1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
|
/******************************************************************************
*
* Project: Mapinfo Image Warper
* Purpose: Implementation of the GDALTransformer wrapper around CRS.C
functions
* to build a polynomial transformation based on ground control
* points.
* Author: Frank Warmerdam, warmerdam@pobox.com
*
***************************************************************************
CRS.C - Center for Remote Sensing rectification routines
Written By: Brian J. Buckley
At: The Center for Remote Sensing
Michigan State University
302 Berkey Hall
East Lansing, MI 48824
(517)353-7195
Written: 12/19/91
Last Update: 12/26/91 Brian J. Buckley
Last Update: 1/24/92 Brian J. Buckley
Added printout of trnfile. Triggered by BDEBUG.
Last Update: 1/27/92 Brian J. Buckley
Fixed bug so that only the active control points were used.
Last Update: 6/29/2011 C. F. Stallmann & R. van den Dool (South African
National Space Agency) GCP refinement added
Copyright (c) 1992, Michigan State University
* Copyright (c) 2008-2013, Even Rouault <even dot rouault at spatialys.com>
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
****************************************************************************/
#include "gdal_alg.h"
#include "gdal_priv.h"
#include "cpl_conv.h"
#include "cpl_minixml.h"
#include "cpl_string.h"
#include "cpl_atomic_ops.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
CPL_CVSID("$Id$")
#define MAXORDER 3
namespace
{
struct Control_Points
{
int count;
double *e1;
double *n1;
double *e2;
double *n2;
int *status;
};
} // namespace
typedef struct
{
GDALTransformerInfo sTI;
double adfToGeoX[20];
double adfToGeoY[20];
double adfFromGeoX[20];
double adfFromGeoY[20];
double x1_mean;
double y1_mean;
double x2_mean;
double y2_mean;
int nOrder;
int bReversed;
int nGCPCount;
GDAL_GCP *pasGCPList;
int bRefine;
int nMinimumGcps;
double dfTolerance;
volatile int nRefCount;
} GCPTransformInfo;
CPL_C_START
CPLXMLNode *GDALSerializeGCPTransformer(void *pTransformArg);
void *GDALDeserializeGCPTransformer(CPLXMLNode *psTree);
CPL_C_END
/* crs.c */
static int CRS_georef(double, double, double *, double *, double[], double[],
int);
static int CRS_compute_georef_equations(GCPTransformInfo *psInfo,
struct Control_Points *, double[],
double[], double[], double[], int);
static int remove_outliers(GCPTransformInfo *);
#define MSUCCESS 1 /* SUCCESS */
#define MNPTERR 0 /* NOT ENOUGH POINTS */
#define MUNSOLVABLE -1 /* NOT SOLVABLE */
#define MMEMERR -2 /* NOT ENOUGH MEMORY */
#define MPARMERR -3 /* PARAMETER ERROR */
#define MINTERR -4 /* INTERNAL ERROR */
static const char *const CRS_error_message[] = {
"Failed to compute GCP transform: Not enough points available",
"Failed to compute GCP transform: Transform is not solvable",
"Failed to compute GCP transform: Not enough memory",
"Failed to compute GCP transform: Parameter error",
"Failed to compute GCP transform: Internal error"};
/************************************************************************/
/* GDALCreateSimilarGCPTransformer() */
/************************************************************************/
static void *GDALCreateSimilarGCPTransformer(void *hTransformArg,
double dfRatioX, double dfRatioY)
{
GDAL_GCP *pasGCPList = nullptr;
GCPTransformInfo *psInfo = static_cast<GCPTransformInfo *>(hTransformArg);
VALIDATE_POINTER1(hTransformArg, "GDALCreateSimilarGCPTransformer",
nullptr);
if (dfRatioX == 1.0 && dfRatioY == 1.0)
{
/* We can just use a ref count, since using the source transformation */
/* is thread-safe */
CPLAtomicInc(&(psInfo->nRefCount));
}
else
{
pasGCPList = GDALDuplicateGCPs(psInfo->nGCPCount, psInfo->pasGCPList);
for (int i = 0; i < psInfo->nGCPCount; i++)
{
pasGCPList[i].dfGCPPixel /= dfRatioX;
pasGCPList[i].dfGCPLine /= dfRatioY;
}
/* As remove_outliers modifies the provided GCPs we don't need to
* reapply it */
psInfo = static_cast<GCPTransformInfo *>(GDALCreateGCPTransformer(
psInfo->nGCPCount, pasGCPList, psInfo->nOrder, psInfo->bReversed));
GDALDeinitGCPs(psInfo->nGCPCount, pasGCPList);
CPLFree(pasGCPList);
}
return psInfo;
}
/************************************************************************/
/* GDALCreateGCPTransformer() */
/************************************************************************/
static void *GDALCreateGCPTransformerEx(int nGCPCount,
const GDAL_GCP *pasGCPList,
int nReqOrder, int bReversed,
int bRefine, double dfTolerance,
int nMinimumGcps)
{
GCPTransformInfo *psInfo = nullptr;
double *padfGeoX = nullptr;
double *padfGeoY = nullptr;
double *padfRasterX = nullptr;
double *padfRasterY = nullptr;
int *panStatus = nullptr;
int iGCP = 0;
int nCRSresult = 0;
struct Control_Points sPoints;
double x1_sum = 0;
double y1_sum = 0;
double x2_sum = 0;
double y2_sum = 0;
memset(&sPoints, 0, sizeof(sPoints));
if (nReqOrder == 0)
{
if (nGCPCount >= 10)
nReqOrder = 2; /*for now we avoid 3rd order since it is unstable*/
else if (nGCPCount >= 6)
nReqOrder = 2;
else
nReqOrder = 1;
}
psInfo =
static_cast<GCPTransformInfo *>(CPLCalloc(sizeof(GCPTransformInfo), 1));
psInfo->bReversed = bReversed;
psInfo->nOrder = nReqOrder;
psInfo->bRefine = bRefine;
psInfo->dfTolerance = dfTolerance;
psInfo->nMinimumGcps = nMinimumGcps;
psInfo->nRefCount = 1;
psInfo->pasGCPList = GDALDuplicateGCPs(nGCPCount, pasGCPList);
psInfo->nGCPCount = nGCPCount;
memcpy(psInfo->sTI.abySignature, GDAL_GTI2_SIGNATURE,
strlen(GDAL_GTI2_SIGNATURE));
psInfo->sTI.pszClassName = "GDALGCPTransformer";
psInfo->sTI.pfnTransform = GDALGCPTransform;
psInfo->sTI.pfnCleanup = GDALDestroyGCPTransformer;
psInfo->sTI.pfnSerialize = GDALSerializeGCPTransformer;
psInfo->sTI.pfnCreateSimilar = GDALCreateSimilarGCPTransformer;
/* -------------------------------------------------------------------- */
/* Compute the forward and reverse polynomials. */
/* -------------------------------------------------------------------- */
if (nGCPCount == 0)
{
nCRSresult = MNPTERR;
}
else if (bRefine)
{
nCRSresult = remove_outliers(psInfo);
}
else
{
/* --------------------------------------------------------------------
*/
/* Allocate and initialize the working points list. */
/* --------------------------------------------------------------------
*/
try
{
padfGeoX = new double[nGCPCount];
padfGeoY = new double[nGCPCount];
padfRasterX = new double[nGCPCount];
padfRasterY = new double[nGCPCount];
panStatus = new int[nGCPCount];
for (iGCP = 0; iGCP < nGCPCount; iGCP++)
{
panStatus[iGCP] = 1;
padfGeoX[iGCP] = pasGCPList[iGCP].dfGCPX;
padfGeoY[iGCP] = pasGCPList[iGCP].dfGCPY;
padfRasterX[iGCP] = pasGCPList[iGCP].dfGCPPixel;
padfRasterY[iGCP] = pasGCPList[iGCP].dfGCPLine;
x1_sum += pasGCPList[iGCP].dfGCPPixel;
y1_sum += pasGCPList[iGCP].dfGCPLine;
x2_sum += pasGCPList[iGCP].dfGCPX;
y2_sum += pasGCPList[iGCP].dfGCPY;
}
psInfo->x1_mean = x1_sum / nGCPCount;
psInfo->y1_mean = y1_sum / nGCPCount;
psInfo->x2_mean = x2_sum / nGCPCount;
psInfo->y2_mean = y2_sum / nGCPCount;
sPoints.count = nGCPCount;
sPoints.e1 = padfRasterX;
sPoints.n1 = padfRasterY;
sPoints.e2 = padfGeoX;
sPoints.n2 = padfGeoY;
sPoints.status = panStatus;
nCRSresult = CRS_compute_georef_equations(
psInfo, &sPoints, psInfo->adfToGeoX, psInfo->adfToGeoY,
psInfo->adfFromGeoX, psInfo->adfFromGeoY, nReqOrder);
}
catch (const std::exception &e)
{
CPLError(CE_Failure, CPLE_OutOfMemory, "%s", e.what());
nCRSresult = MINTERR;
}
delete[] padfGeoX;
delete[] padfGeoY;
delete[] padfRasterX;
delete[] padfRasterY;
delete[] panStatus;
}
if (nCRSresult != 1)
{
CPLError(CE_Failure, CPLE_AppDefined, "%s",
CRS_error_message[-nCRSresult]);
GDALDestroyGCPTransformer(psInfo);
return nullptr;
}
else
{
return psInfo;
}
}
/**
* Create GCP based polynomial transformer.
*
* Computes least squares fit polynomials from a provided set of GCPs,
* and stores the coefficients for later transformation of points between
* pixel/line and georeferenced coordinates.
*
* The return value should be used as a TransformArg in combination with
* the transformation function GDALGCPTransform which fits the
* GDALTransformerFunc signature. The returned transform argument should
* be deallocated with GDALDestroyGCPTransformer when no longer needed.
*
* This function may fail (returning nullptr) if the provided set of GCPs
* are inadequate for the requested order, the determinate is zero or they
* are otherwise "ill conditioned".
*
* Note that 2nd order requires at least 6 GCPs, and 3rd order requires at
* least 10 gcps. If nReqOrder is 0 the highest order possible (limited to 2)
* with the provided gcp count will be used.
*
* @param nGCPCount the number of GCPs in pasGCPList.
* @param pasGCPList an array of GCPs to be used as input.
* @param nReqOrder the requested polynomial order. It should be 1, 2 or 3.
* Using 3 is not recommended due to potential numeric instabilities issues.
* @param bReversed set it to TRUE to compute the reversed transformation.
*
* @return the transform argument or nullptr if creation fails.
*/
void *GDALCreateGCPTransformer(int nGCPCount, const GDAL_GCP *pasGCPList,
int nReqOrder, int bReversed)
{
return GDALCreateGCPTransformerEx(nGCPCount, pasGCPList, nReqOrder,
bReversed, FALSE, -1, -1);
}
/** Create GCP based polynomial transformer, with a tolerance threshold to
* discard GCPs that transform badly.
*/
void *GDALCreateGCPRefineTransformer(int nGCPCount, const GDAL_GCP *pasGCPList,
int nReqOrder, int bReversed,
double dfTolerance, int nMinimumGcps)
{
// If no minimumGcp parameter was passed, we use the default value
// according to the model
if (nMinimumGcps == -1)
{
nMinimumGcps = ((nReqOrder + 1) * (nReqOrder + 2)) / 2 + 1;
}
return GDALCreateGCPTransformerEx(nGCPCount, pasGCPList, nReqOrder,
bReversed, TRUE, dfTolerance,
nMinimumGcps);
}
/************************************************************************/
/* GDALDestroyGCPTransformer() */
/************************************************************************/
/**
* Destroy GCP transformer.
*
* This function is used to destroy information about a GCP based
* polynomial transformation created with GDALCreateGCPTransformer().
*
* @param pTransformArg the transform arg previously returned by
* GDALCreateGCPTransformer().
*/
void GDALDestroyGCPTransformer(void *pTransformArg)
{
if (pTransformArg == nullptr)
return;
GCPTransformInfo *psInfo = static_cast<GCPTransformInfo *>(pTransformArg);
if (CPLAtomicDec(&(psInfo->nRefCount)) == 0)
{
GDALDeinitGCPs(psInfo->nGCPCount, psInfo->pasGCPList);
CPLFree(psInfo->pasGCPList);
CPLFree(pTransformArg);
}
}
/************************************************************************/
/* GDALGCPTransform() */
/************************************************************************/
/**
* Transforms point based on GCP derived polynomial model.
*
* This function matches the GDALTransformerFunc signature, and can be
* used to transform one or more points from pixel/line coordinates to
* georeferenced coordinates (SrcToDst) or vice versa (DstToSrc).
*
* @param pTransformArg return value from GDALCreateGCPTransformer().
* @param bDstToSrc TRUE if transformation is from the destination
* (georeferenced) coordinates to pixel/line or FALSE when transforming
* from pixel/line to georeferenced coordinates.
* @param nPointCount the number of values in the x, y and z arrays.
* @param x array containing the X values to be transformed.
* @param y array containing the Y values to be transformed.
* @param z array containing the Z values to be transformed.
* @param panSuccess array in which a flag indicating success (TRUE) or
* failure (FALSE) of the transformation are placed.
*
* @return TRUE.
*/
int GDALGCPTransform(void *pTransformArg, int bDstToSrc, int nPointCount,
double *x, double *y, CPL_UNUSED double *z,
int *panSuccess)
{
int i = 0;
GCPTransformInfo *psInfo = static_cast<GCPTransformInfo *>(pTransformArg);
if (psInfo->bReversed)
bDstToSrc = !bDstToSrc;
for (i = 0; i < nPointCount; i++)
{
if (x[i] == HUGE_VAL || y[i] == HUGE_VAL)
{
panSuccess[i] = FALSE;
continue;
}
if (bDstToSrc)
{
CRS_georef(x[i] - psInfo->x2_mean, y[i] - psInfo->y2_mean, x + i,
y + i, psInfo->adfFromGeoX, psInfo->adfFromGeoY,
psInfo->nOrder);
}
else
{
CRS_georef(x[i] - psInfo->x1_mean, y[i] - psInfo->y1_mean, x + i,
y + i, psInfo->adfToGeoX, psInfo->adfToGeoY,
psInfo->nOrder);
}
panSuccess[i] = TRUE;
}
return TRUE;
}
/************************************************************************/
/* GDALSerializeGCPTransformer() */
/************************************************************************/
CPLXMLNode *GDALSerializeGCPTransformer(void *pTransformArg)
{
CPLXMLNode *psTree = nullptr;
GCPTransformInfo *psInfo = static_cast<GCPTransformInfo *>(pTransformArg);
VALIDATE_POINTER1(pTransformArg, "GDALSerializeGCPTransformer", nullptr);
psTree = CPLCreateXMLNode(nullptr, CXT_Element, "GCPTransformer");
/* -------------------------------------------------------------------- */
/* Serialize Order and bReversed. */
/* -------------------------------------------------------------------- */
CPLCreateXMLElementAndValue(psTree, "Order",
CPLSPrintf("%d", psInfo->nOrder));
CPLCreateXMLElementAndValue(psTree, "Reversed",
CPLSPrintf("%d", psInfo->bReversed));
if (psInfo->bRefine)
{
CPLCreateXMLElementAndValue(psTree, "Refine",
CPLSPrintf("%d", psInfo->bRefine));
CPLCreateXMLElementAndValue(psTree, "MinimumGcps",
CPLSPrintf("%d", psInfo->nMinimumGcps));
CPLCreateXMLElementAndValue(psTree, "Tolerance",
CPLSPrintf("%f", psInfo->dfTolerance));
}
/* -------------------------------------------------------------------- */
/* Attach GCP List. */
/* -------------------------------------------------------------------- */
if (psInfo->nGCPCount > 0)
{
if (psInfo->bRefine)
{
remove_outliers(psInfo);
}
GDALSerializeGCPListToXML(psTree, psInfo->pasGCPList, psInfo->nGCPCount,
nullptr);
}
return psTree;
}
/************************************************************************/
/* GDALDeserializeReprojectionTransformer() */
/************************************************************************/
void *GDALDeserializeGCPTransformer(CPLXMLNode *psTree)
{
GDAL_GCP *pasGCPList = nullptr;
int nGCPCount = 0;
void *pResult = nullptr;
int nReqOrder = 0;
int bReversed = 0;
int bRefine = 0;
int nMinimumGcps = 0;
double dfTolerance = 0.0;
/* -------------------------------------------------------------------- */
/* Check for GCPs. */
/* -------------------------------------------------------------------- */
CPLXMLNode *psGCPList = CPLGetXMLNode(psTree, "GCPList");
if (psGCPList != nullptr)
{
GDALDeserializeGCPListFromXML(psGCPList, &pasGCPList, &nGCPCount,
nullptr);
}
/* -------------------------------------------------------------------- */
/* Get other flags. */
/* -------------------------------------------------------------------- */
nReqOrder = atoi(CPLGetXMLValue(psTree, "Order", "3"));
bReversed = atoi(CPLGetXMLValue(psTree, "Reversed", "0"));
bRefine = atoi(CPLGetXMLValue(psTree, "Refine", "0"));
nMinimumGcps = atoi(CPLGetXMLValue(psTree, "MinimumGcps", "6"));
dfTolerance = CPLAtof(CPLGetXMLValue(psTree, "Tolerance", "1.0"));
/* -------------------------------------------------------------------- */
/* Generate transformation. */
/* -------------------------------------------------------------------- */
if (bRefine)
{
pResult = GDALCreateGCPRefineTransformer(nGCPCount, pasGCPList,
nReqOrder, bReversed,
dfTolerance, nMinimumGcps);
}
else
{
pResult = GDALCreateGCPTransformer(nGCPCount, pasGCPList, nReqOrder,
bReversed);
}
/* -------------------------------------------------------------------- */
/* Cleanup GCP copy. */
/* -------------------------------------------------------------------- */
GDALDeinitGCPs(nGCPCount, pasGCPList);
CPLFree(pasGCPList);
return pResult;
}
/************************************************************************/
/* ==================================================================== */
/* Everything below this point derived from the CRS.C from GRASS. */
/* ==================================================================== */
/************************************************************************/
/* STRUCTURE FOR USE INTERNALLY WITH THESE FUNCTIONS. THESE FUNCTIONS EXPECT
SQUARE MATRICES SO ONLY ONE VARIABLE IS GIVEN (N) FOR THE MATRIX SIZE */
struct MATRIX
{
int n; /* SIZE OF THIS MATRIX (N x N) */
double *v;
};
/* CALCULATE OFFSET INTO ARRAY BASED ON R/C */
#define M(row, col) m->v[(((row)-1) * (m->n)) + (col)-1]
/***************************************************************************/
/*
FUNCTION PROTOTYPES FOR STATIC (INTERNAL) FUNCTIONS
*/
/***************************************************************************/
static int calccoef(struct Control_Points *, double, double, double *, double *,
int);
static int calcls(struct Control_Points *, struct MATRIX *, double, double,
double *, double *, double *, double *);
static int exactdet(struct Control_Points *, struct MATRIX *, double, double,
double *, double *, double *, double *);
static int solvemat(struct MATRIX *, double *, double *, double *, double *);
static double term(int, double, double);
/***************************************************************************/
/*
TRANSFORM A SINGLE COORDINATE PAIR.
*/
/***************************************************************************/
static int
CRS_georef(double e1, /* EASTINGS TO BE TRANSFORMED */
double n1, /* NORTHINGS TO BE TRANSFORMED */
double *e, /* EASTINGS TO BE TRANSFORMED */
double *n, /* NORTHINGS TO BE TRANSFORMED */
double E[], /* EASTING COEFFICIENTS */
double N[], /* NORTHING COEFFICIENTS */
int order /* ORDER OF TRANSFORMATION TO BE PERFORMED, MUST MATCH THE
ORDER USED TO CALCULATE THE COEFFICIENTS */
)
{
double e3 = 0.0;
double e2n = 0.0;
double en2 = 0.0;
double n3 = 0.0;
double e2 = 0.0;
double en = 0.0;
double n2 = 0.0;
switch (order)
{
case 1:
*e = E[0] + E[1] * e1 + E[2] * n1;
*n = N[0] + N[1] * e1 + N[2] * n1;
break;
case 2:
e2 = e1 * e1;
n2 = n1 * n1;
en = e1 * n1;
*e = E[0] + E[1] * e1 + E[2] * n1 + E[3] * e2 + E[4] * en +
E[5] * n2;
*n = N[0] + N[1] * e1 + N[2] * n1 + N[3] * e2 + N[4] * en +
N[5] * n2;
break;
case 3:
e2 = e1 * e1;
en = e1 * n1;
n2 = n1 * n1;
e3 = e1 * e2;
e2n = e2 * n1;
en2 = e1 * n2;
n3 = n1 * n2;
*e = E[0] + E[1] * e1 + E[2] * n1 + E[3] * e2 + E[4] * en +
E[5] * n2 + E[6] * e3 + E[7] * e2n + E[8] * en2 + E[9] * n3;
*n = N[0] + N[1] * e1 + N[2] * n1 + N[3] * e2 + N[4] * en +
N[5] * n2 + N[6] * e3 + N[7] * e2n + N[8] * en2 + N[9] * n3;
break;
default:
return (MPARMERR);
}
return (MSUCCESS);
}
/***************************************************************************/
/*
COMPUTE THE GEOREFFERENCING COEFFICIENTS BASED ON A SET OF CONTROL POINTS
*/
/***************************************************************************/
static int CRS_compute_georef_equations(GCPTransformInfo *psInfo,
struct Control_Points *cp, double E12[],
double N12[], double E21[],
double N21[], int order)
{
double *tempptr = nullptr;
int status = 0;
if (order < 1 || order > MAXORDER)
return (MPARMERR);
/* CALCULATE THE FORWARD TRANSFORMATION COEFFICIENTS */
status = calccoef(cp, psInfo->x1_mean, psInfo->y1_mean, E12, N12, order);
if (status != MSUCCESS)
return (status);
/* SWITCH THE 1 AND 2 EASTING AND NORTHING ARRAYS */
tempptr = cp->e1;
cp->e1 = cp->e2;
cp->e2 = tempptr;
tempptr = cp->n1;
cp->n1 = cp->n2;
cp->n2 = tempptr;
/* CALCULATE THE BACKWARD TRANSFORMATION COEFFICIENTS */
status = calccoef(cp, psInfo->x2_mean, psInfo->y2_mean, E21, N21, order);
/* SWITCH THE 1 AND 2 EASTING AND NORTHING ARRAYS BACK */
tempptr = cp->e1;
cp->e1 = cp->e2;
cp->e2 = tempptr;
tempptr = cp->n1;
cp->n1 = cp->n2;
cp->n2 = tempptr;
return (status);
}
/***************************************************************************/
/*
COMPUTE THE GEOREFFERENCING COEFFICIENTS BASED ON A SET OF CONTROL POINTS
*/
/***************************************************************************/
static int calccoef(struct Control_Points *cp, double x_mean, double y_mean,
double E[], double N[], int order)
{
struct MATRIX m;
double *a = nullptr;
double *b = nullptr;
int numactive = 0; /* NUMBER OF ACTIVE CONTROL POINTS */
int status = 0;
int i = 0;
memset(&m, 0, sizeof(m));
/* CALCULATE THE NUMBER OF VALID CONTROL POINTS */
for (i = numactive = 0; i < cp->count; i++)
{
if (cp->status[i] > 0)
numactive++;
}
/* CALCULATE THE MINIMUM NUMBER OF CONTROL POINTS NEEDED TO DETERMINE
A TRANSFORMATION OF THIS ORDER */
m.n = ((order + 1) * (order + 2)) / 2;
if (numactive < m.n)
return (MNPTERR);
/* INITIALIZE MATRIX */
m.v = static_cast<double *>(VSICalloc(m.n * m.n, sizeof(double)));
if (m.v == nullptr)
{
return (MMEMERR);
}
a = static_cast<double *>(VSICalloc(m.n, sizeof(double)));
if (a == nullptr)
{
CPLFree(m.v);
return (MMEMERR);
}
b = static_cast<double *>(VSICalloc(m.n, sizeof(double)));
if (b == nullptr)
{
CPLFree(m.v);
CPLFree(a);
return (MMEMERR);
}
if (numactive == m.n)
status = exactdet(cp, &m, x_mean, y_mean, a, b, E, N);
else
status = calcls(cp, &m, x_mean, y_mean, a, b, E, N);
CPLFree(m.v);
CPLFree(a);
CPLFree(b);
return (status);
}
/***************************************************************************/
/*
CALCULATE THE TRANSFORMATION COEFFICIENTS WITH EXACTLY THE MINIMUM
NUMBER OF CONTROL POINTS REQUIRED FOR THIS TRANSFORMATION.
*/
/***************************************************************************/
static int exactdet(struct Control_Points *cp, struct MATRIX *m, double x_mean,
double y_mean, double a[], double b[],
double E[], /* EASTING COEFFICIENTS */
double N[] /* NORTHING COEFFICIENTS */
)
{
int currow = 1;
for (int pntnow = 0; pntnow < cp->count; pntnow++)
{
if (cp->status[pntnow] > 0)
{
/* POPULATE MATRIX M */
for (int j = 1; j <= m->n; j++)
{
M(currow, j) =
term(j, cp->e1[pntnow] - x_mean, cp->n1[pntnow] - y_mean);
}
/* POPULATE MATRIX A AND B */
a[currow - 1] = cp->e2[pntnow];
b[currow - 1] = cp->n2[pntnow];
currow++;
}
}
if (currow - 1 != m->n)
return (MINTERR);
return (solvemat(m, a, b, E, N));
}
/***************************************************************************/
/*
CALCULATE THE TRANSFORMATION COEFFICIENTS WITH MORE THAN THE MINIMUM
NUMBER OF CONTROL POINTS REQUIRED FOR THIS TRANSFORMATION. THIS
ROUTINE USES THE LEAST SQUARES METHOD TO COMPUTE THE COEFFICIENTS.
*/
/***************************************************************************/
static int calcls(struct Control_Points *cp, struct MATRIX *m, double x_mean,
double y_mean, double a[], double b[],
double E[], /* EASTING COEFFICIENTS */
double N[] /* NORTHING COEFFICIENTS */
)
{
int numactive = 0;
/* INITIALIZE THE UPPER HALF OF THE MATRIX AND THE TWO COLUMN VECTORS */
for (int i = 1; i <= m->n; i++)
{
for (int j = i; j <= m->n; j++)
M(i, j) = 0.0;
a[i - 1] = b[i - 1] = 0.0;
}
/* SUM THE UPPER HALF OF THE MATRIX AND THE COLUMN VECTORS ACCORDING TO
THE LEAST SQUARES METHOD OF SOLVING OVER DETERMINED SYSTEMS */
for (int n = 0; n < cp->count; n++)
{
if (cp->status[n] > 0)
{
numactive++;
for (int i = 1; i <= m->n; i++)
{
for (int j = i; j <= m->n; j++)
M(i, j) += term(i, cp->e1[n] - x_mean, cp->n1[n] - y_mean) *
term(j, cp->e1[n] - x_mean, cp->n1[n] - y_mean);
a[i - 1] +=
cp->e2[n] * term(i, cp->e1[n] - x_mean, cp->n1[n] - y_mean);
b[i - 1] +=
cp->n2[n] * term(i, cp->e1[n] - x_mean, cp->n1[n] - y_mean);
}
}
}
if (numactive <= m->n)
return (MINTERR);
/* TRANSPOSE VALUES IN UPPER HALF OF M TO OTHER HALF */
for (int i = 2; i <= m->n; i++)
{
for (int j = 1; j < i; j++)
M(i, j) = M(j, i);
}
return (solvemat(m, a, b, E, N));
}
/***************************************************************************/
/*
CALCULATE THE X/Y TERM BASED ON THE TERM NUMBER
ORDER\TERM 1 2 3 4 5 6 7 8 9 10
1 e0n0 e1n0 e0n1
2 e0n0 e1n0 e0n1 e2n0 e1n1 e0n2
3 e0n0 e1n0 e0n1 e2n0 e1n1 e0n2 e3n0 e2n1 e1n2 e0n3
*/
/***************************************************************************/
static double term(int nTerm, double e, double n)
{
switch (nTerm)
{
case 1:
return (1.0);
case 2:
return (e);
case 3:
return (n);
case 4:
return ((e * e));
case 5:
return ((e * n));
case 6:
return ((n * n));
case 7:
return ((e * e * e));
case 8:
return ((e * e * n));
case 9:
return ((e * n * n));
case 10:
return ((n * n * n));
}
return 0.0;
}
/***************************************************************************/
/*
SOLVE FOR THE 'E' AND 'N' COEFFICIENTS BY USING A SOMEWHAT MODIFIED
GAUSSIAN ELIMINATION METHOD.
| M11 M12 ... M1n | | E0 | | a0 |
| M21 M22 ... M2n | | E1 | = | a1 |
| . . . . | | . | | . |
| Mn1 Mn2 ... Mnn | | En-1 | | an-1 |
and
| M11 M12 ... M1n | | N0 | | b0 |
| M21 M22 ... M2n | | N1 | = | b1 |
| . . . . | | . | | . |
| Mn1 Mn2 ... Mnn | | Nn-1 | | bn-1 |
*/
/***************************************************************************/
static int solvemat(struct MATRIX *m, double a[], double b[], double E[],
double N[])
{
for (int i = 1; i <= m->n; i++)
{
int j = i;
/* find row with largest magnitude value for pivot value */
double pivot =
M(i, j); /* ACTUAL VALUE OF THE LARGEST PIVOT CANDIDATE */
int imark = i;
for (int i2 = i + 1; i2 <= m->n; i2++)
{
if (fabs(M(i2, j)) > fabs(pivot))
{
pivot = M(i2, j);
imark = i2;
}
}
/* if the pivot is very small then the points are nearly co-linear */
/* co-linear points result in an undefined matrix, and nearly */
/* co-linear points results in a solution with rounding error */
if (pivot == 0.0)
return (MUNSOLVABLE);
/* if row with highest pivot is not the current row, switch them */
if (imark != i)
{
for (int j2 = 1; j2 <= m->n; j2++)
{
std::swap(M(imark, j2), M(i, j2));
}
std::swap(a[imark - 1], a[i - 1]);
std::swap(b[imark - 1], b[i - 1]);
}
/* compute zeros above and below the pivot, and compute
values for the rest of the row as well */
for (int i2 = 1; i2 <= m->n; i2++)
{
if (i2 != i)
{
const double factor = M(i2, j) / pivot;
for (int j2 = j; j2 <= m->n; j2++)
M(i2, j2) -= factor * M(i, j2);
a[i2 - 1] -= factor * a[i - 1];
b[i2 - 1] -= factor * b[i - 1];
}
}
}
/* SINCE ALL OTHER VALUES IN THE MATRIX ARE ZERO NOW, CALCULATE THE
COEFFICIENTS BY DIVIDING THE COLUMN VECTORS BY THE DIAGONAL VALUES. */
for (int i = 1; i <= m->n; i++)
{
E[i - 1] = a[i - 1] / M(i, i);
N[i - 1] = b[i - 1] / M(i, i);
}
return (MSUCCESS);
}
/***************************************************************************/
/*
DETECTS THE WORST OUTLIER IN THE GCP LIST AND RETURNS THE INDEX OF THE
OUTLIER.
THE WORST OUTLIER IS CALCULATED BASED ON THE CONTROL POINTS, COEFFICIENTS
AND THE ALLOWED TOLERANCE:
sampleAdj = a0 + a1*sample + a2*line + a3*line*sample
lineAdj = b0 + b1*sample + b2*line + b3*line*sample
WHERE sampleAdj AND lineAdj ARE CORRELATED GCPS
[residualSample] = [A1][sampleCoefficients] - [b1]
[residualLine] = [A2][lineCoefficients] - [b2]
sampleResidual^2 = sum( [residualSample]^2 )
lineResidual^2 = sum( [lineSample]^2 )
residuals(i) = squareRoot( residualSample(i)^2 + residualLine(i)^2 )
THE GCP WITH THE GREATEST DISTANCE residual(i) GREATER THAN THE TOLERANCE WILL
CONSIDERED THE WORST OUTLIER.
IF NO OUTLIER CAN BE FOUND, -1 WILL BE RETURNED.
*/
/***************************************************************************/
static int worst_outlier(struct Control_Points *cp, double x_mean,
double y_mean, int nOrder, double E[], double N[],
double dfTolerance)
{
// double dfSampleResidual = 0.0;
// double dfLineResidual = 0.0;
double *padfResiduals =
static_cast<double *>(CPLCalloc(sizeof(double), cp->count));
for (int nI = 0; nI < cp->count; nI++)
{
double dfSampleRes = 0.0;
double dfLineRes = 0.0;
CRS_georef(cp->e1[nI] - x_mean, cp->n1[nI] - y_mean, &dfSampleRes,
&dfLineRes, E, N, nOrder);
dfSampleRes -= cp->e2[nI];
dfLineRes -= cp->n2[nI];
// dfSampleResidual += dfSampleRes*dfSampleRes;
// dfLineResidual += dfLineRes*dfLineRes;
padfResiduals[nI] =
sqrt(dfSampleRes * dfSampleRes + dfLineRes * dfLineRes);
}
int nIndex = -1;
double dfDifference = -1.0;
for (int nI = 0; nI < cp->count; nI++)
{
double dfCurrentDifference = padfResiduals[nI];
if (fabs(dfCurrentDifference) < 1.19209290E-07F /*FLT_EPSILON*/)
{
dfCurrentDifference = 0.0;
}
if (dfCurrentDifference > dfDifference &&
dfCurrentDifference >= dfTolerance)
{
dfDifference = dfCurrentDifference;
nIndex = nI;
}
}
CPLFree(padfResiduals);
return nIndex;
}
/***************************************************************************/
/*
REMOVES THE WORST OUTLIERS ITERATIVELY UNTIL THE MINIMUM NUMBER OF GCPS
ARE REACHED OR NO OUTLIERS CAN BE DETECTED.
1. WE CALCULATE THE COEFFICIENTS FOR ALL THE GCPS.
2. THE GCP LIST WILL BE SCANNED TO DETERMINE THE WORST OUTLIER USING
THE CALCULATED COEFFICIENTS.
3. THE WORST OUTLIER WILL BE REMOVED FROM THE GCP LIST.
4. THE COEFFICIENTS WILL BE RECALCULATED WITHOUT THE WORST OUTLIER.
5. STEP 1 TO 4 ARE EXECUTED UNTIL THE MINIMUM NUMBER OF GCPS WERE REACHED
OR IF NO GCP IS CONSIDERED AN OUTLIER WITH THE PASSED TOLERANCE.
*/
/***************************************************************************/
static int remove_outliers(GCPTransformInfo *psInfo)
{
double *padfGeoX = nullptr;
double *padfGeoY = nullptr;
double *padfRasterX = nullptr;
double *padfRasterY = nullptr;
int *panStatus = nullptr;
int nCRSresult = 0;
int nGCPCount = 0;
int nMinimumGcps = 0;
int nReqOrder = 0;
double dfTolerance = 0;
struct Control_Points sPoints;
double x1_sum = 0;
double y1_sum = 0;
double x2_sum = 0;
double y2_sum = 0;
memset(&sPoints, 0, sizeof(sPoints));
nGCPCount = psInfo->nGCPCount;
nMinimumGcps = psInfo->nMinimumGcps;
nReqOrder = psInfo->nOrder;
dfTolerance = psInfo->dfTolerance;
try
{
padfGeoX = new double[nGCPCount];
padfGeoY = new double[nGCPCount];
padfRasterX = new double[nGCPCount];
padfRasterY = new double[nGCPCount];
panStatus = new int[nGCPCount];
for (int nI = 0; nI < nGCPCount; nI++)
{
panStatus[nI] = 1;
padfGeoX[nI] = psInfo->pasGCPList[nI].dfGCPX;
padfGeoY[nI] = psInfo->pasGCPList[nI].dfGCPY;
padfRasterX[nI] = psInfo->pasGCPList[nI].dfGCPPixel;
padfRasterY[nI] = psInfo->pasGCPList[nI].dfGCPLine;
x1_sum += psInfo->pasGCPList[nI].dfGCPPixel;
y1_sum += psInfo->pasGCPList[nI].dfGCPLine;
x2_sum += psInfo->pasGCPList[nI].dfGCPX;
y2_sum += psInfo->pasGCPList[nI].dfGCPY;
}
psInfo->x1_mean = x1_sum / nGCPCount;
psInfo->y1_mean = y1_sum / nGCPCount;
psInfo->x2_mean = x2_sum / nGCPCount;
psInfo->y2_mean = y2_sum / nGCPCount;
sPoints.count = nGCPCount;
sPoints.e1 = padfRasterX;
sPoints.n1 = padfRasterY;
sPoints.e2 = padfGeoX;
sPoints.n2 = padfGeoY;
sPoints.status = panStatus;
nCRSresult = CRS_compute_georef_equations(
psInfo, &sPoints, psInfo->adfToGeoX, psInfo->adfToGeoY,
psInfo->adfFromGeoX, psInfo->adfFromGeoY, nReqOrder);
while (sPoints.count > nMinimumGcps)
{
int nIndex = worst_outlier(
&sPoints, psInfo->x1_mean, psInfo->y1_mean, psInfo->nOrder,
psInfo->adfToGeoX, psInfo->adfToGeoY, dfTolerance);
// If no outliers were detected, stop the GCP elimination
if (nIndex == -1)
{
break;
}
CPLFree(psInfo->pasGCPList[nIndex].pszId);
CPLFree(psInfo->pasGCPList[nIndex].pszInfo);
for (int nI = nIndex; nI < sPoints.count - 1; nI++)
{
sPoints.e1[nI] = sPoints.e1[nI + 1];
sPoints.n1[nI] = sPoints.n1[nI + 1];
sPoints.e2[nI] = sPoints.e2[nI + 1];
sPoints.n2[nI] = sPoints.n2[nI + 1];
psInfo->pasGCPList[nI].pszId = psInfo->pasGCPList[nI + 1].pszId;
psInfo->pasGCPList[nI].pszInfo =
psInfo->pasGCPList[nI + 1].pszInfo;
}
sPoints.count = sPoints.count - 1;
nCRSresult = CRS_compute_georef_equations(
psInfo, &sPoints, psInfo->adfToGeoX, psInfo->adfToGeoY,
psInfo->adfFromGeoX, psInfo->adfFromGeoY, nReqOrder);
}
for (int nI = 0; nI < sPoints.count; nI++)
{
psInfo->pasGCPList[nI].dfGCPX = sPoints.e2[nI];
psInfo->pasGCPList[nI].dfGCPY = sPoints.n2[nI];
psInfo->pasGCPList[nI].dfGCPPixel = sPoints.e1[nI];
psInfo->pasGCPList[nI].dfGCPLine = sPoints.n1[nI];
}
psInfo->nGCPCount = sPoints.count;
}
catch (const std::exception &e)
{
CPLError(CE_Failure, CPLE_OutOfMemory, "%s", e.what());
nCRSresult = MINTERR;
}
delete[] padfGeoX;
delete[] padfGeoY;
delete[] padfRasterX;
delete[] padfRasterY;
delete[] panStatus;
return nCRSresult;
}
|