File: gdalgridsse.cpp

package info (click to toggle)
gdal 3.12.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 92,396 kB
  • sloc: cpp: 1,224,305; ansic: 206,456; python: 26,284; java: 6,001; xml: 4,769; sh: 3,869; cs: 2,513; yacc: 1,306; makefile: 214
file content (176 lines) | stat: -rw-r--r-- 6,494 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/******************************************************************************
 *
 * Project:  GDAL Gridding API.
 * Purpose:  Implementation of GDAL scattered data gridder.
 * Author:   Even Rouault, <even dot rouault at spatialys.com>
 *
 ******************************************************************************
 * Copyright (c) 2013, Even Rouault <even dot rouault at spatialys.com>
 *
 * SPDX-License-Identifier: MIT
 ****************************************************************************/

#include "gdalgrid.h"
#include "gdalgrid_priv.h"

#ifdef HAVE_SSE_AT_COMPILE_TIME

#ifdef USE_NEON_OPTIMIZATIONS
#include "include_sse2neon.h"
#else
#include <xmmintrin.h>
#endif

/************************************************************************/
/*         GDALGridInverseDistanceToAPower2NoSmoothingNoSearchSSE()     */
/************************************************************************/

CPLErr GDALGridInverseDistanceToAPower2NoSmoothingNoSearchSSE(
    const void *poOptions, GUInt32 nPoints,
    CPL_UNUSED const double *unused_padfX,
    CPL_UNUSED const double *unused_padfY,
    CPL_UNUSED const double *unused_padfZ, double dfXPoint, double dfYPoint,
    double *pdfValue, void *hExtraParamsIn)
{
    size_t i = 0;
    GDALGridExtraParameters *psExtraParams =
        static_cast<GDALGridExtraParameters *>(hExtraParamsIn);
    const float *pafX = psExtraParams->pafX;
    const float *pafY = psExtraParams->pafY;
    const float *pafZ = psExtraParams->pafZ;

    const float fEpsilon = 0.0000000000001f;
    const float fXPoint = static_cast<float>(dfXPoint);
    const float fYPoint = static_cast<float>(dfYPoint);
    const __m128 xmm_small = _mm_load1_ps(const_cast<float *>(&fEpsilon));
    const __m128 xmm_x = _mm_load1_ps(const_cast<float *>(&fXPoint));
    const __m128 xmm_y = _mm_load1_ps(const_cast<float *>(&fYPoint));
    __m128 xmm_nominator = _mm_setzero_ps();
    __m128 xmm_denominator = _mm_setzero_ps();
    int mask = 0;

#if defined(__x86_64) || defined(_M_X64) || defined(USE_NEON_OPTIMIZATIONS)
    // This would also work in 32bit mode, but there are only 8 XMM registers
    // whereas we have 16 for 64bit.
    const size_t LOOP_SIZE = 8;
    size_t nPointsRound = (nPoints / LOOP_SIZE) * LOOP_SIZE;
    for (i = 0; i < nPointsRound; i += LOOP_SIZE)
    {
        // rx = pafX[i] - fXPoint
        __m128 xmm_rx = _mm_sub_ps(_mm_load_ps(pafX + i), xmm_x);
        __m128 xmm_rx_4 = _mm_sub_ps(_mm_load_ps(pafX + i + 4), xmm_x);
        // ry = pafY[i] - fYPoint
        __m128 xmm_ry = _mm_sub_ps(_mm_load_ps(pafY + i), xmm_y);
        __m128 xmm_ry_4 = _mm_sub_ps(_mm_load_ps(pafY + i + 4), xmm_y);
        // r2 = rx * rx + ry * ry
        __m128 xmm_r2 =
            _mm_add_ps(_mm_mul_ps(xmm_rx, xmm_rx), _mm_mul_ps(xmm_ry, xmm_ry));
        __m128 xmm_r2_4 = _mm_add_ps(_mm_mul_ps(xmm_rx_4, xmm_rx_4),
                                     _mm_mul_ps(xmm_ry_4, xmm_ry_4));
        // invr2 = 1.0f / r2
        __m128 xmm_invr2 = _mm_rcp_ps(xmm_r2);
        __m128 xmm_invr2_4 = _mm_rcp_ps(xmm_r2_4);
        // nominator += invr2 * pafZ[i]
        xmm_nominator = _mm_add_ps(
            xmm_nominator, _mm_mul_ps(xmm_invr2, _mm_load_ps(pafZ + i)));
        xmm_nominator = _mm_add_ps(
            xmm_nominator, _mm_mul_ps(xmm_invr2_4, _mm_load_ps(pafZ + i + 4)));
        // denominator += invr2
        xmm_denominator = _mm_add_ps(xmm_denominator, xmm_invr2);
        xmm_denominator = _mm_add_ps(xmm_denominator, xmm_invr2_4);
        // if( r2 < fEpsilon)
        mask = _mm_movemask_ps(_mm_cmplt_ps(xmm_r2, xmm_small)) |
               (_mm_movemask_ps(_mm_cmplt_ps(xmm_r2_4, xmm_small)) << 4);
        if (mask)
            break;
    }
#else
#define LOOP_SIZE 4
    size_t nPointsRound = (nPoints / LOOP_SIZE) * LOOP_SIZE;
    for (i = 0; i < nPointsRound; i += LOOP_SIZE)
    {
        __m128 xmm_rx = _mm_sub_ps(_mm_load_ps(pafX + i),
                                   xmm_x); /* rx = pafX[i] - fXPoint */
        __m128 xmm_ry = _mm_sub_ps(_mm_load_ps(pafY + i),
                                   xmm_y); /* ry = pafY[i] - fYPoint */
        __m128 xmm_r2 =
            _mm_add_ps(_mm_mul_ps(xmm_rx, xmm_rx), /* r2 = rx * rx + ry * ry */
                       _mm_mul_ps(xmm_ry, xmm_ry));
        __m128 xmm_invr2 = _mm_rcp_ps(xmm_r2); /* invr2 = 1.0f / r2 */
        xmm_nominator =
            _mm_add_ps(xmm_nominator, /* nominator += invr2 * pafZ[i] */
                       _mm_mul_ps(xmm_invr2, _mm_load_ps(pafZ + i)));
        xmm_denominator =
            _mm_add_ps(xmm_denominator, xmm_invr2); /* denominator += invr2 */
        mask = _mm_movemask_ps(
            _mm_cmplt_ps(xmm_r2, xmm_small)); /* if( r2 < fEpsilon) */
        if (mask)
            break;
    }
#endif

    // Find which i triggered r2 < fEpsilon.
    if (mask)
    {
        for (size_t j = 0; j < LOOP_SIZE; j++)
        {
            if (mask & (1 << j))
            {
                (*pdfValue) = double(pafZ[i + j]);
                return CE_None;
            }
        }
    }

    // Get back nominator and denominator values for XMM registers.
    float afNominator[4];
    float afDenominator[4];
    _mm_storeu_ps(afNominator, xmm_nominator);
    _mm_storeu_ps(afDenominator, xmm_denominator);

    float fNominator =
        afNominator[0] + afNominator[1] + afNominator[2] + afNominator[3];
    float fDenominator = afDenominator[0] + afDenominator[1] +
                         afDenominator[2] + afDenominator[3];

    /* Do the few remaining loop iterations */
    for (; i < nPoints; i++)
    {
        const float fRX = pafX[i] - fXPoint;
        const float fRY = pafY[i] - fYPoint;
        const float fR2 = fRX * fRX + fRY * fRY;

        // If the test point is close to the grid node, use the point
        // value directly as a node value to avoid singularity.
        if (fR2 < 1e-13f)
        {
            break;
        }
        else
        {
            const float fInvR2 = 1.0f / fR2;
            fNominator += fInvR2 * pafZ[i];
            fDenominator += fInvR2;
        }
    }

    if (i != nPoints)
    {
        (*pdfValue) = double(pafZ[i]);
    }
    else if (fDenominator == 0.0f)
    {
        (*pdfValue) =
            static_cast<const GDALGridInverseDistanceToAPowerOptions *>(
                poOptions)
                ->dfNoDataValue;
    }
    else
    {
        (*pdfValue) = double(fNominator / fDenominator);
    }

    return CE_None;
}

#endif /* HAVE_SSE_AT_COMPILE_TIME */