1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/******************************************************************************
*
* Project: CPL
* Purpose: Floating point conversion functions. Convert 16- and 24-bit
* floating point numbers into the 32-bit IEEE 754 compliant ones.
* Author: Andrey Kiselev, dron@remotesensing.org
*
******************************************************************************
* Copyright (c) 2005, Andrey Kiselev <dron@remotesensing.org>
*
* This code is based on the code from OpenEXR project with the following
* copyright:
*
* Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
* Digital Ltd. LLC
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Industrial Light & Magic nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "cpl_float.h"
#include "cpl_error.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <numeric>
#include <optional>
/************************************************************************/
/* HalfToFloat() */
/* */
/* 16-bit floating point number to 32-bit one. */
/************************************************************************/
GUInt32 CPLHalfToFloat(GUInt16 iHalf)
{
GUInt32 iSign = (iHalf >> 15) & 0x00000001;
int iExponent = (iHalf >> 10) & 0x0000001f;
GUInt32 iMantissa = iHalf & 0x000003ff;
if (iExponent == 0)
{
if (iMantissa == 0)
{
/* --------------------------------------------------------------------
*/
/* Plus or minus zero. */
/* --------------------------------------------------------------------
*/
return iSign << 31;
}
else
{
/* --------------------------------------------------------------------
*/
/* Denormalized number -- renormalize it. */
/* --------------------------------------------------------------------
*/
while (!(iMantissa & 0x00000400))
{
iMantissa <<= 1;
iExponent -= 1;
}
iExponent += 1;
iMantissa &= ~0x00000400U;
}
}
else if (iExponent == 31)
{
if (iMantissa == 0)
{
/* --------------------------------------------------------------------
*/
/* Positive or negative infinity. */
/* --------------------------------------------------------------------
*/
return (iSign << 31) | 0x7f800000;
}
else
{
/* --------------------------------------------------------------------
*/
/* NaN -- preserve sign and significand bits. */
/* --------------------------------------------------------------------
*/
return (iSign << 31) | 0x7f800000 | (iMantissa << 13);
}
}
/* -------------------------------------------------------------------- */
/* Normalized number. */
/* -------------------------------------------------------------------- */
iExponent = iExponent + (127 - 15);
iMantissa = iMantissa << 13;
/* -------------------------------------------------------------------- */
/* Assemble sign, exponent and mantissa. */
/* -------------------------------------------------------------------- */
/* coverity[overflow_sink] */
return (iSign << 31) | (static_cast<GUInt32>(iExponent) << 23) | iMantissa;
}
/************************************************************************/
/* TripleToFloat() */
/* */
/* 24-bit floating point number to 32-bit one. */
/************************************************************************/
GUInt32 CPLTripleToFloat(GUInt32 iTriple)
{
GUInt32 iSign = (iTriple >> 23) & 0x00000001;
int iExponent = (iTriple >> 16) & 0x0000007f;
GUInt32 iMantissa = iTriple & 0x0000ffff;
if (iExponent == 0)
{
if (iMantissa == 0)
{
/* --------------------------------------------------------------------
*/
/* Plus or minus zero. */
/* --------------------------------------------------------------------
*/
return iSign << 31;
}
else
{
/* --------------------------------------------------------------------
*/
/* Denormalized number -- renormalize it. */
/* --------------------------------------------------------------------
*/
while (!(iMantissa & 0x00010000))
{
iMantissa <<= 1;
iExponent -= 1;
}
iExponent += 1;
iMantissa &= ~0x00010000U;
}
}
else if (iExponent == 127)
{
if (iMantissa == 0)
{
/* --------------------------------------------------------------------
*/
/* Positive or negative infinity. */
/* --------------------------------------------------------------------
*/
return (iSign << 31) | 0x7f800000;
}
else
{
/* --------------------------------------------------------------------
*/
/* NaN -- preserve sign and significand bits. */
/* --------------------------------------------------------------------
*/
return (iSign << 31) | 0x7f800000 | (iMantissa << 7);
}
}
/* -------------------------------------------------------------------- */
/* Normalized number. */
/* -------------------------------------------------------------------- */
iExponent = iExponent + (127 - 63);
iMantissa = iMantissa << 7;
/* -------------------------------------------------------------------- */
/* Assemble sign, exponent and mantissa. */
/* -------------------------------------------------------------------- */
/* coverity[overflow_sink] */
return (iSign << 31) | (static_cast<GUInt32>(iExponent) << 23) | iMantissa;
}
/************************************************************************/
/* FloatToHalf() */
/************************************************************************/
GUInt16 CPLFloatToHalf(GUInt32 iFloat32, bool &bHasWarned)
{
GUInt32 iSign = (iFloat32 >> 31) & 0x00000001;
GUInt32 iExponent = (iFloat32 >> 23) & 0x000000ff;
GUInt32 iMantissa = iFloat32 & 0x007fffff;
if (iExponent == 255)
{
if (iMantissa == 0)
{
/* --------------------------------------------------------------------
*/
/* Positive or negative infinity. */
/* --------------------------------------------------------------------
*/
return static_cast<GUInt16>((iSign << 15) | 0x7C00);
}
else
{
/* --------------------------------------------------------------------
*/
/* NaN -- preserve sign and significand bits. */
/* --------------------------------------------------------------------
*/
if (iMantissa >> 13)
return static_cast<GUInt16>((iSign << 15) | 0x7C00 |
(iMantissa >> 13));
return static_cast<GUInt16>((iSign << 15) | 0x7E00);
}
}
if (iExponent <= 127 - 15)
{
// Zero, float32 denormalized number or float32 too small normalized
// number
if (13 + 1 + 127 - 15 - iExponent >= 32)
return static_cast<GUInt16>(iSign << 15);
// Return a denormalized number
return static_cast<GUInt16>(
(iSign << 15) |
((iMantissa | 0x00800000) >> (13 + 1 + 127 - 15 - iExponent)));
}
if (iExponent - (127 - 15) >= 31)
{
if (!bHasWarned)
{
bHasWarned = true;
float fVal = 0.0f;
memcpy(&fVal, &iFloat32, 4);
CPLError(
CE_Failure, CPLE_AppDefined,
"Value %.8g is beyond range of float16. Converted to %sinf",
fVal, (fVal > 0) ? "+" : "-");
}
return static_cast<GUInt16>((iSign << 15) | 0x7C00); // Infinity
}
/* -------------------------------------------------------------------- */
/* Normalized number. */
/* -------------------------------------------------------------------- */
iExponent = iExponent - (127 - 15);
iMantissa = iMantissa >> 13;
/* -------------------------------------------------------------------- */
/* Assemble sign, exponent and mantissa. */
/* -------------------------------------------------------------------- */
// coverity[overflow_sink]
return static_cast<GUInt16>((iSign << 15) | (iExponent << 10) | iMantissa);
}
GUInt16 CPLConvertFloatToHalf(float fFloat32)
{
GUInt32 nFloat32;
std::memcpy(&nFloat32, &fFloat32, sizeof nFloat32);
bool bHasWarned = true;
return CPLFloatToHalf(nFloat32, bHasWarned);
}
float CPLConvertHalfToFloat(GUInt16 nHalf)
{
GUInt32 nFloat32 = CPLHalfToFloat(nHalf);
float fFloat32;
std::memcpy(&fFloat32, &nFloat32, sizeof fFloat32);
return fFloat32;
}
namespace
{
template <typename T> struct Fraction
{
using value_type = T;
T num;
T denom;
};
/** Approximate a floating point number as a fraction, using the method describe
* in Richards, Ian (1981). Continued Fractions Without Tears. Mathematics
* Magazine, Vol. 54, No. 4. https://doi.org/10.2307/2689627
*
* If the fraction cannot be approximated within the specified error tolerance
* in a certain amount of iterations, a warning will be raised and std::nullopt
* will be returned.
*
* @param x the number to approximate as a fraction
* @param err the maximum allowable absolute error in the approximation
*
* @return the approximated value, or std::nullopt
*
*/
std::optional<Fraction<std::uint64_t>> FloatToFraction(double x, double err)
{
using inttype = std::uint64_t;
constexpr int MAX_ITER = 1000;
const double sign = std::signbit(x) ? -1 : 1;
double g(std::abs(x));
inttype a(0);
inttype b(1);
inttype c(1);
inttype d(0);
Fraction<std::uint64_t> ret;
for (int i = 0; i < MAX_ITER; i++)
{
if (!(g >= 0 &&
g <= static_cast<double>(std::numeric_limits<inttype>::max())))
{
break;
}
const inttype s = static_cast<inttype>(std::floor(g));
ret.num = a + s * c;
ret.denom = b + s * d;
a = c;
b = d;
c = ret.num;
d = ret.denom;
g = 1.0 / (g - static_cast<double>(s));
const double approx = sign * static_cast<double>(ret.num) /
static_cast<double>(ret.denom);
if (std::abs(approx - x) < err)
{
return ret;
}
}
CPLError(CE_Warning, CPLE_AppDefined,
"Failed to approximate %g as a fraction with error < %g in %d "
"iterations",
x, err, MAX_ITER);
return std::nullopt;
}
} // namespace
/** Return the largest value by which two input values can be
* divided, with the result being an integer. If no suitable
* value can be found, zero will be returned.
*/
double CPLGreatestCommonDivisor(double a, double b)
{
if (a == 0 || !std::isfinite(a) || b == 0 || !std::isfinite(b))
{
CPLError(CE_Failure, CPLE_AppDefined,
"Input values must be finite non-null values");
return 0;
}
if (a == b)
{
return a;
}
// Check if one resolution is an integer factor of the other.
// This is fast and succeeds in some cases where the method below fails.
if (a > b && std::abs(std::round(a / b) - a / b) < 1e-8)
{
return b;
}
if (b > a && std::abs(std::round(b / a) - b / a) < 1e-8)
{
return a;
}
const auto approx_a = FloatToFraction(a, 1e-10);
if (!approx_a.has_value())
{
CPLError(CE_Failure, CPLE_AppDefined,
"Could not approximate resolution %.18g as a fraction", a);
return 0;
}
const auto approx_b = FloatToFraction(b, 1e-10);
if (!approx_b.has_value())
{
CPLError(CE_Failure, CPLE_AppDefined,
"Could not approximate resolution %.18g as a fraction", b);
return 0;
}
const double sign = std::signbit(a) ? -1 : 1;
const auto &frac_a = approx_a.value();
const auto &frac_b = approx_b.value();
const auto common_denom = std::lcm(frac_a.denom, frac_b.denom);
const auto num_a = static_cast<std::uint64_t>(
frac_a.num * std::round(common_denom / frac_a.denom));
const auto num_b = static_cast<std::uint64_t>(
frac_b.num * std::round(common_denom / frac_b.denom));
const auto common_num = std::gcd(num_a, num_b);
// coverity[divide_by_zero]
const auto common = sign * static_cast<double>(common_num) /
static_cast<double>(common_denom);
const auto disaggregation_factor = std::max(a / common, b / common);
if (disaggregation_factor > 10000)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Common resolution between %.18g and %.18g calculated at "
"%.18g which "
"would cause excessive disaggregation",
a, b, common);
return 0;
}
return common;
}
|