1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
|
/******************************************************************************
*
* Project: GDAL Warp API
* Purpose: Implemenentation of 2D Thin Plate Spline transformer.
* Author: VIZRT Development Team.
*
* This code was provided by Gilad Ronnen (gro at visrt dot com) with
* permission to reuse under the following license.
*
******************************************************************************
* Copyright (c) 2004, VIZRT Inc.
* Copyright (c) 2008-2014, Even Rouault <even dot rouault at spatialys.com>
*
* SPDX-License-Identifier: MIT
****************************************************************************/
/*! @cond Doxygen_Suppress */
#include "cpl_port.h"
#include "thinplatespline.h"
#include "gdallinearsystem.h"
#include <climits>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <limits>
#include <new> // bad_alloc
#include <utility>
#include "cpl_error.h"
#include "cpl_vsi.h"
//////////////////////////////////////////////////////////////////////////////
//// vizGeorefSpline2D
//////////////////////////////////////////////////////////////////////////////
// #define VIZ_GEOREF_SPLINE_DEBUG 0
bool VizGeorefSpline2D::grow_points()
{
const int new_max = _max_nof_points * 2 + 2 + 3;
double *new_x =
static_cast<double *>(VSI_REALLOC_VERBOSE(x, sizeof(double) * new_max));
if (!new_x)
return false;
x = new_x;
double *new_y =
static_cast<double *>(VSI_REALLOC_VERBOSE(y, sizeof(double) * new_max));
if (!new_y)
return false;
y = new_y;
double *new_u =
static_cast<double *>(VSI_REALLOC_VERBOSE(u, sizeof(double) * new_max));
if (!new_u)
return false;
u = new_u;
int *new_unused =
static_cast<int *>(VSI_REALLOC_VERBOSE(unused, sizeof(int) * new_max));
if (!new_unused)
return false;
unused = new_unused;
int *new_index =
static_cast<int *>(VSI_REALLOC_VERBOSE(index, sizeof(int) * new_max));
if (!new_index)
return false;
index = new_index;
for (int i = 0; i < _nof_vars; i++)
{
double *rhs_i_new = static_cast<double *>(
VSI_REALLOC_VERBOSE(rhs[i], sizeof(double) * new_max));
if (!rhs_i_new)
return false;
rhs[i] = rhs_i_new;
double *coef_i_new = static_cast<double *>(
VSI_REALLOC_VERBOSE(coef[i], sizeof(double) * new_max));
if (!coef_i_new)
return false;
coef[i] = coef_i_new;
if (_max_nof_points == 0)
{
memset(rhs[i], 0, 3 * sizeof(double));
memset(coef[i], 0, 3 * sizeof(double));
}
}
_max_nof_points = new_max - 3;
return true;
}
bool VizGeorefSpline2D::add_point(const double Px, const double Py,
const double *Pvars)
{
type = VIZ_GEOREF_SPLINE_POINT_WAS_ADDED;
int i;
if (_nof_points == _max_nof_points)
{
if (!grow_points())
return false;
}
i = _nof_points;
// A new point is added.
x[i] = Px;
y[i] = Py;
for (int j = 0; j < _nof_vars; j++)
rhs[j][i + 3] = Pvars[j];
_nof_points++;
return true;
}
#if 0
bool VizGeorefSpline2D::change_point( int index, double Px, double Py,
double* Pvars )
{
if( index < _nof_points )
{
int i = index;
x[i] = Px;
y[i] = Py;
for( int j = 0; j < _nof_vars; j++ )
rhs[j][i+3] = Pvars[j];
}
return true;
}
bool VizGeorefSpline2D::get_xy( int index, double& outX, double& outY )
{
if( index < _nof_points )
{
ok = true;
outX = x[index];
outY = y[index];
return true;
}
outX = 0.0;
outY = 0.0;
return false;
}
int VizGeorefSpline2D::delete_point( const double Px, const double Py )
{
for( int i = 0; i < _nof_points; i++ )
{
if( ( fabs(Px - x[i]) <= _tx ) && ( fabs(Py - y[i]) <= _ty ) )
{
for( int j = i; j < _nof_points - 1; j++ )
{
x[j] = x[j+1];
y[j] = y[j+1];
for( int k = 0; k < _nof_vars; k++ )
rhs[k][j+3] = rhs[k][j+3+1];
}
_nof_points--;
type = VIZ_GEOREF_SPLINE_POINT_WAS_DELETED;
return 1;
}
}
return 0;
}
#endif
template <typename T> static inline T SQ(const T &x)
{
return x * x;
}
static inline double VizGeorefSpline2DBase_func(const double x1,
const double y1,
const double x2,
const double y2)
{
const double dist = SQ(x2 - x1) + SQ(y2 - y1);
return dist != 0.0 ? dist * log(dist) : 0.0;
}
#if defined(__GNUC__) && defined(__x86_64__)
/* Some versions of ICC fail to compile VizGeorefSpline2DBase_func4 (#6350) */
#if defined(__INTEL_COMPILER)
#if __INTEL_COMPILER >= 1500
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#else
#if (__INTEL_COMPILER == 1200) || (__INTEL_COMPILER == 1210)
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#else
#undef USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#endif
#endif
#else // defined(__INTEL_COMPILER)
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#endif // defined(__INTEL_COMPILER)
#endif
#if defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4) && !defined(CPPCHECK)
/* Derived and adapted from code originating from: */
/* @(#)e_log.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log(x)
* Return the logarithm of x
*
* Method:
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
typedef double V2DF __attribute__((__vector_size__(16)));
typedef union
{
V2DF v2;
double d[2];
} v2dfunion;
typedef union
{
int i[2];
long long li;
} i64union;
static const V2DF v2_ln2_div_2pow20 = {6.93147180559945286e-01 / 1048576,
6.93147180559945286e-01 / 1048576};
static const V2DF v2_Lg1 = {6.666666666666735130e-01, 6.666666666666735130e-01};
static const V2DF v2_Lg2 = {3.999999999940941908e-01, 3.999999999940941908e-01};
static const V2DF v2_Lg3 = {2.857142874366239149e-01, 2.857142874366239149e-01};
static const V2DF v2_Lg4 = {2.222219843214978396e-01, 2.222219843214978396e-01};
static const V2DF v2_Lg5 = {1.818357216161805012e-01, 1.818357216161805012e-01};
static const V2DF v2_Lg6 = {1.531383769920937332e-01, 1.531383769920937332e-01};
/*v2_Lg7 = {1.479819860511658591e-01, 1.479819860511658591e-01}, */
static const V2DF v2_one = {1.0, 1.0};
static const V2DF v2_const1023_mul_2pow20 = {1023.0 * 1048576,
1023.0 * 1048576};
#define GET_HIGH_WORD(hx, x) memcpy(&hx, reinterpret_cast<char *>(&x) + 4, 4)
#define SET_HIGH_WORD(x, hx) memcpy(reinterpret_cast<char *>(&x) + 4, &hx, 4)
#define MAKE_WIDE_CST(x) (((static_cast<long long>(x)) << 32) | (x))
constexpr long long cst_expmask = MAKE_WIDE_CST(0xfff00000);
constexpr long long cst_0x95f64 = MAKE_WIDE_CST(0x00095f64);
constexpr long long cst_0x100000 = MAKE_WIDE_CST(0x00100000);
constexpr long long cst_0x3ff00000 = MAKE_WIDE_CST(0x3ff00000);
// Modified version of __ieee754_log(), less precise than log() but a bit
// faster, and computing 4 log() at a time. Assumes that the values are > 0.
static void FastApproxLog4Val(v2dfunion *x)
{
i64union hx[2] = {};
i64union k[2] = {};
i64union i[2] = {};
GET_HIGH_WORD(hx[0].i[0], x[0].d[0]);
GET_HIGH_WORD(hx[0].i[1], x[0].d[1]);
// coverity[uninit_use]
k[0].li = hx[0].li & cst_expmask;
hx[0].li &= ~cst_expmask;
i[0].li = (hx[0].li + cst_0x95f64) & cst_0x100000;
hx[0].li |= i[0].li ^ cst_0x3ff00000;
SET_HIGH_WORD(x[0].d[0], hx[0].i[0]); // Normalize x or x/2.
SET_HIGH_WORD(x[0].d[1], hx[0].i[1]); // Normalize x or x/2.
k[0].li += i[0].li;
v2dfunion dk[2] = {};
dk[0].d[0] = static_cast<double>(k[0].i[0]);
dk[0].d[1] = static_cast<double>(k[0].i[1]);
GET_HIGH_WORD(hx[1].i[0], x[1].d[0]);
GET_HIGH_WORD(hx[1].i[1], x[1].d[1]);
k[1].li = hx[1].li & cst_expmask;
hx[1].li &= ~cst_expmask;
i[1].li = (hx[1].li + cst_0x95f64) & cst_0x100000;
hx[1].li |= i[1].li ^ cst_0x3ff00000;
SET_HIGH_WORD(x[1].d[0], hx[1].i[0]); // Normalize x or x/2.
SET_HIGH_WORD(x[1].d[1], hx[1].i[1]); // Normalize x or x/2.
k[1].li += i[1].li;
dk[1].d[0] = static_cast<double>(k[1].i[0]);
dk[1].d[1] = static_cast<double>(k[1].i[1]);
V2DF f[2] = {};
f[0] = x[0].v2 - v2_one;
V2DF s[2] = {};
s[0] = f[0] / (x[0].v2 + v2_one);
V2DF z[2] = {};
z[0] = s[0] * s[0];
V2DF w[2] = {};
w[0] = z[0] * z[0];
V2DF t1[2] = {};
// coverity[ptr_arith]
t1[0] = w[0] * (v2_Lg2 + w[0] * (v2_Lg4 + w[0] * v2_Lg6));
V2DF t2[2] = {};
// coverity[ptr_arith]
t2[0] =
z[0] * (v2_Lg1 + w[0] * (v2_Lg3 + w[0] * (v2_Lg5 /*+w[0]*v2_Lg7*/)));
V2DF R[2] = {};
R[0] = t2[0] + t1[0];
x[0].v2 = (dk[0].v2 - v2_const1023_mul_2pow20) * v2_ln2_div_2pow20 -
(s[0] * (f[0] - R[0]) - f[0]);
f[1] = x[1].v2 - v2_one;
s[1] = f[1] / (x[1].v2 + v2_one);
z[1] = s[1] * s[1];
w[1] = z[1] * z[1];
// coverity[ptr_arith]
t1[1] = w[1] * (v2_Lg2 + w[1] * (v2_Lg4 + w[1] * v2_Lg6));
// coverity[ptr_arith]
t2[1] =
z[1] * (v2_Lg1 + w[1] * (v2_Lg3 + w[1] * (v2_Lg5 /*+w[1]*v2_Lg7*/)));
R[1] = t2[1] + t1[1];
x[1].v2 = (dk[1].v2 - v2_const1023_mul_2pow20) * v2_ln2_div_2pow20 -
(s[1] * (f[1] - R[1]) - f[1]);
}
static CPL_INLINE void VizGeorefSpline2DBase_func4(double *res,
const double *pxy,
const double *xr,
const double *yr)
{
v2dfunion xv[2] = {};
xv[0].d[0] = xr[0];
xv[0].d[1] = xr[1];
xv[1].d[0] = xr[2];
xv[1].d[1] = xr[3];
v2dfunion yv[2] = {};
yv[0].d[0] = yr[0];
yv[0].d[1] = yr[1];
yv[1].d[0] = yr[2];
yv[1].d[1] = yr[3];
v2dfunion x1v;
x1v.d[0] = pxy[0];
x1v.d[1] = pxy[0];
v2dfunion y1v;
y1v.d[0] = pxy[1];
y1v.d[1] = pxy[1];
v2dfunion dist[2] = {};
dist[0].v2 = SQ(xv[0].v2 - x1v.v2) + SQ(yv[0].v2 - y1v.v2);
dist[1].v2 = SQ(xv[1].v2 - x1v.v2) + SQ(yv[1].v2 - y1v.v2);
v2dfunion resv[2] = {dist[0], dist[1]};
FastApproxLog4Val(dist);
resv[0].v2 *= dist[0].v2;
resv[1].v2 *= dist[1].v2;
res[0] = resv[0].d[0];
res[1] = resv[0].d[1];
res[2] = resv[1].d[0];
res[3] = resv[1].d[1];
}
#else // defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)
static void VizGeorefSpline2DBase_func4(double *res, const double *pxy,
const double *xr, const double *yr)
{
double dist0 = SQ(xr[0] - pxy[0]) + SQ(yr[0] - pxy[1]);
res[0] = dist0 != 0.0 ? dist0 * log(dist0) : 0.0;
double dist1 = SQ(xr[1] - pxy[0]) + SQ(yr[1] - pxy[1]);
res[1] = dist1 != 0.0 ? dist1 * log(dist1) : 0.0;
double dist2 = SQ(xr[2] - pxy[0]) + SQ(yr[2] - pxy[1]);
res[2] = dist2 != 0.0 ? dist2 * log(dist2) : 0.0;
double dist3 = SQ(xr[3] - pxy[0]) + SQ(yr[3] - pxy[1]);
res[3] = dist3 != 0.0 ? dist3 * log(dist3) : 0.0;
}
#endif // defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)
int VizGeorefSpline2D::solve(bool bForceBuiltinMethod)
{
// No points at all.
if (_nof_points < 1)
{
type = VIZ_GEOREF_SPLINE_ZERO_POINTS;
return 0;
}
// Only one point.
if (_nof_points == 1)
{
type = VIZ_GEOREF_SPLINE_ONE_POINT;
return 1;
}
// Just 2 points - it is necessarily 1D case.
if (_nof_points == 2)
{
_dx = x[1] - x[0];
_dy = y[1] - y[0];
const double denom = _dx * _dx + _dy * _dy;
if (denom == 0.0)
return 0;
const double fact = 1.0 / denom;
_dx *= fact;
_dy *= fact;
type = VIZ_GEOREF_SPLINE_TWO_POINTS;
return 2;
}
// More than 2 points - first we have to check if it is 1D or 2D case
double xmax = x[0];
double xmin = x[0];
double ymax = y[0];
double ymin = y[0];
double sumx = 0.0;
double sumy = 0.0;
double sumx2 = 0.0;
double sumy2 = 0.0;
double sumxy = 0.0;
for (int p = 0; p < _nof_points; p++)
{
const double xx = x[p];
const double yy = y[p];
xmax = std::max(xmax, xx);
xmin = std::min(xmin, xx);
ymax = std::max(ymax, yy);
ymin = std::min(ymin, yy);
sumx += xx;
sumx2 += xx * xx;
sumy += yy;
sumy2 += yy * yy;
sumxy += xx * yy;
}
const double delx = xmax - xmin;
const double dely = ymax - ymin;
const double SSxx = sumx2 - sumx * sumx / _nof_points;
const double SSyy = sumy2 - sumy * sumy / _nof_points;
const double SSxy = sumxy - sumx * sumy / _nof_points;
if (SSxx * SSyy == 0.0)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Degenerate system. Computation aborted.");
return 0;
}
if (delx < 0.001 * dely || dely < 0.001 * delx ||
fabs(SSxy * SSxy / (SSxx * SSyy)) > 0.99)
{
type = VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL;
_dx = _nof_points * sumx2 - sumx * sumx;
_dy = _nof_points * sumy2 - sumy * sumy;
const double fact = 1.0 / sqrt(_dx * _dx + _dy * _dy);
_dx *= fact;
_dy *= fact;
for (int p = 0; p < _nof_points; p++)
{
const double dxp = x[p] - x[0];
const double dyp = y[p] - y[0];
u[p] = _dx * dxp + _dy * dyp;
unused[p] = 1;
}
for (int p = 0; p < _nof_points; p++)
{
int min_index = -1;
double min_u = 0.0;
for (int p1 = 0; p1 < _nof_points; p1++)
{
if (unused[p1])
{
if (min_index < 0 || u[p1] < min_u)
{
min_index = p1;
min_u = u[p1];
}
}
}
index[p] = min_index;
unused[min_index] = 0;
}
return 3;
}
type = VIZ_GEOREF_SPLINE_FULL;
// Make the necessary memory allocations.
_nof_eqs = _nof_points + 3;
if (_nof_eqs > std::numeric_limits<int>::max() / _nof_eqs)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Too many coefficients. Computation aborted.");
return 0;
}
try
{
GDALMatrix A(_nof_eqs, _nof_eqs);
x_mean = 0;
y_mean = 0;
for (int c = 0; c < _nof_points; c++)
{
x_mean += x[c];
y_mean += y[c];
}
x_mean /= _nof_points;
y_mean /= _nof_points;
for (int c = 0; c < _nof_points; c++)
{
x[c] -= x_mean;
y[c] -= y_mean;
A(0, c + 3) = 1.0;
A(1, c + 3) = x[c];
A(2, c + 3) = y[c];
A(c + 3, 0) = 1.0;
A(c + 3, 1) = x[c];
A(c + 3, 2) = y[c];
}
for (int r = 0; r < _nof_points; r++)
for (int c = r; c < _nof_points; c++)
{
A(r + 3, c + 3) =
VizGeorefSpline2DBase_func(x[r], y[r], x[c], y[c]);
if (r != c)
A(c + 3, r + 3) = A(r + 3, c + 3);
}
#if VIZ_GEOREF_SPLINE_DEBUG
for (r = 0; r < _nof_eqs; r++)
{
for (c = 0; c < _nof_eqs; c++)
fprintf(stderr, "%f", A(r, c)); /*ok*/
fprintf(stderr, "\n"); /*ok*/
}
#endif
GDALMatrix RHS(_nof_eqs, _nof_vars);
for (int iRHS = 0; iRHS < _nof_vars; iRHS++)
for (int iRow = 0; iRow < _nof_eqs; iRow++)
RHS(iRow, iRHS) = rhs[iRHS][iRow];
GDALMatrix Coef(_nof_eqs, _nof_vars);
if (!GDALLinearSystemSolve(A, RHS, Coef, bForceBuiltinMethod))
{
return 0;
}
for (int iRHS = 0; iRHS < _nof_vars; iRHS++)
for (int iRow = 0; iRow < _nof_eqs; iRow++)
coef[iRHS][iRow] = Coef(iRow, iRHS);
return 4;
}
catch (const std::bad_alloc &)
{
CPLError(CE_Failure, CPLE_OutOfMemory,
"thinplatespline: out of memory allocating matrices");
return 0;
}
}
int VizGeorefSpline2D::get_point(const double Px, const double Py, double *vars)
{
switch (type)
{
case VIZ_GEOREF_SPLINE_ZERO_POINTS:
{
for (int v = 0; v < _nof_vars; v++)
vars[v] = 0.0;
break;
}
case VIZ_GEOREF_SPLINE_ONE_POINT:
{
for (int v = 0; v < _nof_vars; v++)
vars[v] = rhs[v][3];
break;
}
case VIZ_GEOREF_SPLINE_TWO_POINTS:
{
const double fact = _dx * (Px - x[0]) + _dy * (Py - y[0]);
for (int v = 0; v < _nof_vars; v++)
vars[v] = (1 - fact) * rhs[v][3] + fact * rhs[v][4];
break;
}
case VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL:
{
int leftP = 0;
int rightP = 0;
const double Pu = _dx * (Px - x[0]) + _dy * (Py - y[0]);
if (Pu <= u[index[0]])
{
leftP = index[0];
rightP = index[1];
}
else if (Pu >= u[index[_nof_points - 1]])
{
leftP = index[_nof_points - 2];
rightP = index[_nof_points - 1];
}
else
{
for (int r = 1; r < _nof_points; r++)
{
leftP = index[r - 1];
rightP = index[r];
if (Pu >= u[leftP] && Pu <= u[rightP])
break; // Found.
}
}
const double fact = (Pu - u[leftP]) / (u[rightP] - u[leftP]);
for (int v = 0; v < _nof_vars; v++)
vars[v] = (1.0 - fact) * rhs[v][leftP + 3] +
fact * rhs[v][rightP + 3];
break;
}
case VIZ_GEOREF_SPLINE_FULL:
{
const double Pxy[2] = {Px - x_mean, Py - y_mean};
for (int v = 0; v < _nof_vars; v++)
vars[v] =
coef[v][0] + coef[v][1] * Pxy[0] + coef[v][2] * Pxy[1];
int r = 0; // Used after for.
for (; r < (_nof_points & (~3)); r += 4)
{
double dfTmp[4] = {};
VizGeorefSpline2DBase_func4(dfTmp, Pxy, &x[r], &y[r]);
for (int v = 0; v < _nof_vars; v++)
vars[v] += coef[v][r + 3] * dfTmp[0] +
coef[v][r + 3 + 1] * dfTmp[1] +
coef[v][r + 3 + 2] * dfTmp[2] +
coef[v][r + 3 + 3] * dfTmp[3];
}
for (; r < _nof_points; r++)
{
const double tmp =
VizGeorefSpline2DBase_func(Pxy[0], Pxy[1], x[r], y[r]);
for (int v = 0; v < _nof_vars; v++)
vars[v] += coef[v][r + 3] * tmp;
}
break;
}
case VIZ_GEOREF_SPLINE_POINT_WAS_ADDED:
{
CPLError(CE_Failure, CPLE_AppDefined,
"A point was added after the last solve."
" NO interpolation - return values are zero");
for (int v = 0; v < _nof_vars; v++)
vars[v] = 0.0;
return 0;
}
case VIZ_GEOREF_SPLINE_POINT_WAS_DELETED:
{
CPLError(CE_Failure, CPLE_AppDefined,
"A point was deleted after the last solve."
" NO interpolation - return values are zero");
for (int v = 0; v < _nof_vars; v++)
vars[v] = 0.0;
return 0;
}
default:
{
return 0;
}
}
return 1;
}
/*! @endcond */
|