                  p[2] contains the y-component of the point
                  p[3] contains the z-component of the point
    p1          = number of points to be calculated on the curve
    t           = parameter value 0 <= t <= npts - k + 1
    bCalculateKnots  = when set to true, x will be filled with the knot()
   routine, otherwise its content will be used. knots[]     = array containing
   the knot vector (must be npts + k + 1 large)
*/

void rbspline2(int npts, int k, int p1, double b[], double h[],
               bool bCalculateKnots, double knots[], double p[])

{
    const int nplusc = npts + k;

    std::vector<double> nbasis;
    nbasis.resize(npts + 1);

    /* generate the uniform open knot vector */

    if (bCalculateKnots == true)
        knot(npts, k, knots);

    int icount = 0;

    /*    calculate the points on the rational B-spline curve */

    double t = knots[1];
    const double step = (knots[nplusc] - knots[1]) / ((double)(p1 - 1));

    const double eps = 5e-6 * (knots[nplusc] - knots[1]);

    for (int i1 = 1; i1 <= p1; i1++)
    {
        /* avoid undershooting the final knot */
        if ((double)knots[nplusc] - t < eps)
        {
            t = (double)knots[nplusc];
        }

        /* generate the basis function for this value of t */
        rbasis(k, t, npts, knots, h, &(nbasis[0]));
        for (int j = 1; j <= 3; j++)
        { /* generate a point on the curve */
            int jcount = j;
            p[icount + j] = 0.;

            for (int i = 1; i <= npts; i++)
            { /* Do local matrix multiplication */
                const double temp = nbasis[i] * b[jcount];
                p[icount + j] = p[icount + j] + temp;
                jcount = jcount + 3;
            }
        }
        icount = icount + 3;
        t = t + step;
    }
}

/************************************************************************/
/*                              rbspline()                              */
/************************************************************************/

/*  Subroutine to generate a rational B-spline curve using an uniform open knot
   vector

    C code for An Introduction to NURBS
    by David F. Rogers. Copyright (C) 2000 David F. Rogers,
    All rights reserved.

    Name: rbspline.c
    Language: C
    Subroutines called: knot.c, rbasis.c, fmtmul.c
    Book reference: Chapter 4, Alg. p. 297

    b[]         = array containing the defining polygon vertices
                  b[1] contains the x-component of the vertex
                  b[2] contains the y-component of the vertex
                  b[3] contains the z-component of the vertex
    h[]         = array containing the homogeneous weighting factors
    k           = order of the B-spline basis function
    nbasis      = array containing the basis functions for a single value of t
    nplusc      = number of knot values
    npts        = number of defining polygon vertices
    p[,]        = array containing the curve points
                  p[1] contains the x-component of the point
                  p[2] contains the y-component of the point
                  p[3] contains the z-component of the point
    p1          = number of points to be calculated on the curve
    t           = parameter value 0 <= t <= npts - k + 1
    x[]         = array containing the knot vector
*/

void rbspline(int npts, int k, int p1, double b[], double h[], double p[])

{
    std::vector<double> x(npts + k + 1, 0.0);
    rbspline2(npts, k, p1, b, h, true, &x[0], p);
}

/************************************************************************/
/*                              rbsplinu()                              */
/************************************************************************/

/*  Subroutine to generate a rational B-spline curve using an uniform periodic
   knot vector

    C code for An Introduction to NURBS
    by David F. Rogers. Copyright (C) 2000 David F. Rogers,
    All rights reserved.

    Name: rbsplinu.c
    Language: C
    Subroutines called: knotu.c, rbasis.c, fmtmul.c
    Book reference: Chapter 4, Alg. p. 298

    b[]         = array containing the defining polygon vertices
                  b[1] contains the x-component of the vertex
                  b[2] contains the y-component of the vertex
                  b[3] contains the z-component of the vertex
    h[]         = array containing the homogeneous weighting factors
    k           = order of the B-spline basis function
    nbasis      = array containing the basis functions for a single value of t
    nplusc      = number of knot values
    npts        = number of defining polygon vertices
    p[,]        = array containing the curve points
                  p[1] contains the x-component of the point
                  p[2] contains the y-component of the point
                  p[3] contains the z-component of the point
    p1          = number of points to be calculated on the curve
    t           = parameter value 0 <= t <= npts - k + 1
    x[]         = array containing the knot vector
*/

void rbsplinu(int npts, int k, int p1, double b[], double h[], double p[])

{
    int i, j, icount, jcount;
    int i1;
    int nplusc;

    double step;
    double t;
    double temp;
    std::vector<double> nbasis;
    std::vector<double> x;

    nplusc = npts + k;

    x.resize(nplusc + 1);
    nbasis.resize(npts + 1);

    /*  zero and redimension the knot vector and the basis array */

    for (i = 0; i <= npts; i++)
    {
        nbasis[i] = 0.;
    }

    for (i = 0; i <= nplusc; i++)
    {
        x[i] = 0;
    }

    /* generate the uniform periodic knot vector */

    knotu(npts, k, &(x[0]));

    icount = 0;

    /*    calculate the points on the rational B-spline curve */

    t = k - 1;
    step = ((double)((npts) - (k - 1))) / ((double)(p1 - 1));

    for (i1 = 1; i1 <= p1; i1++)
    {

        if (x[nplusc] - t < 5e-6)
        {
            t = x[nplusc];
        }

        rbasis(
            k, t, npts, &(x[0]), h,
            &(nbasis[0])); /* generate the basis function for this value of t */

        for (j = 1; j <= 3; j++)
        { /* generate a point on the curve */
            jcount = j;
            p[icount + j] = 0.;

            for (i = 1; i <= npts; i++)
            { /* Do local matrix multiplication */
                temp = nbasis[i] * b[jcount];
                p[icount + j] = p[icount + j] + temp;
                jcount = jcount + 3;
            }
        }
        icount = icount + 3;
        t = t + step;
    }
}