File: polygonize.cpp

package info (click to toggle)
gdal 3.12.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 92,396 kB
  • sloc: cpp: 1,224,305; ansic: 206,456; python: 26,284; java: 6,001; xml: 4,769; sh: 3,869; cs: 2,513; yacc: 1,306; makefile: 214
file content (622 lines) | stat: -rw-r--r-- 25,472 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/******************************************************************************
 * Project:  GDAL
 * Purpose:  Raster to Polygon Converter
 * Author:   Frank Warmerdam, warmerdam@pobox.com
 *
 ******************************************************************************
 * Copyright (c) 2008, Frank Warmerdam
 * Copyright (c) 2009-2020, Even Rouault <even dot rouault at spatialys.com>
 *
 * SPDX-License-Identifier: MIT
 ****************************************************************************/

#include "cpl_port.h"
#include "gdal_alg.h"

#include <stddef.h>
#include <stdio.h>
#include <cstdlib>
#include <string.h>

#include <algorithm>
#include <limits>
#include <map>
#include <memory>
#include <utility>
#include <vector>

#include "gdal_alg_priv.h"
#include "gdal.h"
#include "ogr_api.h"
#include "ogr_core.h"
#include "cpl_conv.h"
#include "cpl_error.h"
#include "cpl_progress.h"
#include "cpl_string.h"
#include "cpl_vsi.h"

#include "polygonize_polygonizer.h"

using namespace gdal::polygonizer;

/************************************************************************/
/*                          GPMaskImageData()                           */
/*                                                                      */
/*      Mask out image pixels to a special nodata value if the mask     */
/*      band is zero.                                                   */
/************************************************************************/

template <class DataType>
static CPLErr GPMaskImageData(GDALRasterBandH hMaskBand, GByte *pabyMaskLine,
                              int iY, int nXSize, DataType *panImageLine)

{
    const CPLErr eErr = GDALRasterIO(hMaskBand, GF_Read, 0, iY, nXSize, 1,
                                     pabyMaskLine, nXSize, 1, GDT_Byte, 0, 0);
    if (eErr != CE_None)
        return eErr;

    for (int i = 0; i < nXSize; i++)
    {
        if (pabyMaskLine[i] == 0)
            panImageLine[i] = GP_NODATA_MARKER;
    }

    return CE_None;
}

/************************************************************************/
/*                           GDALPolygonizeT()                          */
/************************************************************************/

template <class DataType, class EqualityTest>
static CPLErr GDALPolygonizeT(GDALRasterBandH hSrcBand,
                              GDALRasterBandH hMaskBand, OGRLayerH hOutLayer,
                              int iPixValField, CSLConstList papszOptions,
                              GDALProgressFunc pfnProgress, void *pProgressArg,
                              GDALDataType eDT)

{
    VALIDATE_POINTER1(hSrcBand, "GDALPolygonize", CE_Failure);
    VALIDATE_POINTER1(hOutLayer, "GDALPolygonize", CE_Failure);

    if (pfnProgress == nullptr)
        pfnProgress = GDALDummyProgress;

    const int nConnectedness =
        CSLFetchNameValue(papszOptions, "8CONNECTED") ? 8 : 4;

    /* -------------------------------------------------------------------- */
    /*      Confirm our output layer will support feature creation.         */
    /* -------------------------------------------------------------------- */
    if (!OGR_L_TestCapability(hOutLayer, OLCSequentialWrite))
    {
        CPLError(CE_Failure, CPLE_AppDefined,
                 "Output feature layer does not appear to support creation "
                 "of features in GDALPolygonize().");
        return CE_Failure;
    }

    /* -------------------------------------------------------------------- */
    /*      Allocate working buffers.                                       */
    /* -------------------------------------------------------------------- */
    const int nXSize = GDALGetRasterBandXSize(hSrcBand);
    const int nYSize = GDALGetRasterBandYSize(hSrcBand);
    if (nXSize > std::numeric_limits<int>::max() - 2)
    {
        CPLError(CE_Failure, CPLE_AppDefined, "Too wide raster");
        return CE_Failure;
    }

    DataType *panLastLineVal =
        static_cast<DataType *>(VSI_MALLOC2_VERBOSE(sizeof(DataType), nXSize));
    DataType *panThisLineVal =
        static_cast<DataType *>(VSI_MALLOC2_VERBOSE(sizeof(DataType), nXSize));
    GInt32 *panLastLineId =
        static_cast<GInt32 *>(VSI_MALLOC2_VERBOSE(sizeof(GInt32), nXSize));
    GInt32 *panThisLineId =
        static_cast<GInt32 *>(VSI_MALLOC2_VERBOSE(sizeof(GInt32), nXSize));

    GByte *pabyMaskLine = static_cast<GByte *>(VSI_MALLOC_VERBOSE(nXSize));

    if (panLastLineVal == nullptr || panThisLineVal == nullptr ||
        panLastLineId == nullptr || panThisLineId == nullptr ||
        pabyMaskLine == nullptr)
    {
        CPLFree(panThisLineId);
        CPLFree(panLastLineId);
        CPLFree(panThisLineVal);
        CPLFree(panLastLineVal);
        CPLFree(pabyMaskLine);
        return CE_Failure;
    }

    /* -------------------------------------------------------------------- */
    /*      Get the geotransform, if there is one, so we can convert the    */
    /*      vectors into georeferenced coordinates.                         */
    /* -------------------------------------------------------------------- */
    GDALGeoTransform gt;
    bool bGotGeoTransform = false;
    const char *pszDatasetForGeoRef =
        CSLFetchNameValue(papszOptions, "DATASET_FOR_GEOREF");
    if (pszDatasetForGeoRef)
    {
        auto poSrcDS = std::unique_ptr<GDALDataset>(GDALDataset::Open(
            pszDatasetForGeoRef, GDAL_OF_RASTER | GDAL_OF_VERBOSE_ERROR));
        if (poSrcDS)
        {
            bGotGeoTransform = poSrcDS->GetGeoTransform(gt) == CE_None;
        }
    }
    else
    {
        auto poSrcDS = GDALRasterBand::FromHandle(hSrcBand)->GetDataset();
        if (poSrcDS)
        {
            bGotGeoTransform = poSrcDS->GetGeoTransform(gt) == CE_None;
        }
    }
    if (!bGotGeoTransform)
    {
        gt = GDALGeoTransform();
    }

    /* -------------------------------------------------------------------- */
    /*      The first pass over the raster is only used to build up the     */
    /*      polygon id map so we will know in advance what polygons are     */
    /*      what on the second pass.                                        */
    /* -------------------------------------------------------------------- */
    GDALRasterPolygonEnumeratorT<DataType, EqualityTest> oFirstEnum(
        nConnectedness);

    CPLErr eErr = CE_None;

    for (int iY = 0; eErr == CE_None && iY < nYSize; iY++)
    {
        eErr = GDALRasterIO(hSrcBand, GF_Read, 0, iY, nXSize, 1, panThisLineVal,
                            nXSize, 1, eDT, 0, 0);

        if (eErr == CE_None && hMaskBand != nullptr)
            eErr = GPMaskImageData(hMaskBand, pabyMaskLine, iY, nXSize,
                                   panThisLineVal);

        if (eErr != CE_None)
            break;

        if (iY == 0)
            eErr = oFirstEnum.ProcessLine(nullptr, panThisLineVal, nullptr,
                                          panThisLineId, nXSize)
                       ? CE_None
                       : CE_Failure;
        else
            eErr = oFirstEnum.ProcessLine(panLastLineVal, panThisLineVal,
                                          panLastLineId, panThisLineId, nXSize)
                       ? CE_None
                       : CE_Failure;

        if (eErr != CE_None)
            break;

        // Swap lines.
        std::swap(panLastLineVal, panThisLineVal);
        std::swap(panLastLineId, panThisLineId);

        /* --------------------------------------------------------------------
         */
        /*      Report progress, and support interrupts. */
        /* --------------------------------------------------------------------
         */
        if (!pfnProgress(0.10 * ((iY + 1) / static_cast<double>(nYSize)), "",
                         pProgressArg))
        {
            CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
            eErr = CE_Failure;
        }
    }

    /* -------------------------------------------------------------------- */
    /*      Make a pass through the maps, ensuring every polygon id         */
    /*      points to the final id it should use, not an intermediate       */
    /*      value.                                                          */
    /* -------------------------------------------------------------------- */
    if (eErr == CE_None)
        oFirstEnum.CompleteMerges();

    /* -------------------------------------------------------------------- */
    /*      We will use a new enumerator for the second pass primarily      */
    /*      so we can preserve the first pass map.                          */
    /* -------------------------------------------------------------------- */
    GDALRasterPolygonEnumeratorT<DataType, EqualityTest> oSecondEnum(
        nConnectedness);

    OGRPolygonWriter<DataType> oPolygonWriter{
        hOutLayer, iPixValField, gt,
        atoi(CSLFetchNameValueDef(papszOptions, "COMMIT_INTERVAL", "100000"))};
    Polygonizer<GInt32, DataType> oPolygonizer{-1, &oPolygonWriter};
    TwoArm *paoLastLineArm =
        static_cast<TwoArm *>(VSI_CALLOC_VERBOSE(sizeof(TwoArm), nXSize + 2));
    TwoArm *paoThisLineArm =
        static_cast<TwoArm *>(VSI_CALLOC_VERBOSE(sizeof(TwoArm), nXSize + 2));

    if (paoThisLineArm == nullptr || paoLastLineArm == nullptr)
    {
        eErr = CE_Failure;
    }
    else
    {
        for (int i = 0; i < nXSize + 2; ++i)
        {
            paoLastLineArm[i].poPolyInside = oPolygonizer.getTheOuterPolygon();
        }
    }

    /* ==================================================================== */
    /*      Second pass during which we will actually collect polygon       */
    /*      edges as geometries.                                            */
    /* ==================================================================== */
    for (int iY = 0; eErr == CE_None && iY < nYSize + 1; iY++)
    {
        /* --------------------------------------------------------------------
         */
        /*      Read the image data. */
        /* --------------------------------------------------------------------
         */
        if (iY < nYSize)
        {
            eErr = GDALRasterIO(hSrcBand, GF_Read, 0, iY, nXSize, 1,
                                panThisLineVal, nXSize, 1, eDT, 0, 0);
            if (eErr == CE_None && hMaskBand != nullptr)
                eErr = GPMaskImageData(hMaskBand, pabyMaskLine, iY, nXSize,
                                       panThisLineVal);
        }

        if (eErr != CE_None)
            continue;

        /* --------------------------------------------------------------------
         */
        /*      Determine what polygon the various pixels belong to (redoing */
        /*      the same thing done in the first pass above). */
        /* --------------------------------------------------------------------
         */
        if (iY == nYSize)
        {
            for (int iX = 0; iX < nXSize; iX++)
                panThisLineId[iX] =
                    decltype(oPolygonizer)::THE_OUTER_POLYGON_ID;
        }
        else if (iY == 0)
        {
            eErr = oSecondEnum.ProcessLine(nullptr, panThisLineVal, nullptr,
                                           panThisLineId, nXSize)
                       ? CE_None
                       : CE_Failure;
        }
        else
        {
            eErr = oSecondEnum.ProcessLine(panLastLineVal, panThisLineVal,
                                           panLastLineId, panThisLineId, nXSize)
                       ? CE_None
                       : CE_Failure;
        }

        if (eErr != CE_None)
            continue;

        if (iY < nYSize)
        {
            for (int iX = 0; iX < nXSize; iX++)
            {
                // TODO: maybe we can reserve -1 as the lookup result for -1 polygon id in the panPolyIdMap,
                //       so the this expression becomes: panLastLineId[iX] = *(oFirstEnum.panPolyIdMap + panThisLineId[iX]).
                //       This would eliminate the condition checking.
                panLastLineId[iX] =
                    panThisLineId[iX] == -1
                        ? -1
                        : oFirstEnum.panPolyIdMap[panThisLineId[iX]];
            }

            if (!oPolygonizer.processLine(panLastLineId, panLastLineVal,
                                          paoThisLineArm, paoLastLineArm, iY,
                                          nXSize))
            {
                eErr = CE_Failure;
            }
            else
            {
                eErr = oPolygonWriter.getErr();
            }
        }
        else
        {
            if (!oPolygonizer.processLine(panThisLineId, panLastLineVal,
                                          paoThisLineArm, paoLastLineArm, iY,
                                          nXSize))
            {
                eErr = CE_Failure;
            }
            else
            {
                eErr = oPolygonWriter.getErr();
            }
        }

        if (eErr != CE_None)
            continue;

        /* --------------------------------------------------------------------
         */
        /*      Swap pixel value, and polygon id lines to be ready for the */
        /*      next line. */
        /* --------------------------------------------------------------------
         */
        std::swap(panLastLineVal, panThisLineVal);
        std::swap(panLastLineId, panThisLineId);
        std::swap(paoThisLineArm, paoLastLineArm);

        /* --------------------------------------------------------------------
         */
        /*      Report progress, and support interrupts. */
        /* --------------------------------------------------------------------
         */
        if (!pfnProgress(
                std::min(1.0, 0.10 + 0.90 * ((iY + 1) /
                                             static_cast<double>(nYSize))),
                "", pProgressArg))
        {
            CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
            eErr = CE_Failure;
        }
    }

    if (!oPolygonWriter.Finalize())
        eErr = CE_Failure;

    /* -------------------------------------------------------------------- */
    /*      Cleanup                                                         */
    /* -------------------------------------------------------------------- */
    CPLFree(panThisLineId);
    CPLFree(panLastLineId);
    CPLFree(panThisLineVal);
    CPLFree(panLastLineVal);
    CPLFree(paoThisLineArm);
    CPLFree(paoLastLineArm);
    CPLFree(pabyMaskLine);

    return eErr;
}

/******************************************************************************/
/*                       GDALFloatAlmostEquals()                              */
/* Code (originally) from:                                                    */
/* http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm  */
/******************************************************************************/

template <typename FloatType, typename IntType>
static inline bool GDALFloatAlmostEquals(FloatType A, FloatType B,
                                         unsigned maxUlps)
{
    static_assert(sizeof(FloatType) == sizeof(IntType));
    // This function will allow maxUlps-1 floats between A and B.

    // Make sure maxUlps is non-negative and small enough that the default NAN
    // won't compare as equal to anything.
    if (maxUlps >= 4 * 1024 * 1024)
    {
        CPLError(CE_Failure, CPLE_IllegalArg, "Invalid maxUlps");
        return false;
    }

    const auto MapToInteger = [](FloatType x)
    {
        IntType i = 0;
        memcpy(&i, &x, sizeof(i));

        constexpr int NBITS = 8 * static_cast<int>(sizeof(i)) - 1;
        constexpr IntType SHIFT = (static_cast<IntType>(1) << NBITS);

        // Make i lexicographically ordered with negative values
        // remapped to the [0, SHIFT[ range and positive values in the
        // [SHIFT, UINT_MAX[ range
        if ((i >> NBITS) != 0)
            i = SHIFT - (i & ~SHIFT);
        else
            i += SHIFT;
        return i;
    };

    const auto aInt = MapToInteger(A);
    const auto bInt = MapToInteger(B);

    return ((aInt > bInt) ? aInt - bInt : bInt - aInt) <= maxUlps;
}

bool GDALFloatAlmostEquals(float A, float B, unsigned maxUlps)
{
    return GDALFloatAlmostEquals<float, uint32_t>(A, B, maxUlps);
}

/******************************************************************************/
/*                         GDALDoubleAlmostEquals()                           */
/******************************************************************************/

bool GDALDoubleAlmostEquals(double A, double B, unsigned maxUlps)
{
    return GDALFloatAlmostEquals<double, uint64_t>(A, B, maxUlps);
}

/************************************************************************/
/*                           GDALPolygonize()                           */
/************************************************************************/

/**
 * Create polygon coverage from raster data.
 *
 * This function creates vector polygons for all connected regions of pixels in
 * the raster sharing a common pixel value.  Optionally each polygon may be
 * labeled with the pixel value in an attribute.  Optionally a mask band
 * can be provided to determine which pixels are eligible for processing.
 *
 * Note that currently the source pixel band values are read into a
 * signed 64bit integer buffer (Int64), so floating point or complex
 * bands will be implicitly truncated before processing. If you want to use a
 * version using 32bit or 64bit float buffers, see GDALFPolygonize().
 *
 * Polygon features will be created on the output layer, with polygon
 * geometries representing the polygons.  The polygon geometries will be
 * in the georeferenced coordinate system of the image (based on the
 * geotransform of the source dataset).  It is acceptable for the output
 * layer to already have features.  Note that GDALPolygonize() does not
 * set the coordinate system on the output layer.  Application code should
 * do this when the layer is created, presumably matching the raster
 * coordinate system.
 *
 * The algorithm used attempts to minimize memory use so that very large
 * rasters can be processed.  However, if the raster has many polygons
 * or very large/complex polygons, the memory use for holding polygon
 * enumerations and active polygon geometries may grow to be quite large.
 *
 * The algorithm will generally produce very dense polygon geometries, with
 * edges that follow exactly on pixel boundaries for all non-interior pixels.
 * For non-thematic raster data (such as satellite images) the result will
 * essentially be one small polygon per pixel, and memory and output layer
 * sizes will be substantial.  The algorithm is primarily intended for
 * relatively simple thematic imagery, masks, and classification results.
 *
 * @param hSrcBand the source raster band to be processed.
 * @param hMaskBand an optional mask band.  All pixels in the mask band with a
 * value other than zero will be considered suitable for collection as
 * polygons.
 * @param hOutLayer the vector feature layer to which the polygons should
 * be written.
 * @param iPixValField the attribute field index indicating the feature
 * attribute into which the pixel value of the polygon should be written. Or
 * -1 to indicate that the pixel value must not be written.
 * @param papszOptions a name/value list of additional options
 * <ul>
 * <li>8CONNECTED=8: May be set to "8" to use 8 connectedness.
 * Otherwise 4 connectedness will be applied to the algorithm</li>
 * <li>DATASET_FOR_GEOREF=dataset_name: Name of a dataset from which to read
 * the geotransform. This useful if hSrcBand has no related dataset, which is
 * typical for mask bands.</li>
 * <li>COMMIT_INTERVAL=num:
 * (GDAL >= 3.12) Interval in number of features at which transactions must be
 * flushed. A value of 0 means that no transactions are opened.
 * A negative value means a single transaction.
 * The default value is 100000.
 * The function takes care of issuing the starting transaction and committing
 * the final one.
 * </li>
 * </ul>
 * @param pfnProgress callback for reporting algorithm progress matching the
 * GDALProgressFunc() semantics.  May be NULL.
 * @param pProgressArg callback argument passed to pfnProgress.
 *
 * @return CE_None on success or CE_Failure on a failure.
 */

CPLErr CPL_STDCALL GDALPolygonize(GDALRasterBandH hSrcBand,
                                  GDALRasterBandH hMaskBand,
                                  OGRLayerH hOutLayer, int iPixValField,
                                  char **papszOptions,
                                  GDALProgressFunc pfnProgress,
                                  void *pProgressArg)

{
    return GDALPolygonizeT<std::int64_t, IntEqualityTest>(
        hSrcBand, hMaskBand, hOutLayer, iPixValField, papszOptions, pfnProgress,
        pProgressArg, GDT_Int64);
}

/************************************************************************/
/*                           GDALFPolygonize()                           */
/************************************************************************/

/**
 * Create polygon coverage from raster data.
 *
 * This function creates vector polygons for all connected regions of pixels in
 * the raster sharing a common pixel value.  Optionally each polygon may be
 * labeled with the pixel value in an attribute.  Optionally a mask band
 * can be provided to determine which pixels are eligible for processing.
 *
 * The source pixel band values are read into a 32-bit float buffer, or 64-bit
 * float if the source band is 64-bit float itself. If you want
 * to use a (probably faster) version using signed 32bit integer buffer, see
 * GDALPolygonize().
 *
 * Polygon features will be created on the output layer, with polygon
 * geometries representing the polygons.  The polygon geometries will be
 * in the georeferenced coordinate system of the image (based on the
 * geotransform of the source dataset).  It is acceptable for the output
 * layer to already have features.  Note that GDALFPolygonize() does not
 * set the coordinate system on the output layer.  Application code should
 * do this when the layer is created, presumably matching the raster
 * coordinate system.
 *
 * The algorithm used attempts to minimize memory use so that very large
 * rasters can be processed.  However, if the raster has many polygons
 * or very large/complex polygons, the memory use for holding polygon
 * enumerations and active polygon geometries may grow to be quite large.
 *
 * The algorithm will generally produce very dense polygon geometries, with
 * edges that follow exactly on pixel boundaries for all non-interior pixels.
 * For non-thematic raster data (such as satellite images) the result will
 * essentially be one small polygon per pixel, and memory and output layer
 * sizes will be substantial.  The algorithm is primarily intended for
 * relatively simple thematic imagery, masks, and classification results.
 *
 * @param hSrcBand the source raster band to be processed.
 * @param hMaskBand an optional mask band.  All pixels in the mask band with a
 * value other than zero will be considered suitable for collection as
 * polygons.
 * @param hOutLayer the vector feature layer to which the polygons should
 * be written.
 * @param iPixValField the attribute field index indicating the feature
 * attribute into which the pixel value of the polygon should be written. Or
 * -1 to indicate that the pixel value must not be written.
 * @param papszOptions a name/value list of additional options
 * <ul>
 * <li>8CONNECTED=8: May be set to "8" to use 8 connectedness.
 * Otherwise 4 connectedness will be applied to the algorithm</li>
 * <li>DATASET_FOR_GEOREF=dataset_name: Name of a dataset from which to read
 * the geotransform. This useful if hSrcBand has no related dataset, which is
 * typical for mask bands.</li>
 * <li>COMMIT_INTERVAL=num:
 * (GDAL >= 3.12) Interval in number of features at which transactions must be
 * flushed. A value of 0 means that no transactions are opened.
 * A negative value means a single transaction.
 * The default value is 100000.
 * The function takes care of issuing the starting transaction and committing
 * the final one.
 * </li>
 * </ul>
 * @param pfnProgress callback for reporting algorithm progress matching the
 * GDALProgressFunc() semantics.  May be NULL.
 * @param pProgressArg callback argument passed to pfnProgress.
 *
 * @return CE_None on success or CE_Failure on a failure.
 *
 */

CPLErr CPL_STDCALL GDALFPolygonize(GDALRasterBandH hSrcBand,
                                   GDALRasterBandH hMaskBand,
                                   OGRLayerH hOutLayer, int iPixValField,
                                   char **papszOptions,
                                   GDALProgressFunc pfnProgress,
                                   void *pProgressArg)

{
    if (GDALGetRasterDataType(hSrcBand) == GDT_Float64)
    {
        return GDALPolygonizeT<double, DoubleEqualityTest>(
            hSrcBand, hMaskBand, hOutLayer, iPixValField, papszOptions,
            pfnProgress, pProgressArg, GDT_Float64);
    }
    else
    {
        return GDALPolygonizeT<float, FloatEqualityTest>(
            hSrcBand, hMaskBand, hOutLayer, iPixValField, papszOptions,
            pfnProgress, pProgressArg, GDT_Float32);
    }
}