File: cpl_float.cpp

package info (click to toggle)
gdal 3.11.3%2Bdfsg-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 89,016 kB
  • sloc: cpp: 1,165,048; ansic: 208,864; python: 26,958; java: 5,972; xml: 4,611; sh: 3,776; cs: 2,508; yacc: 1,306; makefile: 213
file content (464 lines) | stat: -rw-r--r-- 15,707 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/******************************************************************************
 *
 * Project:  CPL
 * Purpose:  Floating point conversion functions. Convert 16- and 24-bit
 *           floating point numbers into the 32-bit IEEE 754 compliant ones.
 * Author:   Andrey Kiselev, dron@remotesensing.org
 *
 ******************************************************************************
 * Copyright (c) 2005, Andrey Kiselev <dron@remotesensing.org>
 *
 * This code is based on the code from OpenEXR project with the following
 * copyright:
 *
 * Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 * Digital Ltd. LLC
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * *       Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * *       Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 * *       Neither the name of Industrial Light & Magic nor the names of
 * its contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "cpl_float.h"
#include "cpl_error.h"

#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <numeric>
#include <optional>

/************************************************************************/
/*                           HalfToFloat()                              */
/*                                                                      */
/*  16-bit floating point number to 32-bit one.                         */
/************************************************************************/

GUInt32 CPLHalfToFloat(GUInt16 iHalf)
{

    GUInt32 iSign = (iHalf >> 15) & 0x00000001;
    int iExponent = (iHalf >> 10) & 0x0000001f;
    GUInt32 iMantissa = iHalf & 0x000003ff;

    if (iExponent == 0)
    {
        if (iMantissa == 0)
        {
            /* --------------------------------------------------------------------
             */
            /*      Plus or minus zero. */
            /* --------------------------------------------------------------------
             */

            return iSign << 31;
        }
        else
        {
            /* --------------------------------------------------------------------
             */
            /*      Denormalized number -- renormalize it. */
            /* --------------------------------------------------------------------
             */

            while (!(iMantissa & 0x00000400))
            {
                iMantissa <<= 1;
                iExponent -= 1;
            }

            iExponent += 1;
            iMantissa &= ~0x00000400U;
        }
    }
    else if (iExponent == 31)
    {
        if (iMantissa == 0)
        {
            /* --------------------------------------------------------------------
             */
            /*       Positive or negative infinity. */
            /* --------------------------------------------------------------------
             */

            return (iSign << 31) | 0x7f800000;
        }
        else
        {
            /* --------------------------------------------------------------------
             */
            /*       NaN -- preserve sign and significand bits. */
            /* --------------------------------------------------------------------
             */

            return (iSign << 31) | 0x7f800000 | (iMantissa << 13);
        }
    }

    /* -------------------------------------------------------------------- */
    /*       Normalized number.                                             */
    /* -------------------------------------------------------------------- */

    iExponent = iExponent + (127 - 15);
    iMantissa = iMantissa << 13;

    /* -------------------------------------------------------------------- */
    /*       Assemble sign, exponent and mantissa.                          */
    /* -------------------------------------------------------------------- */

    /* coverity[overflow_sink] */
    return (iSign << 31) | (static_cast<GUInt32>(iExponent) << 23) | iMantissa;
}

/************************************************************************/
/*                           TripleToFloat()                            */
/*                                                                      */
/*  24-bit floating point number to 32-bit one.                         */
/************************************************************************/

GUInt32 CPLTripleToFloat(GUInt32 iTriple)
{

    GUInt32 iSign = (iTriple >> 23) & 0x00000001;
    int iExponent = (iTriple >> 16) & 0x0000007f;
    GUInt32 iMantissa = iTriple & 0x0000ffff;

    if (iExponent == 0)
    {
        if (iMantissa == 0)
        {
            /* --------------------------------------------------------------------
             */
            /*      Plus or minus zero. */
            /* --------------------------------------------------------------------
             */

            return iSign << 31;
        }
        else
        {
            /* --------------------------------------------------------------------
             */
            /*      Denormalized number -- renormalize it. */
            /* --------------------------------------------------------------------
             */

            while (!(iMantissa & 0x00010000))
            {
                iMantissa <<= 1;
                iExponent -= 1;
            }

            iExponent += 1;
            iMantissa &= ~0x00010000U;
        }
    }
    else if (iExponent == 127)
    {
        if (iMantissa == 0)
        {
            /* --------------------------------------------------------------------
             */
            /*       Positive or negative infinity. */
            /* --------------------------------------------------------------------
             */

            return (iSign << 31) | 0x7f800000;
        }
        else
        {
            /* --------------------------------------------------------------------
             */
            /*       NaN -- preserve sign and significand bits. */
            /* --------------------------------------------------------------------
             */

            return (iSign << 31) | 0x7f800000 | (iMantissa << 7);
        }
    }

    /* -------------------------------------------------------------------- */
    /*       Normalized number.                                             */
    /* -------------------------------------------------------------------- */

    iExponent = iExponent + (127 - 63);
    iMantissa = iMantissa << 7;

    /* -------------------------------------------------------------------- */
    /*       Assemble sign, exponent and mantissa.                          */
    /* -------------------------------------------------------------------- */

    /* coverity[overflow_sink] */
    return (iSign << 31) | (static_cast<GUInt32>(iExponent) << 23) | iMantissa;
}

/************************************************************************/
/*                            FloatToHalf()                             */
/************************************************************************/

GUInt16 CPLFloatToHalf(GUInt32 iFloat32, bool &bHasWarned)
{
    GUInt32 iSign = (iFloat32 >> 31) & 0x00000001;
    GUInt32 iExponent = (iFloat32 >> 23) & 0x000000ff;
    GUInt32 iMantissa = iFloat32 & 0x007fffff;

    if (iExponent == 255)
    {
        if (iMantissa == 0)
        {
            /* --------------------------------------------------------------------
             */
            /*       Positive or negative infinity. */
            /* --------------------------------------------------------------------
             */

            return static_cast<GUInt16>((iSign << 15) | 0x7C00);
        }
        else
        {
            /* --------------------------------------------------------------------
             */
            /*       NaN -- preserve sign and significand bits. */
            /* --------------------------------------------------------------------
             */
            if (iMantissa >> 13)
                return static_cast<GUInt16>((iSign << 15) | 0x7C00 |
                                            (iMantissa >> 13));

            return static_cast<GUInt16>((iSign << 15) | 0x7E00);
        }
    }

    if (iExponent <= 127 - 15)
    {
        // Zero, float32 denormalized number or float32 too small normalized
        // number
        if (13 + 1 + 127 - 15 - iExponent >= 32)
            return static_cast<GUInt16>(iSign << 15);

        // Return a denormalized number
        return static_cast<GUInt16>(
            (iSign << 15) |
            ((iMantissa | 0x00800000) >> (13 + 1 + 127 - 15 - iExponent)));
    }
    if (iExponent - (127 - 15) >= 31)
    {
        if (!bHasWarned)
        {
            bHasWarned = true;
            float fVal = 0.0f;
            memcpy(&fVal, &iFloat32, 4);
            CPLError(
                CE_Failure, CPLE_AppDefined,
                "Value %.8g is beyond range of float16. Converted to %sinf",
                fVal, (fVal > 0) ? "+" : "-");
        }
        return static_cast<GUInt16>((iSign << 15) | 0x7C00);  // Infinity
    }

    /* -------------------------------------------------------------------- */
    /*       Normalized number.                                             */
    /* -------------------------------------------------------------------- */

    iExponent = iExponent - (127 - 15);
    iMantissa = iMantissa >> 13;

    /* -------------------------------------------------------------------- */
    /*       Assemble sign, exponent and mantissa.                          */
    /* -------------------------------------------------------------------- */

    // coverity[overflow_sink]
    return static_cast<GUInt16>((iSign << 15) | (iExponent << 10) | iMantissa);
}

GUInt16 CPLConvertFloatToHalf(float fFloat32)
{
    GUInt32 nFloat32;
    std::memcpy(&nFloat32, &fFloat32, sizeof nFloat32);
    bool bHasWarned = true;
    return CPLFloatToHalf(nFloat32, bHasWarned);
}

float CPLConvertHalfToFloat(GUInt16 nHalf)
{
    GUInt32 nFloat32 = CPLHalfToFloat(nHalf);
    float fFloat32;
    std::memcpy(&fFloat32, &nFloat32, sizeof fFloat32);
    return fFloat32;
}

namespace
{

template <typename T> struct Fraction
{
    using value_type = T;

    T num;
    T denom;
};

/** Approximate a floating point number as a fraction, using the method describe
 * in Richards, Ian (1981). Continued Fractions Without Tears. Mathematics
 * Magazine, Vol. 54, No. 4. https://doi.org/10.2307/2689627
 *
 * If the fraction cannot be approximated within the specified error tolerance
 * in a certain amount of iterations, a warning will be raised and  std::nullopt
 * will be returned.
 *
 * @param x the number to approximate as a fraction
 * @param err the maximum allowable absolute error in the approximation
 *
 * @return the approximated value, or std::nullopt
 *
*/
std::optional<Fraction<std::uint64_t>> FloatToFraction(double x, double err)
{
    using inttype = std::uint64_t;
    constexpr int MAX_ITER = 1000;

    const double sign = std::signbit(x) ? -1 : 1;

    double g(std::abs(x));
    inttype a(0);
    inttype b(1);
    inttype c(1);
    inttype d(0);

    Fraction<std::uint64_t> ret;

    for (int i = 0; i < MAX_ITER; i++)
    {
        if (!(g >= 0 &&
              g <= static_cast<double>(std::numeric_limits<inttype>::max())))
        {
            break;
        }
        const inttype s = static_cast<inttype>(std::floor(g));
        ret.num = a + s * c;
        ret.denom = b + s * d;

        a = c;
        b = d;
        c = ret.num;
        d = ret.denom;
        g = 1.0 / (g - static_cast<double>(s));

        const double approx = sign * static_cast<double>(ret.num) /
                              static_cast<double>(ret.denom);

        if (std::abs(approx - x) < err)
        {
            return ret;
        }
    }

    CPLError(CE_Warning, CPLE_AppDefined,
             "Failed to approximate %g as a fraction with error < %g in %d "
             "iterations",
             x, err, MAX_ITER);
    return std::nullopt;
}
}  // namespace

/** Return the largest value by which two input values can be
 *  divided, with the result being an integer. If no suitable
 *  value can be found, zero will be returned.
 */
double CPLGreatestCommonDivisor(double a, double b)
{
    if (a == 0 || !std::isfinite(a) || b == 0 || !std::isfinite(b))
    {
        CPLError(CE_Failure, CPLE_AppDefined,
                 "Input values must be finite non-null values");
        return 0;
    }

    if (a == b)
    {
        return a;
    }

    // Check if one resolution is an integer factor of the other.
    // This is fast and succeeds in some cases where the method below fails.
    if (a > b && std::abs(std::round(a / b) - a / b) < 1e-8)
    {
        return b;
    }
    if (b > a && std::abs(std::round(b / a) - b / a) < 1e-8)
    {
        return a;
    }

    const auto approx_a = FloatToFraction(a, 1e-10);
    if (!approx_a.has_value())
    {
        CPLError(CE_Failure, CPLE_AppDefined,
                 "Could not approximate resolution %.18g as a fraction", a);
        return 0;
    }

    const auto approx_b = FloatToFraction(b, 1e-10);
    if (!approx_b.has_value())
    {
        CPLError(CE_Failure, CPLE_AppDefined,
                 "Could not approximate resolution %.18g as a fraction", b);
        return 0;
    }

    const double sign = std::signbit(a) ? -1 : 1;

    const auto &frac_a = approx_a.value();
    const auto &frac_b = approx_b.value();

    const auto common_denom = std::lcm(frac_a.denom, frac_b.denom);

    const auto num_a = static_cast<std::uint64_t>(
        frac_a.num * std::round(common_denom / frac_a.denom));
    const auto num_b = static_cast<std::uint64_t>(
        frac_b.num * std::round(common_denom / frac_b.denom));

    const auto common_num = std::gcd(num_a, num_b);

    // coverity[divide_by_zero]
    const auto common = sign * static_cast<double>(common_num) /
                        static_cast<double>(common_denom);

    const auto disaggregation_factor = std::max(a / common, b / common);
    if (disaggregation_factor > 10000)
    {
        CPLError(CE_Failure, CPLE_AppDefined,
                 "Common resolution between %.18g and %.18g calculated at "
                 "%.18g which "
                 "would cause excessive disaggregation",
                 a, b, common);
        return 0;
    }

    return common;
}