1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
/******************************************************************************
*
* Project: GDAL
* Purpose: Interpolate in nodata areas.
* Author: Frank Warmerdam, warmerdam@pobox.com
*
******************************************************************************
* Copyright (c) 2008, Frank Warmerdam
* Copyright (c) 2009-2013, Even Rouault <even dot rouault at spatialys.com>
* Copyright (c) 2015, Sean Gillies <sean@mapbox.com>
*
* SPDX-License-Identifier: MIT
***************************************************************************/
#include "cpl_port.h"
#include "gdal_alg.h"
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <utility>
#include "cpl_conv.h"
#include "cpl_error.h"
#include "cpl_progress.h"
#include "cpl_string.h"
#include "cpl_vsi.h"
#include "gdal.h"
#include "gdal_priv.h"
/************************************************************************/
/* GDALFilterLine() */
/* */
/* Apply 3x3 filtering one one scanline with masking for which */
/* pixels are to be interpolated (ThisFMask) and which window */
/* pixels are valid to include in the interpolation (TMask). */
/************************************************************************/
static void GDALFilterLine(const float *pafLastLine, const float *pafThisLine,
const float *pafNextLine, float *pafOutLine,
const GByte *pabyLastTMask,
const GByte *pabyThisTMask,
const GByte *pabyNextTMask,
const GByte *pabyThisFMask, int nXSize)
{
for (int iX = 0; iX < nXSize; iX++)
{
if (!pabyThisFMask[iX])
{
pafOutLine[iX] = pafThisLine[iX];
continue;
}
CPLAssert(pabyThisTMask[iX]);
float fValSum = 0.0f;
float fWeightSum = 0.0f;
// Previous line.
if (pafLastLine != nullptr)
{
if (iX > 0 && pabyLastTMask[iX - 1])
{
fValSum += pafLastLine[iX - 1];
fWeightSum += 1.0f;
}
if (pabyLastTMask[iX])
{
fValSum += pafLastLine[iX];
fWeightSum += 1.0f;
}
if (iX < nXSize - 1 && pabyLastTMask[iX + 1])
{
fValSum += pafLastLine[iX + 1];
fWeightSum += 1.0f;
}
}
// Current Line.
if (iX > 0 && pabyThisTMask[iX - 1])
{
fValSum += pafThisLine[iX - 1];
fWeightSum += 1.0f;
}
if (pabyThisTMask[iX])
{
fValSum += pafThisLine[iX];
fWeightSum += 1.0f;
}
if (iX < nXSize - 1 && pabyThisTMask[iX + 1])
{
fValSum += pafThisLine[iX + 1];
fWeightSum += 1.0f;
}
// Next line.
if (pafNextLine != nullptr)
{
if (iX > 0 && pabyNextTMask[iX - 1])
{
fValSum += pafNextLine[iX - 1];
fWeightSum += 1.0f;
}
if (pabyNextTMask[iX])
{
fValSum += pafNextLine[iX];
fWeightSum += 1.0f;
}
if (iX < nXSize - 1 && pabyNextTMask[iX + 1])
{
fValSum += pafNextLine[iX + 1];
fWeightSum += 1.0f;
}
}
pafOutLine[iX] = fValSum / fWeightSum;
}
}
/************************************************************************/
/* GDALMultiFilter() */
/* */
/* Apply multiple iterations of a 3x3 smoothing filter over a */
/* band with masking controlling what pixels should be */
/* filtered (FiltMaskBand non zero) and which pixels can be */
/* considered valid contributors to the filter */
/* (TargetMaskBand non zero). */
/* */
/* This implementation attempts to apply many iterations in */
/* one IO pass by managing the filtering over a rolling buffer */
/* of nIterations+2 scanlines. While possibly clever this */
/* makes the algorithm implementation largely */
/* incomprehensible. */
/************************************************************************/
static CPLErr GDALMultiFilter(GDALRasterBandH hTargetBand,
GDALRasterBandH hTargetMaskBand,
GDALRasterBandH hFiltMaskBand, int nIterations,
GDALProgressFunc pfnProgress, void *pProgressArg)
{
const int nXSize = GDALGetRasterBandXSize(hTargetBand);
const int nYSize = GDALGetRasterBandYSize(hTargetBand);
/* -------------------------------------------------------------------- */
/* Report starting progress value. */
/* -------------------------------------------------------------------- */
if (!pfnProgress(0.0, "Smoothing Filter...", pProgressArg))
{
CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
return CE_Failure;
}
/* -------------------------------------------------------------------- */
/* Allocate rotating buffers. */
/* -------------------------------------------------------------------- */
const int nBufLines = nIterations + 2;
GByte *pabyTMaskBuf =
static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nXSize, nBufLines));
GByte *pabyFMaskBuf =
static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nXSize, nBufLines));
float *paf3PassLineBuf = static_cast<float *>(
VSI_MALLOC3_VERBOSE(nXSize, nBufLines, 3 * sizeof(float)));
if (pabyTMaskBuf == nullptr || pabyFMaskBuf == nullptr ||
paf3PassLineBuf == nullptr)
{
CPLFree(pabyTMaskBuf);
CPLFree(pabyFMaskBuf);
CPLFree(paf3PassLineBuf);
return CE_Failure;
}
/* -------------------------------------------------------------------- */
/* Process rotating buffers. */
/* -------------------------------------------------------------------- */
CPLErr eErr = CE_None;
int iPassCounter = 0;
for (int nNewLine = 0; // Line being loaded (zero based scanline).
eErr == CE_None && nNewLine < nYSize + nIterations; nNewLine++)
{
/* --------------------------------------------------------------------
*/
/* Rotate pass buffers. */
/* --------------------------------------------------------------------
*/
iPassCounter = (iPassCounter + 1) % 3;
float *const pafSLastPass =
paf3PassLineBuf + ((iPassCounter + 0) % 3) * nXSize * nBufLines;
float *const pafLastPass =
paf3PassLineBuf + ((iPassCounter + 1) % 3) * nXSize * nBufLines;
float *const pafThisPass =
paf3PassLineBuf + ((iPassCounter + 2) % 3) * nXSize * nBufLines;
/* --------------------------------------------------------------------
*/
/* Where does the new line go in the rotating buffer? */
/* --------------------------------------------------------------------
*/
const int iBufOffset = nNewLine % nBufLines;
/* --------------------------------------------------------------------
*/
/* Read the new data line if it is't off the bottom of the */
/* image. */
/* --------------------------------------------------------------------
*/
if (nNewLine < nYSize)
{
eErr = GDALRasterIO(hTargetMaskBand, GF_Read, 0, nNewLine, nXSize,
1, pabyTMaskBuf + nXSize * iBufOffset, nXSize,
1, GDT_Byte, 0, 0);
if (eErr != CE_None)
break;
eErr = GDALRasterIO(hFiltMaskBand, GF_Read, 0, nNewLine, nXSize, 1,
pabyFMaskBuf + nXSize * iBufOffset, nXSize, 1,
GDT_Byte, 0, 0);
if (eErr != CE_None)
break;
eErr = GDALRasterIO(hTargetBand, GF_Read, 0, nNewLine, nXSize, 1,
pafThisPass + nXSize * iBufOffset, nXSize, 1,
GDT_Float32, 0, 0);
if (eErr != CE_None)
break;
}
/* --------------------------------------------------------------------
*/
/* Loop over the loaded data, applying the filter to all loaded */
/* lines with neighbours. */
/* --------------------------------------------------------------------
*/
for (int iFLine = nNewLine - 1;
eErr == CE_None && iFLine >= nNewLine - nIterations; iFLine--)
{
const int iLastOffset = (iFLine - 1) % nBufLines;
const int iThisOffset = (iFLine) % nBufLines;
const int iNextOffset = (iFLine + 1) % nBufLines;
// Default to preserving the old value.
if (iFLine >= 0)
memcpy(pafThisPass + iThisOffset * nXSize,
pafLastPass + iThisOffset * nXSize,
sizeof(float) * nXSize);
// TODO: Enable first and last line.
// Skip the first and last line.
if (iFLine < 1 || iFLine >= nYSize - 1)
{
continue;
}
GDALFilterLine(pafSLastPass + iLastOffset * nXSize,
pafLastPass + iThisOffset * nXSize,
pafThisPass + iNextOffset * nXSize,
pafThisPass + iThisOffset * nXSize,
pabyTMaskBuf + iLastOffset * nXSize,
pabyTMaskBuf + iThisOffset * nXSize,
pabyTMaskBuf + iNextOffset * nXSize,
pabyFMaskBuf + iThisOffset * nXSize, nXSize);
}
/* --------------------------------------------------------------------
*/
/* Write out the top data line that will be rolling out of our */
/* buffer. */
/* --------------------------------------------------------------------
*/
const int iLineToSave = nNewLine - nIterations;
if (iLineToSave >= 0 && eErr == CE_None)
{
const int iBufOffset2 = iLineToSave % nBufLines;
eErr = GDALRasterIO(hTargetBand, GF_Write, 0, iLineToSave, nXSize,
1, pafThisPass + nXSize * iBufOffset2, nXSize,
1, GDT_Float32, 0, 0);
}
/* --------------------------------------------------------------------
*/
/* Report progress. */
/* --------------------------------------------------------------------
*/
if (eErr == CE_None &&
!pfnProgress((nNewLine + 1) /
static_cast<double>(nYSize + nIterations),
"Smoothing Filter...", pProgressArg))
{
CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
eErr = CE_Failure;
}
}
/* -------------------------------------------------------------------- */
/* Cleanup */
/* -------------------------------------------------------------------- */
CPLFree(pabyTMaskBuf);
CPLFree(pabyFMaskBuf);
CPLFree(paf3PassLineBuf);
return eErr;
}
/************************************************************************/
/* QUAD_CHECK() */
/* */
/* macro for checking whether a point is nearer than the */
/* existing closest point. */
/************************************************************************/
inline void QUAD_CHECK(double &dfQuadDist, float &fQuadValue, int target_x,
GUInt32 target_y, int origin_x, int origin_y,
float fTargetValue, GUInt32 nNoDataVal)
{
if (target_y != nNoDataVal)
{
const double dfDx =
static_cast<double>(target_x) - static_cast<double>(origin_x);
const double dfDy =
static_cast<double>(target_y) - static_cast<double>(origin_y);
double dfDistSq = dfDx * dfDx + dfDy * dfDy;
if (dfDistSq < dfQuadDist * dfQuadDist)
{
CPLAssert(dfDistSq > 0.0);
dfQuadDist = sqrt(dfDistSq);
fQuadValue = fTargetValue;
}
}
}
/************************************************************************/
/* GDALFillNodata() */
/************************************************************************/
/**
* Fill selected raster regions by interpolation from the edges.
*
* This algorithm will interpolate values for all designated
* nodata pixels (marked by zeros in hMaskBand). For each pixel
* a four direction conic search is done to find values to interpolate
* from (using inverse distance weighting by default). Once all values are
* interpolated, zero or more smoothing iterations (3x3 average
* filters on interpolated pixels) are applied to smooth out
* artifacts.
*
* This algorithm is generally suitable for interpolating missing
* regions of fairly continuously varying rasters (such as elevation
* models for instance). It is also suitable for filling small holes
* and cracks in more irregularly varying images (like airphotos). It
* is generally not so great for interpolating a raster from sparse
* point data - see the algorithms defined in gdal_grid.h for that case.
*
* @param hTargetBand the raster band to be modified in place.
* @param hMaskBand a mask band indicating pixels to be interpolated
* (zero valued). If hMaskBand is set to NULL, this method will internally use
* the mask band returned by GDALGetMaskBand(hTargetBand).
* @param dfMaxSearchDist the maximum number of pixels to search in all
* directions to find values to interpolate from.
* @param bDeprecatedOption unused argument, should be zero.
* @param nSmoothingIterations the number of 3x3 smoothing filter passes to
* run (0 or more).
* @param papszOptions additional name=value options in a string list.
* <ul>
* <li>TEMP_FILE_DRIVER=gdal_driver_name. For example MEM.</li>
* <li>NODATA=value
* Source pixels at that value will be ignored by the interpolator. Warning:
* currently this will not be honored by smoothing passes.</li>
* <li>INTERPOLATION=INV_DIST/NEAREST (GDAL >= 3.9). By default, pixels are
* interpolated using an inverse distance weighting (INV_DIST). It is also
* possible to choose a nearest neighbour (NEAREST) strategy.</li>
* </ul>
* @param pfnProgress the progress function to report completion.
* @param pProgressArg callback data for progress function.
*
* @return CE_None on success or CE_Failure if something goes wrong.
*/
CPLErr CPL_STDCALL GDALFillNodata(GDALRasterBandH hTargetBand,
GDALRasterBandH hMaskBand,
double dfMaxSearchDist,
CPL_UNUSED int bDeprecatedOption,
int nSmoothingIterations, char **papszOptions,
GDALProgressFunc pfnProgress,
void *pProgressArg)
{
VALIDATE_POINTER1(hTargetBand, "GDALFillNodata", CE_Failure);
const int nXSize = GDALGetRasterBandXSize(hTargetBand);
const int nYSize = GDALGetRasterBandYSize(hTargetBand);
if (dfMaxSearchDist == 0.0)
dfMaxSearchDist = std::max(nXSize, nYSize) + 1;
const int nMaxSearchDist = static_cast<int>(floor(dfMaxSearchDist));
const char *pszInterpolation =
CSLFetchNameValueDef(papszOptions, "INTERPOLATION", "INV_DIST");
const bool bNearest = EQUAL(pszInterpolation, "NEAREST");
if (!EQUAL(pszInterpolation, "INV_DIST") &&
!EQUAL(pszInterpolation, "NEAREST"))
{
CPLError(CE_Failure, CPLE_NotSupported,
"Unsupported interpolation method: %s", pszInterpolation);
return CE_Failure;
}
// Special "x" pixel values identifying pixels as special.
GDALDataType eType = GDT_UInt16;
GUInt32 nNoDataVal = 65535;
if (nXSize > 65533 || nYSize > 65533)
{
eType = GDT_UInt32;
nNoDataVal = 4000002;
}
/* -------------------------------------------------------------------- */
/* Determine format driver for temp work files. */
/* -------------------------------------------------------------------- */
CPLString osTmpFileDriver =
CSLFetchNameValueDef(papszOptions, "TEMP_FILE_DRIVER", "GTiff");
GDALDriverH hDriver = GDALGetDriverByName(osTmpFileDriver.c_str());
if (hDriver == nullptr)
{
CPLError(CE_Failure, CPLE_AppDefined,
"TEMP_FILE_DRIVER=%s driver is not registered",
osTmpFileDriver.c_str());
return CE_Failure;
}
if (GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATE, nullptr) == nullptr)
{
CPLError(CE_Failure, CPLE_AppDefined,
"TEMP_FILE_DRIVER=%s driver is incapable of creating "
"temp work files",
osTmpFileDriver.c_str());
return CE_Failure;
}
CPLStringList aosWorkFileOptions;
if (osTmpFileDriver == "GTiff")
{
aosWorkFileOptions.SetNameValue("COMPRESS", "LZW");
aosWorkFileOptions.SetNameValue("BIGTIFF", "IF_SAFER");
}
const CPLString osTmpFile = CPLGenerateTempFilenameSafe("");
std::unique_ptr<GDALDataset> poTmpMaskDS;
if (hMaskBand == nullptr)
{
hMaskBand = GDALGetMaskBand(hTargetBand);
}
else if (nSmoothingIterations > 0 &&
hMaskBand != GDALGetMaskBand(hTargetBand))
{
// If doing smoothing operations and the user provided its own
// mask band, we must make a copy of it to be able to update it
// when we fill pixels during the initial pass.
const CPLString osMaskTmpFile = osTmpFile + "fill_mask_work.tif";
poTmpMaskDS.reset(GDALDataset::FromHandle(
GDALCreate(hDriver, osMaskTmpFile, nXSize, nYSize, 1, GDT_Byte,
aosWorkFileOptions.List())));
if (poTmpMaskDS == nullptr)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Could not create poTmpMaskDS work file. Check driver "
"capabilities.");
return CE_Failure;
}
poTmpMaskDS->MarkSuppressOnClose();
auto hTmpMaskBand =
GDALRasterBand::ToHandle(poTmpMaskDS->GetRasterBand(1));
if (GDALRasterBandCopyWholeRaster(hMaskBand, hTmpMaskBand, nullptr,
nullptr, nullptr) != CE_None)
{
return CE_Failure;
}
hMaskBand = hTmpMaskBand;
}
// If there are smoothing iterations, reserve 10% of the progress for them.
const double dfProgressRatio = nSmoothingIterations > 0 ? 0.9 : 1.0;
const char *pszNoData = CSLFetchNameValue(papszOptions, "NODATA");
bool bHasNoData = false;
float fNoData = 0.0f;
if (pszNoData)
{
bHasNoData = true;
fNoData = static_cast<float>(CPLAtof(pszNoData));
}
/* -------------------------------------------------------------------- */
/* Initialize progress counter. */
/* -------------------------------------------------------------------- */
if (pfnProgress == nullptr)
pfnProgress = GDALDummyProgress;
if (!pfnProgress(0.0, "Filling...", pProgressArg))
{
CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
return CE_Failure;
}
/* -------------------------------------------------------------------- */
/* Create a work file to hold the Y "last value" indices. */
/* -------------------------------------------------------------------- */
const CPLString osYTmpFile = osTmpFile + "fill_y_work.tif";
auto poYDS = std::unique_ptr<GDALDataset>(GDALDataset::FromHandle(
GDALCreate(hDriver, osYTmpFile, nXSize, nYSize, 1, eType,
aosWorkFileOptions.List())));
if (poYDS == nullptr)
{
CPLError(
CE_Failure, CPLE_AppDefined,
"Could not create Y index work file. Check driver capabilities.");
return CE_Failure;
}
poYDS->MarkSuppressOnClose();
GDALRasterBandH hYBand =
GDALRasterBand::FromHandle(poYDS->GetRasterBand(1));
/* -------------------------------------------------------------------- */
/* Create a work file to hold the pixel value associated with */
/* the "last xy value" pixel. */
/* -------------------------------------------------------------------- */
const CPLString osValTmpFile = osTmpFile + "fill_val_work.tif";
auto poValDS =
std::unique_ptr<GDALDataset>(GDALDataset::FromHandle(GDALCreate(
hDriver, osValTmpFile, nXSize, nYSize, 1,
GDALGetRasterDataType(hTargetBand), aosWorkFileOptions.List())));
if (poValDS == nullptr)
{
CPLError(
CE_Failure, CPLE_AppDefined,
"Could not create XY value work file. Check driver capabilities.");
return CE_Failure;
}
poValDS->MarkSuppressOnClose();
GDALRasterBandH hValBand =
GDALRasterBand::FromHandle(poValDS->GetRasterBand(1));
/* -------------------------------------------------------------------- */
/* Create a mask file to make it clear what pixels can be filtered */
/* on the filtering pass. */
/* -------------------------------------------------------------------- */
const CPLString osFiltMaskTmpFile = osTmpFile + "fill_filtmask_work.tif";
auto poFiltMaskDS = std::unique_ptr<GDALDataset>(GDALDataset::FromHandle(
GDALCreate(hDriver, osFiltMaskTmpFile, nXSize, nYSize, 1, GDT_Byte,
aosWorkFileOptions.List())));
if (poFiltMaskDS == nullptr)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Could not create mask work file. Check driver capabilities.");
return CE_Failure;
}
poFiltMaskDS->MarkSuppressOnClose();
GDALRasterBandH hFiltMaskBand =
GDALRasterBand::FromHandle(poFiltMaskDS->GetRasterBand(1));
/* -------------------------------------------------------------------- */
/* Allocate buffers for last scanline and this scanline. */
/* -------------------------------------------------------------------- */
GUInt32 *panLastY =
static_cast<GUInt32 *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(GUInt32)));
GUInt32 *panThisY =
static_cast<GUInt32 *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(GUInt32)));
GUInt32 *panTopDownY =
static_cast<GUInt32 *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(GUInt32)));
float *pafLastValue =
static_cast<float *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(float)));
float *pafThisValue =
static_cast<float *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(float)));
float *pafTopDownValue =
static_cast<float *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(float)));
float *pafScanline =
static_cast<float *>(VSI_CALLOC_VERBOSE(nXSize, sizeof(float)));
GByte *pabyMask = static_cast<GByte *>(VSI_CALLOC_VERBOSE(nXSize, 1));
GByte *pabyFiltMask = static_cast<GByte *>(VSI_CALLOC_VERBOSE(nXSize, 1));
CPLErr eErr = CE_None;
if (panLastY == nullptr || panThisY == nullptr || panTopDownY == nullptr ||
pafLastValue == nullptr || pafThisValue == nullptr ||
pafTopDownValue == nullptr || pafScanline == nullptr ||
pabyMask == nullptr || pabyFiltMask == nullptr)
{
eErr = CE_Failure;
goto end;
}
for (int iX = 0; iX < nXSize; iX++)
{
panLastY[iX] = nNoDataVal;
}
/* ==================================================================== */
/* Make first pass from top to bottom collecting the "last */
/* known value" for each column and writing it out to the work */
/* files. */
/* ==================================================================== */
for (int iY = 0; iY < nYSize && eErr == CE_None; iY++)
{
/* --------------------------------------------------------------------
*/
/* Read data and mask for this line. */
/* --------------------------------------------------------------------
*/
eErr = GDALRasterIO(hMaskBand, GF_Read, 0, iY, nXSize, 1, pabyMask,
nXSize, 1, GDT_Byte, 0, 0);
if (eErr != CE_None)
break;
eErr = GDALRasterIO(hTargetBand, GF_Read, 0, iY, nXSize, 1, pafScanline,
nXSize, 1, GDT_Float32, 0, 0);
if (eErr != CE_None)
break;
/* --------------------------------------------------------------------
*/
/* Figure out the most recent pixel for each column. */
/* --------------------------------------------------------------------
*/
for (int iX = 0; iX < nXSize; iX++)
{
if (pabyMask[iX])
{
pafThisValue[iX] = pafScanline[iX];
panThisY[iX] = iY;
}
else if (iY <= dfMaxSearchDist + panLastY[iX])
{
pafThisValue[iX] = pafLastValue[iX];
panThisY[iX] = panLastY[iX];
}
else
{
panThisY[iX] = nNoDataVal;
}
}
/* --------------------------------------------------------------------
*/
/* Write out best index/value to working files. */
/* --------------------------------------------------------------------
*/
eErr = GDALRasterIO(hYBand, GF_Write, 0, iY, nXSize, 1, panThisY,
nXSize, 1, GDT_UInt32, 0, 0);
if (eErr != CE_None)
break;
eErr = GDALRasterIO(hValBand, GF_Write, 0, iY, nXSize, 1, pafThisValue,
nXSize, 1, GDT_Float32, 0, 0);
if (eErr != CE_None)
break;
/* --------------------------------------------------------------------
*/
/* Flip this/last buffers. */
/* --------------------------------------------------------------------
*/
std::swap(pafThisValue, pafLastValue);
std::swap(panThisY, panLastY);
/* --------------------------------------------------------------------
*/
/* report progress. */
/* --------------------------------------------------------------------
*/
if (!pfnProgress(dfProgressRatio *
(0.5 * (iY + 1) / static_cast<double>(nYSize)),
"Filling...", pProgressArg))
{
CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
eErr = CE_Failure;
}
}
for (int iX = 0; iX < nXSize; iX++)
{
panLastY[iX] = nNoDataVal;
}
/* ==================================================================== */
/* Now we will do collect similar this/last information from */
/* bottom to top and use it in combination with the top to */
/* bottom search info to interpolate. */
/* ==================================================================== */
for (int iY = nYSize - 1; iY >= 0 && eErr == CE_None; iY--)
{
eErr = GDALRasterIO(hMaskBand, GF_Read, 0, iY, nXSize, 1, pabyMask,
nXSize, 1, GDT_Byte, 0, 0);
if (eErr != CE_None)
break;
eErr = GDALRasterIO(hTargetBand, GF_Read, 0, iY, nXSize, 1, pafScanline,
nXSize, 1, GDT_Float32, 0, 0);
if (eErr != CE_None)
break;
/* --------------------------------------------------------------------
*/
/* Figure out the most recent pixel for each column. */
/* --------------------------------------------------------------------
*/
for (int iX = 0; iX < nXSize; iX++)
{
if (pabyMask[iX])
{
pafThisValue[iX] = pafScanline[iX];
panThisY[iX] = iY;
}
else if (panLastY[iX] - iY <= dfMaxSearchDist)
{
pafThisValue[iX] = pafLastValue[iX];
panThisY[iX] = panLastY[iX];
}
else
{
panThisY[iX] = nNoDataVal;
}
}
/* --------------------------------------------------------------------
*/
/* Load the last y and corresponding value from the top down pass.
*/
/* --------------------------------------------------------------------
*/
eErr = GDALRasterIO(hYBand, GF_Read, 0, iY, nXSize, 1, panTopDownY,
nXSize, 1, GDT_UInt32, 0, 0);
if (eErr != CE_None)
break;
eErr = GDALRasterIO(hValBand, GF_Read, 0, iY, nXSize, 1,
pafTopDownValue, nXSize, 1, GDT_Float32, 0, 0);
if (eErr != CE_None)
break;
/* --------------------------------------------------------------------
*/
/* Attempt to interpolate any pixels that are nodata. */
/* --------------------------------------------------------------------
*/
memset(pabyFiltMask, 0, nXSize);
for (int iX = 0; iX < nXSize; iX++)
{
int nThisMaxSearchDist = nMaxSearchDist;
// If this was a valid target - no change.
if (pabyMask[iX])
continue;
enum Quadrants
{
QUAD_TOP_LEFT = 0,
QUAD_BOTTOM_LEFT = 1,
QUAD_TOP_RIGHT = 2,
QUAD_BOTTOM_RIGHT = 3,
};
constexpr int QUAD_COUNT = 4;
double adfQuadDist[QUAD_COUNT] = {};
float afQuadValue[QUAD_COUNT] = {};
for (int iQuad = 0; iQuad < QUAD_COUNT; iQuad++)
{
adfQuadDist[iQuad] = dfMaxSearchDist + 1.0;
afQuadValue[iQuad] = 0.0;
}
// Step left and right by one pixel searching for the closest
// target value for each quadrant.
for (int iStep = 0; iStep <= nThisMaxSearchDist; iStep++)
{
const int iLeftX = std::max(0, iX - iStep);
const int iRightX = std::min(nXSize - 1, iX + iStep);
// Top left includes current line.
QUAD_CHECK(adfQuadDist[QUAD_TOP_LEFT],
afQuadValue[QUAD_TOP_LEFT], iLeftX,
panTopDownY[iLeftX], iX, iY, pafTopDownValue[iLeftX],
nNoDataVal);
// Bottom left.
QUAD_CHECK(adfQuadDist[QUAD_BOTTOM_LEFT],
afQuadValue[QUAD_BOTTOM_LEFT], iLeftX,
panLastY[iLeftX], iX, iY, pafLastValue[iLeftX],
nNoDataVal);
// Top right and bottom right do no include center pixel.
if (iStep == 0)
continue;
// Top right includes current line.
QUAD_CHECK(adfQuadDist[QUAD_TOP_RIGHT],
afQuadValue[QUAD_TOP_RIGHT], iRightX,
panTopDownY[iRightX], iX, iY,
pafTopDownValue[iRightX], nNoDataVal);
// Bottom right.
QUAD_CHECK(adfQuadDist[QUAD_BOTTOM_RIGHT],
afQuadValue[QUAD_BOTTOM_RIGHT], iRightX,
panLastY[iRightX], iX, iY, pafLastValue[iRightX],
nNoDataVal);
// Every four steps, recompute maximum distance.
if ((iStep & 0x3) == 0)
nThisMaxSearchDist = static_cast<int>(floor(
std::max(std::max(adfQuadDist[0], adfQuadDist[1]),
std::max(adfQuadDist[2], adfQuadDist[3]))));
}
bool bHasSrcValues = false;
if (bNearest)
{
double dfNearestDist = dfMaxSearchDist + 1;
float fNearestValue = 0.0f;
for (int iQuad = 0; iQuad < QUAD_COUNT; iQuad++)
{
if (adfQuadDist[iQuad] < dfNearestDist)
{
bHasSrcValues = true;
if (!bHasNoData || afQuadValue[iQuad] != fNoData)
{
fNearestValue = afQuadValue[iQuad];
dfNearestDist = adfQuadDist[iQuad];
}
}
}
if (bHasSrcValues)
{
pabyFiltMask[iX] = 255;
if (dfNearestDist <= dfMaxSearchDist)
{
pabyMask[iX] = 255;
pafScanline[iX] = fNearestValue;
}
else
pafScanline[iX] = fNoData;
}
}
else
{
double dfWeightSum = 0.0;
double dfValueSum = 0.0;
for (int iQuad = 0; iQuad < QUAD_COUNT; iQuad++)
{
if (adfQuadDist[iQuad] <= dfMaxSearchDist)
{
bHasSrcValues = true;
if (!bHasNoData || afQuadValue[iQuad] != fNoData)
{
const double dfWeight = 1.0 / adfQuadDist[iQuad];
dfWeightSum += dfWeight;
dfValueSum += double(afQuadValue[iQuad]) * dfWeight;
}
}
}
if (bHasSrcValues)
{
pabyFiltMask[iX] = 255;
if (dfWeightSum > 0.0)
{
pabyMask[iX] = 255;
pafScanline[iX] =
static_cast<float>(dfValueSum / dfWeightSum);
}
else
pafScanline[iX] = fNoData;
}
}
}
/* --------------------------------------------------------------------
*/
/* Write out the updated data and mask information. */
/* --------------------------------------------------------------------
*/
eErr = GDALRasterIO(hTargetBand, GF_Write, 0, iY, nXSize, 1,
pafScanline, nXSize, 1, GDT_Float32, 0, 0);
if (eErr != CE_None)
break;
if (poTmpMaskDS != nullptr)
{
// Update (copy of) mask band when it has been provided by the
// user
eErr = GDALRasterIO(hMaskBand, GF_Write, 0, iY, nXSize, 1, pabyMask,
nXSize, 1, GDT_Byte, 0, 0);
if (eErr != CE_None)
break;
}
eErr = GDALRasterIO(hFiltMaskBand, GF_Write, 0, iY, nXSize, 1,
pabyFiltMask, nXSize, 1, GDT_Byte, 0, 0);
if (eErr != CE_None)
break;
/* --------------------------------------------------------------------
*/
/* Flip this/last buffers. */
/* --------------------------------------------------------------------
*/
std::swap(pafThisValue, pafLastValue);
std::swap(panThisY, panLastY);
/* --------------------------------------------------------------------
*/
/* report progress. */
/* --------------------------------------------------------------------
*/
if (!pfnProgress(
dfProgressRatio *
(0.5 + 0.5 * (nYSize - iY) / static_cast<double>(nYSize)),
"Filling...", pProgressArg))
{
CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated");
eErr = CE_Failure;
}
}
/* ==================================================================== */
/* Now we will do iterative average filters over the */
/* interpolated values to smooth things out and make linear */
/* artifacts less obvious. */
/* ==================================================================== */
if (eErr == CE_None && nSmoothingIterations > 0)
{
if (poTmpMaskDS == nullptr)
{
// Force masks to be to flushed and recomputed when the user
// didn't pass a user-provided hMaskBand, and we assigned it
// to be the mask band of hTargetBand.
GDALFlushRasterCache(hMaskBand);
}
void *pScaledProgress = GDALCreateScaledProgress(
dfProgressRatio, 1.0, pfnProgress, pProgressArg);
eErr = GDALMultiFilter(hTargetBand, hMaskBand, hFiltMaskBand,
nSmoothingIterations, GDALScaledProgress,
pScaledProgress);
GDALDestroyScaledProgress(pScaledProgress);
}
/* -------------------------------------------------------------------- */
/* Close and clean up temporary files. Free working buffers */
/* -------------------------------------------------------------------- */
end:
CPLFree(panLastY);
CPLFree(panThisY);
CPLFree(panTopDownY);
CPLFree(pafLastValue);
CPLFree(pafThisValue);
CPLFree(pafTopDownValue);
CPLFree(pafScanline);
CPLFree(pabyMask);
CPLFree(pabyFiltMask);
return eErr;
}
|