1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
/******************************************************************************
*
* Project: CPL
* Purpose: Floating point conversion functions. Convert 16- and 24-bit
* floating point numbers into the 32-bit IEEE 754 compliant ones.
* Author: Andrey Kiselev, dron@remotesensing.org
*
******************************************************************************
* Copyright (c) 2005, Andrey Kiselev <dron@remotesensing.org>
* Copyright (c) 2010, Even Rouault <even dot rouault at spatialys.com>
*
* This code is based on the code from OpenEXR project with the following
* copyright:
*
* Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
* Digital Ltd. LLC
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Industrial Light & Magic nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#ifndef CPL_FLOAT_H_INCLUDED
#define CPL_FLOAT_H_INCLUDED
#include "cpl_port.h"
#ifdef __cplusplus
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#ifdef HAVE_STD_FLOAT16_T
#include <stdfloat>
#endif
#endif
CPL_C_START
GUInt32 CPL_DLL CPLHalfToFloat(GUInt16 iHalf);
GUInt32 CPL_DLL CPLTripleToFloat(GUInt32 iTriple);
CPL_C_END
#ifdef __cplusplus
GUInt16 CPL_DLL CPLFloatToHalf(GUInt32 iFloat32, bool &bHasWarned);
GUInt16 CPL_DLL CPLConvertFloatToHalf(float fFloat32);
float CPL_DLL CPLConvertHalfToFloat(GUInt16 nHalf);
namespace cpl
{
// We define our own version of `std::numeric_limits` so that we can
// specialize it for `cpl::Float16` if necessary. Specializing
// `std::numeric_limits` doesn't always work because some libraries
// use `std::numeric_limits`, and one cannot specialize a type
// template after it has been used.
template <typename T> struct NumericLimits : std::numeric_limits<T>
{
};
#ifndef HAVE_STD_FLOAT16_T
// Define a type `cpl::Float16`. If the compiler supports it natively
// (as `_Float16`), then this class is a simple wrapper. Otherwise we
// store the values in a `GUInt16` as bit pattern.
//! @cond Doxygen_Suppress
struct Float16
{
struct make_from_bits_and_value
{
};
#ifdef HAVE__FLOAT16
// How we represent a `Float16` internally
using repr = _Float16;
// How we compute on `Float16` values
using compute = _Float16;
// Create a Float16 in a constexpr manner. Since we can't convert
// bits in a constexpr function, we need to take both the bit
// pattern and a float value as input, and can then choose which
// of the two to use.
constexpr Float16(make_from_bits_and_value, CPL_UNUSED std::uint16_t bits,
float fValue)
: rValue(repr(fValue))
{
}
static constexpr repr computeToRepr(compute fValue)
{
return fValue;
}
static constexpr compute reprToCompute(repr rValue)
{
return rValue;
}
template <typename T> static constexpr repr toRepr(T fValue)
{
return static_cast<repr>(fValue);
}
template <typename T> static constexpr T fromRepr(repr rValue)
{
return static_cast<T>(rValue);
}
#else // #ifndef HAVE__FLOAT16
// How we represent a `Float16` internally
using repr = std::uint16_t;
// How we compute on `Float16` values
using compute = float;
// Create a Float16 in a constexpr manner. Since we can't convert
// bits in a constexpr function, we need to take both the bit
// pattern and a float value as input, and can then choose which
// of the two to use.
constexpr Float16(make_from_bits_and_value, std::uint16_t bits,
CPL_UNUSED float fValue)
: rValue(bits)
{
}
static unsigned float2unsigned(float f)
{
unsigned u;
std::memcpy(&u, &f, 4);
return u;
}
static float unsigned2float(unsigned u)
{
float f;
std::memcpy(&f, &u, 4);
return f;
}
// Copied from cpl_float.cpp so that we can inline for performance
static std::uint16_t computeToRepr(float fFloat32)
{
std::uint32_t iFloat32 = float2unsigned(fFloat32);
std::uint32_t iSign = (iFloat32 >> 31) & 0x00000001;
std::uint32_t iExponent = (iFloat32 >> 23) & 0x000000ff;
std::uint32_t iMantissa = iFloat32 & 0x007fffff;
if (iExponent == 255)
{
if (iMantissa == 0)
{
// Positive or negative infinity.
return static_cast<std::int16_t>((iSign << 15) | 0x7C00);
}
// NaN -- preserve sign and significand bits.
if (iMantissa >> 13)
return static_cast<std::int16_t>((iSign << 15) | 0x7C00 |
(iMantissa >> 13));
return static_cast<std::int16_t>((iSign << 15) | 0x7E00);
}
if (iExponent <= 127 - 15)
{
// Zero, float32 denormalized number or float32 too small normalized
// number
if (13 + 1 + 127 - 15 - iExponent >= 32)
return static_cast<std::int16_t>(iSign << 15);
// Return a denormalized number
return static_cast<std::int16_t>(
(iSign << 15) |
((iMantissa | 0x00800000) >> (13 + 1 + 127 - 15 - iExponent)));
}
if (iExponent - (127 - 15) >= 31)
{
return static_cast<std::int16_t>((iSign << 15) |
0x7C00); // Infinity
}
// Normalized number.
iExponent = iExponent - (127 - 15);
iMantissa = iMantissa >> 13;
// Assemble sign, exponent and mantissa.
// coverity[overflow_sink]
return static_cast<std::int16_t>((iSign << 15) | (iExponent << 10) |
iMantissa);
}
// Copied from cpl_float.cpp so that we can inline for performance
static float reprToCompute(std::uint16_t iHalf)
{
std::uint32_t iSign = (iHalf >> 15) & 0x00000001;
int iExponent = (iHalf >> 10) & 0x0000001f;
std::uint32_t iMantissa = iHalf & 0x000003ff;
if (iExponent == 31)
{
if (iMantissa == 0)
{
// Positive or negative infinity.
return unsigned2float((iSign << 31) | 0x7f800000);
}
// NaN -- preserve sign and significand bits.
return unsigned2float((iSign << 31) | 0x7f800000 |
(iMantissa << 13));
}
if (iExponent == 0)
{
if (iMantissa == 0)
{
// Plus or minus zero.
return unsigned2float(iSign << 31);
}
// Denormalized number -- renormalize it.
while (!(iMantissa & 0x00000400))
{
iMantissa <<= 1;
iExponent -= 1;
}
iExponent += 1;
iMantissa &= ~0x00000400U;
}
// Normalized number.
iExponent = iExponent + (127 - 15);
iMantissa = iMantissa << 13;
// Assemble sign, exponent and mantissa.
/* coverity[overflow_sink] */
return unsigned2float((iSign << 31) |
(static_cast<std::uint32_t>(iExponent) << 23) |
iMantissa);
}
template <typename T> static repr toRepr(T fValue)
{
return computeToRepr(static_cast<compute>(fValue));
}
template <typename T> static T fromRepr(repr rValue)
{
return static_cast<T>(reprToCompute(rValue));
}
#endif // #ifndef HAVE__FLOAT16
private:
repr rValue;
public:
compute get() const
{
return reprToCompute(rValue);
}
Float16() = default;
Float16(const Float16 &) = default;
Float16(Float16 &&) = default;
Float16 &operator=(const Float16 &) = default;
Float16 &operator=(Float16 &&) = default;
// Constructors and conversion operators
#ifdef HAVE__FLOAT16
// cppcheck-suppress noExplicitConstructor
constexpr Float16(_Float16 hfValue) : rValue(hfValue)
{
}
constexpr operator _Float16() const
{
return rValue;
}
#endif
// cppcheck-suppress-macro noExplicitConstructor
#define GDAL_DEFINE_CONVERSION(TYPE) \
\
Float16(TYPE fValue) : rValue(toRepr(fValue)) \
{ \
} \
\
operator TYPE() const \
{ \
return fromRepr<TYPE>(rValue); \
}
GDAL_DEFINE_CONVERSION(float)
GDAL_DEFINE_CONVERSION(double)
GDAL_DEFINE_CONVERSION(char)
GDAL_DEFINE_CONVERSION(signed char)
GDAL_DEFINE_CONVERSION(short)
GDAL_DEFINE_CONVERSION(int)
GDAL_DEFINE_CONVERSION(long)
GDAL_DEFINE_CONVERSION(long long)
GDAL_DEFINE_CONVERSION(unsigned char)
GDAL_DEFINE_CONVERSION(unsigned short)
GDAL_DEFINE_CONVERSION(unsigned int)
GDAL_DEFINE_CONVERSION(unsigned long)
GDAL_DEFINE_CONVERSION(unsigned long long)
#undef GDAL_DEFINE_CONVERSION
// Arithmetic operators
friend Float16 operator+(Float16 x)
{
return +x.get();
}
friend Float16 operator-(Float16 x)
{
return -x.get();
}
#define GDAL_DEFINE_ARITHOP(OP) \
\
friend Float16 operator OP(Float16 x, Float16 y) \
{ \
return x.get() OP y.get(); \
} \
\
friend double operator OP(double x, Float16 y) \
{ \
return x OP y.get(); \
} \
\
friend float operator OP(float x, Float16 y) \
{ \
return x OP y.get(); \
} \
\
friend Float16 operator OP(int x, Float16 y) \
{ \
return x OP y.get(); \
} \
\
friend double operator OP(Float16 x, double y) \
{ \
return x.get() OP y; \
} \
\
friend float operator OP(Float16 x, float y) \
{ \
return x.get() OP y; \
} \
\
friend Float16 operator OP(Float16 x, int y) \
{ \
return x.get() OP y; \
}
GDAL_DEFINE_ARITHOP(+)
GDAL_DEFINE_ARITHOP(-)
GDAL_DEFINE_ARITHOP(*)
GDAL_DEFINE_ARITHOP(/)
#undef GDAL_DEFINE_ARITHOP
// Comparison operators
#define GDAL_DEFINE_COMPARISON(OP) \
\
friend bool operator OP(Float16 x, Float16 y) \
{ \
return x.get() OP y.get(); \
} \
\
friend bool operator OP(float x, Float16 y) \
{ \
return x OP y.get(); \
} \
\
friend bool operator OP(double x, Float16 y) \
{ \
return x OP y.get(); \
} \
\
friend bool operator OP(int x, Float16 y) \
{ \
return x OP y.get(); \
} \
\
friend bool operator OP(Float16 x, float y) \
{ \
return x.get() OP y; \
} \
\
friend bool operator OP(Float16 x, double y) \
{ \
return x.get() OP y; \
} \
\
friend bool operator OP(Float16 x, int y) \
{ \
return x.get() OP y; \
}
GDAL_DEFINE_COMPARISON(==)
GDAL_DEFINE_COMPARISON(!=)
GDAL_DEFINE_COMPARISON(<)
GDAL_DEFINE_COMPARISON(>)
GDAL_DEFINE_COMPARISON(<=)
GDAL_DEFINE_COMPARISON(>=)
#undef GDAL_DEFINE_COMPARISON
// Standard math functions
friend bool isfinite(Float16 x)
{
using std::isfinite;
return isfinite(float(x));
}
friend bool isinf(Float16 x)
{
using std::isinf;
return isinf(float(x));
}
friend bool isnan(Float16 x)
{
using std::isnan;
return isnan(float(x));
}
friend bool isnormal(Float16 x)
{
using std::isnormal;
return isnormal(float(x));
}
friend bool signbit(Float16 x)
{
using std::signbit;
return signbit(float(x));
}
friend Float16 abs(Float16 x)
{
using std::abs;
return Float16(abs(float(x)));
}
friend Float16 cbrt(Float16 x)
{
using std::cbrt;
return Float16(cbrt(float(x)));
}
friend Float16 ceil(Float16 x)
{
using std::ceil;
return Float16(ceil(float(x)));
}
friend Float16 copysign(Float16 x, Float16 y)
{
using std::copysign;
return Float16(copysign(float(x), float(y)));
}
friend Float16 fabs(Float16 x)
{
using std::fabs;
return Float16(fabs(float(x)));
}
friend Float16 floor(Float16 x)
{
using std::floor;
return Float16(floor(float(x)));
}
friend Float16 fmax(Float16 x, Float16 y)
{
using std::fmax;
return Float16(fmax(float(x), float(y)));
}
friend Float16 fmin(Float16 x, Float16 y)
{
using std::fmin;
return Float16(fmin(float(x), float(y)));
}
friend Float16 hypot(Float16 x, Float16 y)
{
using std::hypot;
return Float16(hypot(float(x), float(y)));
}
friend Float16 max(Float16 x, Float16 y)
{
using std::max;
return Float16(max(float(x), float(y)));
}
friend Float16 min(Float16 x, Float16 y)
{
using std::min;
return Float16(min(float(x), float(y)));
}
// Adapted from the LLVM Project, under the Apache License v2.0
friend Float16 nextafter(Float16 x, Float16 y)
{
if (isnan(x))
return x;
if (isnan(y))
return y;
if (x == y)
return y;
std::uint16_t bits;
if (x != Float16(0))
{
std::memcpy(&bits, &x.rValue, 2);
if ((x < y) == (x > Float16(0)))
++bits;
else
--bits;
}
else
{
bits = (signbit(y) << 15) | 0x0001;
}
Float16 r;
std::memcpy(&r.rValue, &bits, 2);
return r;
}
friend Float16 pow(Float16 x, Float16 y)
{
using std::pow;
return Float16(pow(float(x), float(y)));
}
friend Float16 pow(Float16 x, int n)
{
using std::pow;
return Float16(pow(float(x), n));
}
friend Float16 round(Float16 x)
{
using std::round;
return Float16(round(float(x)));
}
friend Float16 sqrt(Float16 x)
{
using std::sqrt;
return Float16(sqrt(float(x)));
}
};
template <> struct NumericLimits<Float16>
{
static constexpr bool is_specialized = true;
static constexpr bool is_signed = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr bool has_infinity = true;
static constexpr bool has_quiet_NaN = true;
static constexpr bool has_signaling_NaN = true;
static constexpr bool has_denorm = true;
static constexpr bool is_iec559 = true;
static constexpr int digits = 11;
static constexpr int digits10 = 3;
static constexpr int max_digits10 = 5;
static constexpr int radix = 2;
static constexpr Float16 epsilon()
{
return Float16(Float16::make_from_bits_and_value{}, 0x1400, 0.000977f);
}
static constexpr Float16 min()
{
return Float16(Float16::make_from_bits_and_value{}, 0x0001, 6.0e-8f);
}
static constexpr Float16 lowest()
{
return Float16(Float16::make_from_bits_and_value{}, 0xfbff, -65504.0f);
}
static constexpr Float16 max()
{
return Float16(Float16::make_from_bits_and_value{}, 0x7bff, +65504.0f);
}
static constexpr Float16 infinity()
{
return Float16(Float16::make_from_bits_and_value{}, 0x7c00,
std::numeric_limits<float>::infinity());
}
static constexpr Float16 quiet_NaN()
{
return Float16(Float16::make_from_bits_and_value{}, 0x7e00,
std::numeric_limits<float>::quiet_NaN());
}
static constexpr Float16 signaling_NaN()
{
return Float16(Float16::make_from_bits_and_value{}, 0xfe00,
std::numeric_limits<float>::signaling_NaN());
}
};
//! @endcond
#endif // #ifndef HAVE_STD_FLOAT16_T
} // namespace cpl
#ifdef HAVE_STD_FLOAT16_T
using GFloat16 = std::float16_t;
#else
using GFloat16 = cpl::Float16;
#endif
// Define some GDAL wrappers. Their C equivalents are defined in `cpl_port.h`.
// (These wrappers are not necessary any more in C++, one can always
// call `isnan` etc directly.)
template <typename T> constexpr int CPLIsNan(T x)
{
// We need to write `using std::isnan` instead of directly using
// `std::isnan` because `std::isnan` only supports the types
// `float` and `double`. The `isnan` for `cpl::Float16` is found in the
// `cpl` namespace via argument-dependent lookup
// <https://en.cppreference.com/w/cpp/language/adl>.
using std::isnan;
return isnan(x);
}
template <typename T> constexpr int CPLIsInf(T x)
{
using std::isinf;
return isinf(x);
}
template <typename T> constexpr int CPLIsFinite(T x)
{
using std::isfinite;
return isfinite(x);
}
#endif // #ifdef __cplusplus
double CPL_DLL CPLGreatestCommonDivisor(double x, double y);
#endif // CPL_FLOAT_H_INCLUDED
|