1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/******************************************************************************
*
* Project: Line of Sight
* Purpose: Core algorithm implementation for line of sight algorithms.
* Author: Ryan Friedman, ryanfriedman5410+gdal@gmail.com
*
******************************************************************************
*
* SPDX-License-Identifier: MIT
****************************************************************************/
#include <functional>
#include <cmath>
#include "cpl_port.h"
#include "gdal_alg.h"
// There's a plethora of bresenham implementations, all questionable production quality.
// Bresenham optimizes for integer math, which makes sense for raster datasets in 2D.
// For 3D, a 3D bresenham could be used if the altitude is also integer resolution.
// 2D:
// https://codereview.stackexchange.com/questions/77460/bresenhams-line-algorithm-optimization
// https://gist.github.com/ssavi-ict/092501c69e2ffec65e96a8865470ad2f
// https://blog.demofox.org/2015/01/17/bresenhams-drawing-algorithms/
// https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
// https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
// https://stackoverflow.com/questions/10060046/drawing-lines-with-bresenhams-line-algorithm
// http://www.edepot.com/linebresenham.html
// 3D:
// https://gist.github.com/yamamushi/5823518
// Run bresenham terrain checking from (x1, y1) to (x2, y2).
// The callback is run at every point along the line,
// which should return True if the point is above terrain.
// Bresenham2D will return true if all points have LOS between the start and end.
static bool
Bresenham2D(const int x1, const int y1, const int x2, const int y2,
std::function<auto(const int, const int)->bool> OnBresenhamPoint)
{
bool isAboveTerrain = true;
int dx, dy;
int incx, incy;
if (x2 >= x1)
{
dx = x2 - x1;
incx = 1;
}
else
{
dx = x1 - x2;
incx = -1;
}
if (y2 >= y1)
{
dy = y2 - y1;
incy = 1;
}
else
{
dy = y1 - y2;
incy = -1;
}
auto x = x1;
auto y = y1;
int balance;
if (dx >= dy)
{
dy <<= 1;
balance = dy - dx;
dx *= 2;
while (x != x2 && isAboveTerrain)
{
isAboveTerrain &= OnBresenhamPoint(x, y);
if (balance >= 0)
{
y += incy;
balance -= dx;
}
balance += dy;
x += incx;
}
isAboveTerrain &= OnBresenhamPoint(x, y);
}
else
{
dx *= 2;
balance = dx - dy;
dy *= 2;
while (y != y2 && isAboveTerrain)
{
isAboveTerrain &= OnBresenhamPoint(x, y);
if (balance >= 0)
{
x += incx;
balance -= dy;
}
balance += dx;
y += incy;
}
isAboveTerrain &= OnBresenhamPoint(x, y);
}
return isAboveTerrain;
}
// Get the elevation of a single point.
static bool GetElevation(const GDALRasterBandH hBand, const int x, const int y,
double &val)
{
/// @todo GDALCachedPixelAccessor may give increased performance.
return GDALRasterIO(hBand, GF_Read, x, y, 1, 1, &val, 1, 1, GDT_Float64, 0,
0) == CE_None;
}
// Check a single location is above terrain.
static bool IsAboveTerrain(const GDALRasterBandH hBand, const int x,
const int y, const double z)
{
double terrainHeight;
if (GetElevation(hBand, x, y, terrainHeight))
{
return z > terrainHeight;
}
else
{
return false;
}
}
/************************************************************************/
/* GDALIsLineOfSightVisible() */
/************************************************************************/
/**
* Check Line of Sight between two points.
* Both input coordinates must be within the raster coordinate bounds.
*
* This algorithm will check line of sight using a Bresenham algorithm.
* https://www.researchgate.net/publication/2411280_Efficient_Line-of-Sight_Algorithms_for_Real_Terrain_Data
* Line of sight is computed in raster coordinate space, and thus may not be appropriate.
* For example, datasets referenced against geographic coordinate at high latitudes may have issues.
*
* @param hBand The band to read the DEM data from. This must NOT be null.
*
* @param xA The X location (raster column) of the first point to check on the raster.
*
* @param yA The Y location (raster row) of the first point to check on the raster.
*
* @param zA The Z location (height) of the first point to check.
*
* @param xB The X location (raster column) of the second point to check on the raster.
*
* @param yB The Y location (raster row) of the second point to check on the raster.
*
* @param zB The Z location (height) of the second point to check.
*
* @param[out] pnxTerrainIntersection The X location where the LOS line
* intersects with terrain, or nullptr if it does not intersect
* terrain.
*
* @param[out] pnyTerrainIntersection The Y location where the LOS line
* intersects with terrain, or nullptr if it does not intersect
* terrain.
*
* @param papszOptions Options for the line of sight algorithm (currently ignored).
*
* @return True if the two points are within Line of Sight.
*
* @since GDAL 3.9
*/
bool GDALIsLineOfSightVisible(const GDALRasterBandH hBand, const int xA,
const int yA, const double zA, const int xB,
const int yB, const double zB,
int *pnxTerrainIntersection,
int *pnyTerrainIntersection,
CPL_UNUSED CSLConstList papszOptions)
{
VALIDATE_POINTER1(hBand, "GDALIsLineOfSightVisible", false);
// A lambda to set the X-Y intersection if it's not null
auto SetXYIntersection = [&](const int x, const int y)
{
if (pnxTerrainIntersection != nullptr)
{
*pnxTerrainIntersection = x;
}
if (pnyTerrainIntersection != nullptr)
{
*pnyTerrainIntersection = y;
}
};
if (pnxTerrainIntersection)
*pnxTerrainIntersection = -1;
if (pnyTerrainIntersection)
*pnyTerrainIntersection = -1;
// Perform a preliminary check of the start and end points.
if (!IsAboveTerrain(hBand, xA, yA, zA))
{
SetXYIntersection(xA, yA);
return false;
}
if (!IsAboveTerrain(hBand, xB, yB, zB))
{
SetXYIntersection(xB, yB);
return false;
}
// If both X and Y are the same, no further checks are needed.
if (xA == xB && yA == yB)
{
return true;
}
// Lambda for Linear interpolate like C++20 std::lerp.
auto lerp = [](const double a, const double b, const double t)
{ return a + t * (b - a); };
// Lambda for getting Z test height given y input along the LOS line.
// Only to be used for vertical line checks.
auto GetZValueFromY = [&](const int y) -> double
{
// A ratio of 0.0 corresponds to being at yA.
const auto ratio =
static_cast<double>(y - yA) / static_cast<double>(yB - yA);
return lerp(zA, zB, ratio);
};
// Lambda for getting Z test height given x input along the LOS line.
// Only to be used for horizontal line checks.
auto GetZValueFromX = [&](const int x) -> double
{
// A ratio of 0.0 corresponds to being at xA.
const auto ratio =
static_cast<double>(x - xA) / static_cast<double>(xB - xA);
return lerp(zA, zB, ratio);
};
// Lambda for checking path safety of a vertical line.
// Returns true if the path has clear LOS.
auto CheckVerticalLine = [&]() -> bool
{
CPLAssert(xA == xB);
CPLAssert(yA != yB);
if (yA < yB)
{
for (int y = yA; y <= yB; ++y)
{
const auto zTest = GetZValueFromY(y);
if (!IsAboveTerrain(hBand, xA, y, zTest))
{
SetXYIntersection(xA, y);
return false;
}
}
return true;
}
else
{
for (int y = yA; y >= yB; --y)
{
const auto zTest = GetZValueFromY(y);
if (!IsAboveTerrain(hBand, xA, y, zTest))
{
SetXYIntersection(xA, y);
return false;
}
}
return true;
}
};
// Lambda for checking path safety of a horizontal line.
// Returns true if the path has clear LOS.
auto CheckHorizontalLine = [&]() -> bool
{
CPLAssert(yA == yB);
CPLAssert(xA != xB);
if (xA < xB)
{
for (int x = xA; x <= xB; ++x)
{
const auto zTest = GetZValueFromX(x);
if (!IsAboveTerrain(hBand, x, yA, zTest))
{
SetXYIntersection(x, yA);
return false;
}
}
return true;
}
else
{
for (int x = xA; x >= xB; --x)
{
const auto zTest = GetZValueFromX(x);
if (!IsAboveTerrain(hBand, x, yA, zTest))
{
SetXYIntersection(x, yA);
return false;
}
}
return true;
}
};
// Handle special cases if it's a vertical or horizontal line (don't use bresenham).
if (xA == xB)
{
return CheckVerticalLine();
}
if (yA == yB)
{
return CheckHorizontalLine();
}
// Use an interpolated Z height with 2D bresenham for the remaining cases.
// Lambda for computing the square of a number
auto SQUARE = [](const double d) -> double { return d * d; };
// Lambda for getting Z test height given x-y input along the bresenham line.
auto GetZValueFromXY = [&](const int x, const int y) -> double
{
const auto rNum = SQUARE(static_cast<double>(x - xA)) +
SQUARE(static_cast<double>(y - yA));
const auto rDenom = SQUARE(static_cast<double>(xB - xA)) +
SQUARE(static_cast<double>(yB - yA));
/// @todo In order to reduce CPU cost and avoid a sqrt operation, consider
/// the approach to just the ratio along x or y depending on whether
/// the line is steep or shallow.
/// See https://github.com/OSGeo/gdal/pull/9506#discussion_r1532459689.
const double ratio =
sqrt(static_cast<double>(rNum) / static_cast<double>(rDenom));
return lerp(zA, zB, ratio);
};
// Lambda to get elevation at a bresenham-computed location.
auto OnBresenhamPoint = [&](const int x, const int y) -> bool
{
const auto z = GetZValueFromXY(x, y);
const auto isAbove = IsAboveTerrain(hBand, x, y, z);
if (!isAbove)
{
SetXYIntersection(x, y);
}
return IsAboveTerrain(hBand, x, y, z);
};
return Bresenham2D(xA, yA, xB, yB, OnBresenhamPoint);
}
|