1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/******************************************************************************
*
* Project: GDAL
* Purpose: GDAL Wrapper for image matching via correlation algorithm.
* Author: Frank Warmerdam, warmerdam@pobox.com
* Author: Andrew Migal, migal.drew@gmail.com
*
******************************************************************************
* Copyright (c) 2012, Frank Warmerdam
*
* SPDX-License-Identifier: MIT
****************************************************************************/
#include "gdal_alg.h"
#include "gdal_simplesurf.h"
//! @cond Doxygen_Suppress
//! @endcond
// TODO(schwehr): What? This below: "0,001"
/**
* @file
* @author Andrew Migal migal.drew@gmail.com
* @brief Algorithms for searching corresponding points on images.
* @details This implementation is based on an simplified version
* of SURF algorithm (Speeded Up Robust Features).
* Provides capability for detection feature points
* and finding equal points on different images.
* As original, this realization is scale invariant, but sensitive to rotation.
* Images should have similar rotation angles (maximum difference is up to 10-15
* degrees), otherwise algorithm produces incorrect and very unstable results.
*/
/**
* Detect feature points on provided image. Please carefully read documentation
* below.
*
* @param poDataset Image on which feature points will be detected
* @param panBands Array of 3 raster bands numbers, for Red, Green, Blue bands
* (in that order)
* @param nOctaveStart Number of bottom octave. Octave numbers starts from one.
* This value directly and strongly affects to amount of recognized points
* @param nOctaveEnd Number of top octave. Should be equal or greater than
* octaveStart
* @param dfThreshold Value from 0 to 1. Threshold for feature point
* recognition. Number of detected points is larger if threshold is lower
*
* @see GDALFeaturePoint, GDALSimpleSURF class for details.
*
* @note Every octave finds points in specific size. For small images
* use small octave numbers, for high resolution - large.
* For 1024x1024 images it's normal to use any octave numbers from range 1-6.
* (for example, octave start - 1, octave end - 3, or octave start - 2, octave
* end - 2.)
* For larger images, try 1-10 range or even higher.
* Pay attention that number of detected point decreases quickly per octave for
* particular image. Algorithm finds more points in case of small octave number.
* If method detects nothing, reduce octave start value.
* In addition, if many feature points are required (the largest possible
* amount), use the lowest octave start value (1) and wide octave range.
*
* @note Typical threshold's value is 0,001. It's pretty good for all images.
* But this value depends on image's nature and may be various in each
* particular case.
* For example, value can be 0,002 or 0,005.
* Notice that number of detected points is larger if threshold is lower.
* But with high threshold feature points will be better - "stronger", more
* "unique" and distinctive.
*
* Feel free to experiment with parameters, because character, robustness and
* number of points entirely depend on provided range of octaves and threshold.
*
* NOTICE that every octave requires time to compute. Use a little range
* or only one octave, if execution time is significant.
*
* @return CE_None or CE_Failure if error occurs.
*/
static std::vector<GDALFeaturePoint> *
GatherFeaturePoints(GDALDataset *poDataset, int *panBands, int nOctaveStart,
int nOctaveEnd, double dfThreshold)
{
if (poDataset == nullptr)
{
CPLError(CE_Failure, CPLE_AppDefined, "GDALDataset isn't specified");
return nullptr;
}
if (panBands == nullptr)
{
CPLError(CE_Failure, CPLE_AppDefined, "Raster bands are not specified");
return nullptr;
}
if (nOctaveStart <= 0 || nOctaveEnd < 0 || nOctaveStart > nOctaveEnd)
{
CPLError(CE_Failure, CPLE_AppDefined, "Octave numbers are invalid");
return nullptr;
}
if (dfThreshold < 0)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Threshold have to be greater than zero");
return nullptr;
}
GDALRasterBand *poRstRedBand = poDataset->GetRasterBand(panBands[0]);
GDALRasterBand *poRstGreenBand = poDataset->GetRasterBand(panBands[1]);
GDALRasterBand *poRstBlueBand = poDataset->GetRasterBand(panBands[2]);
const int nWidth = poRstRedBand->GetXSize();
const int nHeight = poRstRedBand->GetYSize();
if (nWidth == 0 || nHeight == 0)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Must have non-zero width and height.");
return nullptr;
}
// Allocate memory for grayscale image.
double **padfImg = new double *[nHeight];
for (int i = 0;;)
{
padfImg[i] = new double[nWidth];
for (int j = 0; j < nWidth; ++j)
padfImg[i][j] = 0.0;
++i;
if (i == nHeight)
break;
}
// Create grayscale image.
GDALSimpleSURF::ConvertRGBToLuminosity(poRstRedBand, poRstGreenBand,
poRstBlueBand, nWidth, nHeight,
padfImg, nHeight, nWidth);
// Prepare integral image.
GDALIntegralImage *poImg = new GDALIntegralImage();
poImg->Initialize(const_cast<const double **>(padfImg), nHeight, nWidth);
// Get feature points.
GDALSimpleSURF *poSurf = new GDALSimpleSURF(nOctaveStart, nOctaveEnd);
std::vector<GDALFeaturePoint> *poCollection =
poSurf->ExtractFeaturePoints(poImg, dfThreshold);
// Clean up.
delete poImg;
delete poSurf;
for (int i = 0; i < nHeight; ++i)
delete[] padfImg[i];
delete[] padfImg;
return poCollection;
}
/************************************************************************/
/* GDALComputeMatchingPoints() */
/************************************************************************/
/** GDALComputeMatchingPoints. TODO document */
GDAL_GCP CPL_DLL *GDALComputeMatchingPoints(GDALDatasetH hFirstImage,
GDALDatasetH hSecondImage,
char **papszOptions,
int *pnGCPCount)
{
*pnGCPCount = 0;
/* -------------------------------------------------------------------- */
/* Override default algorithm parameters. */
/* -------------------------------------------------------------------- */
int nOctaveStart, nOctaveEnd;
double dfSURFThreshold;
nOctaveStart =
atoi(CSLFetchNameValueDef(papszOptions, "OCTAVE_START", "2"));
nOctaveEnd = atoi(CSLFetchNameValueDef(papszOptions, "OCTAVE_END", "2"));
dfSURFThreshold =
CPLAtof(CSLFetchNameValueDef(papszOptions, "SURF_THRESHOLD", "0.001"));
const double dfMatchingThreshold = CPLAtof(
CSLFetchNameValueDef(papszOptions, "MATCHING_THRESHOLD", "0.015"));
/* -------------------------------------------------------------------- */
/* Identify the bands to use. For now we are effectively */
/* limited to using RGB input so if we have one band only treat */
/* it as red=green=blue=band 1. Disallow non eightbit imagery. */
/* -------------------------------------------------------------------- */
int anBandMap1[3] = {1, 1, 1};
if (GDALGetRasterCount(hFirstImage) >= 3)
{
anBandMap1[1] = 2;
anBandMap1[2] = 3;
}
int anBandMap2[3] = {1, 1, 1};
if (GDALGetRasterCount(hSecondImage) >= 3)
{
anBandMap2[1] = 2;
anBandMap2[2] = 3;
}
/* -------------------------------------------------------------------- */
/* Collect reference points on each image. */
/* -------------------------------------------------------------------- */
std::vector<GDALFeaturePoint> *poFPCollection1 =
GatherFeaturePoints(GDALDataset::FromHandle(hFirstImage), anBandMap1,
nOctaveStart, nOctaveEnd, dfSURFThreshold);
if (poFPCollection1 == nullptr)
return nullptr;
std::vector<GDALFeaturePoint> *poFPCollection2 =
GatherFeaturePoints(GDALDataset::FromHandle(hSecondImage), anBandMap2,
nOctaveStart, nOctaveEnd, dfSURFThreshold);
if (poFPCollection2 == nullptr)
{
delete poFPCollection1;
return nullptr;
}
/* -------------------------------------------------------------------- */
/* Try to find corresponding locations. */
/* -------------------------------------------------------------------- */
std::vector<GDALFeaturePoint *> oMatchPairs;
if (CE_None != GDALSimpleSURF::MatchFeaturePoints(
&oMatchPairs, poFPCollection1, poFPCollection2,
dfMatchingThreshold))
{
delete poFPCollection1;
delete poFPCollection2;
return nullptr;
}
*pnGCPCount = static_cast<int>(oMatchPairs.size()) / 2;
/* -------------------------------------------------------------------- */
/* Translate these into GCPs - but with the output coordinate */
/* system being pixel/line on the second image. */
/* -------------------------------------------------------------------- */
GDAL_GCP *pasGCPList =
static_cast<GDAL_GCP *>(CPLCalloc(*pnGCPCount, sizeof(GDAL_GCP)));
GDALInitGCPs(*pnGCPCount, pasGCPList);
for (int i = 0; i < *pnGCPCount; i++)
{
GDALFeaturePoint *poPoint1 = oMatchPairs[i * 2];
GDALFeaturePoint *poPoint2 = oMatchPairs[i * 2 + 1];
pasGCPList[i].dfGCPPixel = poPoint1->GetX() + 0.5;
pasGCPList[i].dfGCPLine = poPoint1->GetY() + 0.5;
pasGCPList[i].dfGCPX = poPoint2->GetX() + 0.5;
pasGCPList[i].dfGCPY = poPoint2->GetY() + 0.5;
pasGCPList[i].dfGCPZ = 0.0;
}
// Cleanup the feature point lists.
delete poFPCollection1;
delete poFPCollection2;
/* -------------------------------------------------------------------- */
/* Optionally transform into the georef coordinates of the */
/* output image. */
/* -------------------------------------------------------------------- */
const bool bGeorefOutput =
CPLTestBool(CSLFetchNameValueDef(papszOptions, "OUTPUT_GEOREF", "NO"));
if (bGeorefOutput)
{
double adfGeoTransform[6] = {};
GDALGetGeoTransform(hSecondImage, adfGeoTransform);
for (int i = 0; i < *pnGCPCount; i++)
{
GDALApplyGeoTransform(adfGeoTransform, pasGCPList[i].dfGCPX,
pasGCPList[i].dfGCPY, &(pasGCPList[i].dfGCPX),
&(pasGCPList[i].dfGCPY));
}
}
return pasGCPList;
}
|