1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
|
/******************************************************************************
* $Id$
*
* Project: GDAL Core
* Purpose: Inline C++ templates
* Author: Phil Vachon, <philippe at cowpig.ca>
*
******************************************************************************
* Copyright (c) 2009, Phil Vachon, <philippe at cowpig.ca>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
****************************************************************************/
#ifndef GDAL_PRIV_TEMPLATES_HPP_INCLUDED
#define GDAL_PRIV_TEMPLATES_HPP_INCLUDED
#include "cpl_port.h"
#include <cstdint>
#include <limits>
/************************************************************************/
/* GDALGetDataLimits() */
/************************************************************************/
/**
* Compute the limits of values that can be placed in Tout in terms of
* Tin. Usually used for output clamping, when the output data type's
* limits are stable relative to the input type (i.e. no roundoff error).
*
* @param tMaxValue the returned maximum value
* @param tMinValue the returned minimum value
*/
template <class Tin, class Tout>
inline void GDALGetDataLimits(Tin &tMaxValue, Tin &tMinValue)
{
tMaxValue = std::numeric_limits<Tin>::max();
tMinValue = std::numeric_limits<Tin>::min();
// Compute the actual minimum value of Tout in terms of Tin.
if (std::numeric_limits<Tout>::is_signed &&
std::numeric_limits<Tout>::is_integer)
{
// the minimum value is less than zero
if (std::numeric_limits<Tout>::digits <
std::numeric_limits<Tin>::digits ||
!std::numeric_limits<Tin>::is_integer)
{
// Tout is smaller than Tin, so we need to clamp values in input
// to the range of Tout's min/max values
if (std::numeric_limits<Tin>::is_signed)
{
tMinValue = static_cast<Tin>(std::numeric_limits<Tout>::min());
}
tMaxValue = static_cast<Tin>(std::numeric_limits<Tout>::max());
}
}
else if (std::numeric_limits<Tout>::is_integer)
{
// the output is unsigned, so we just need to determine the max
/* coverity[same_on_both_sides] */
if (std::numeric_limits<Tout>::digits <=
std::numeric_limits<Tin>::digits)
{
// Tout is smaller than Tin, so we need to clamp the input values
// to the range of Tout's max
tMaxValue = static_cast<Tin>(std::numeric_limits<Tout>::max());
}
tMinValue = 0;
}
}
/************************************************************************/
/* GDALClampValue() */
/************************************************************************/
/**
* Clamp values of type T to a specified range
*
* @param tValue the value
* @param tMax the max value
* @param tMin the min value
*/
template <class T>
inline T GDALClampValue(const T tValue, const T tMax, const T tMin)
{
return tValue > tMax ? tMax : tValue < tMin ? tMin : tValue;
}
/************************************************************************/
/* GDALIsValueInRange() */
/************************************************************************/
/**
* Returns whether a value is in the type range.
* NaN is considered not to be in type range.
*
* @param dfValue the value
* @return whether the value is in the type range.
*/
template <class T> inline bool GDALIsValueInRange(double dfValue)
{
return dfValue >= static_cast<double>(std::numeric_limits<T>::min()) &&
dfValue <= static_cast<double>(std::numeric_limits<T>::max());
}
template <> inline bool GDALIsValueInRange<double>(double dfValue)
{
return !CPLIsNan(dfValue);
}
template <> inline bool GDALIsValueInRange<float>(double dfValue)
{
return CPLIsInf(dfValue) ||
(dfValue >= -std::numeric_limits<float>::max() &&
dfValue <= std::numeric_limits<float>::max());
}
/************************************************************************/
/* GDALCopyWord() */
/************************************************************************/
template <class Tin, class Tout> struct sGDALCopyWord
{
static inline void f(const Tin tValueIn, Tout &tValueOut)
{
Tin tMaxVal, tMinVal;
GDALGetDataLimits<Tin, Tout>(tMaxVal, tMinVal);
tValueOut =
static_cast<Tout>(GDALClampValue(tValueIn, tMaxVal, tMinVal));
}
};
template <class Tin> struct sGDALCopyWord<Tin, float>
{
static inline void f(const Tin tValueIn, float &fValueOut)
{
fValueOut = static_cast<float>(tValueIn);
}
};
template <class Tin> struct sGDALCopyWord<Tin, double>
{
static inline void f(const Tin tValueIn, double &dfValueOut)
{
dfValueOut = static_cast<double>(tValueIn);
}
};
template <> struct sGDALCopyWord<double, double>
{
static inline void f(const double dfValueIn, double &dfValueOut)
{
dfValueOut = dfValueIn;
}
};
template <> struct sGDALCopyWord<float, float>
{
static inline void f(const float fValueIn, float &fValueOut)
{
fValueOut = fValueIn;
}
};
template <> struct sGDALCopyWord<float, double>
{
static inline void f(const float fValueIn, double &dfValueOut)
{
dfValueOut = fValueIn;
}
};
template <> struct sGDALCopyWord<double, float>
{
static inline void f(const double dfValueIn, float &fValueOut)
{
if (dfValueIn > std::numeric_limits<float>::max())
{
fValueOut = std::numeric_limits<float>::infinity();
return;
}
if (dfValueIn < -std::numeric_limits<float>::max())
{
fValueOut = -std::numeric_limits<float>::infinity();
return;
}
fValueOut = static_cast<float>(dfValueIn);
}
};
template <class Tout> struct sGDALCopyWord<float, Tout>
{
static inline void f(const float fValueIn, Tout &tValueOut)
{
if (CPLIsNan(fValueIn))
{
tValueOut = 0;
return;
}
float fMaxVal, fMinVal;
GDALGetDataLimits<float, Tout>(fMaxVal, fMinVal);
tValueOut = static_cast<Tout>(
GDALClampValue(fValueIn + 0.5f, fMaxVal, fMinVal));
}
};
template <> struct sGDALCopyWord<float, short>
{
static inline void f(const float fValueIn, short &nValueOut)
{
if (CPLIsNan(fValueIn))
{
nValueOut = 0;
return;
}
float fMaxVal, fMinVal;
GDALGetDataLimits<float, short>(fMaxVal, fMinVal);
float fValue = fValueIn >= 0.0f ? fValueIn + 0.5f : fValueIn - 0.5f;
nValueOut =
static_cast<short>(GDALClampValue(fValue, fMaxVal, fMinVal));
}
};
template <class Tout> struct sGDALCopyWord<double, Tout>
{
static inline void f(const double dfValueIn, Tout &tValueOut)
{
if (CPLIsNan(dfValueIn))
{
tValueOut = 0;
return;
}
double dfMaxVal, dfMinVal;
GDALGetDataLimits<double, Tout>(dfMaxVal, dfMinVal);
tValueOut = static_cast<Tout>(
GDALClampValue(dfValueIn + 0.5, dfMaxVal, dfMinVal));
}
};
template <> struct sGDALCopyWord<double, int>
{
static inline void f(const double dfValueIn, int &nValueOut)
{
if (CPLIsNan(dfValueIn))
{
nValueOut = 0;
return;
}
double dfMaxVal, dfMinVal;
GDALGetDataLimits<double, int>(dfMaxVal, dfMinVal);
double dfValue = dfValueIn >= 0.0 ? dfValueIn + 0.5 : dfValueIn - 0.5;
nValueOut =
static_cast<int>(GDALClampValue(dfValue, dfMaxVal, dfMinVal));
}
};
template <> struct sGDALCopyWord<double, std::int64_t>
{
static inline void f(const double dfValueIn, std::int64_t &nValueOut)
{
if (CPLIsNan(dfValueIn))
{
nValueOut = 0;
return;
}
double dfMaxVal, dfMinVal;
GDALGetDataLimits<double, std::int64_t>(dfMaxVal, dfMinVal);
double dfValue = dfValueIn >= 0.0 ? dfValueIn + 0.5 : dfValueIn - 0.5;
nValueOut = static_cast<std::int64_t>(
GDALClampValue(dfValue, dfMaxVal, dfMinVal));
}
};
template <> struct sGDALCopyWord<double, short>
{
static inline void f(const double dfValueIn, short &nValueOut)
{
if (CPLIsNan(dfValueIn))
{
nValueOut = 0;
return;
}
double dfMaxVal, dfMinVal;
GDALGetDataLimits<double, short>(dfMaxVal, dfMinVal);
double dfValue = dfValueIn > 0.0 ? dfValueIn + 0.5 : dfValueIn - 0.5;
nValueOut =
static_cast<short>(GDALClampValue(dfValue, dfMaxVal, dfMinVal));
}
};
// Roundoff occurs for Float32 -> int32 for max/min. Overload GDALCopyWord
// specifically for this case.
template <> struct sGDALCopyWord<float, int>
{
static inline void f(const float fValueIn, int &nValueOut)
{
if (fValueIn >= static_cast<float>(std::numeric_limits<int>::max()))
{
nValueOut = std::numeric_limits<int>::max();
}
else if (fValueIn <=
static_cast<float>(std::numeric_limits<int>::min()))
{
nValueOut = std::numeric_limits<int>::min();
}
else
{
nValueOut = static_cast<int>(fValueIn > 0.0f ? fValueIn + 0.5f
: fValueIn - 0.5f);
}
}
};
// Roundoff occurs for Float32 -> uint32 for max. Overload GDALCopyWord
// specifically for this case.
template <> struct sGDALCopyWord<float, unsigned int>
{
static inline void f(const float fValueIn, unsigned int &nValueOut)
{
if (fValueIn >=
static_cast<float>(std::numeric_limits<unsigned int>::max()))
{
nValueOut = std::numeric_limits<unsigned int>::max();
}
else if (fValueIn <=
static_cast<float>(std::numeric_limits<unsigned int>::min()))
{
nValueOut = std::numeric_limits<unsigned int>::min();
}
else
{
nValueOut = static_cast<unsigned int>(fValueIn + 0.5f);
}
}
};
// Roundoff occurs for Float32 -> std::int64_t for max/min. Overload
// GDALCopyWord specifically for this case.
template <> struct sGDALCopyWord<float, std::int64_t>
{
static inline void f(const float fValueIn, std::int64_t &nValueOut)
{
if (fValueIn >=
static_cast<float>(std::numeric_limits<std::int64_t>::max()))
{
nValueOut = std::numeric_limits<std::int64_t>::max();
}
else if (fValueIn <=
static_cast<float>(std::numeric_limits<std::int64_t>::min()))
{
nValueOut = std::numeric_limits<std::int64_t>::min();
}
else
{
nValueOut = static_cast<std::int64_t>(
fValueIn > 0.0f ? fValueIn + 0.5f : fValueIn - 0.5f);
}
}
};
// Roundoff occurs for Float32 -> std::uint64_t for max. Overload GDALCopyWord
// specifically for this case.
template <> struct sGDALCopyWord<float, std::uint64_t>
{
static inline void f(const float fValueIn, std::uint64_t &nValueOut)
{
if (fValueIn >=
static_cast<float>(std::numeric_limits<std::uint64_t>::max()))
{
nValueOut = std::numeric_limits<std::uint64_t>::max();
}
else if (fValueIn <=
static_cast<float>(std::numeric_limits<std::uint64_t>::min()))
{
nValueOut = std::numeric_limits<std::uint64_t>::min();
}
else
{
nValueOut = static_cast<std::uint64_t>(fValueIn + 0.5f);
}
}
};
/**
* Copy a single word, optionally rounding if appropriate (i.e. going
* from the float to the integer case). Note that this is the function
* you should specialize if you're adding a new data type.
*
* @param tValueIn value of type Tin; the input value to be converted
* @param tValueOut value of type Tout; the output value
*/
template <class Tin, class Tout>
inline void GDALCopyWord(const Tin tValueIn, Tout &tValueOut)
{
sGDALCopyWord<Tin, Tout>::f(tValueIn, tValueOut);
}
/************************************************************************/
/* GDALCopy4Words() */
/************************************************************************/
/**
* Copy 4 packed words to 4 packed words, optionally rounding if appropriate
* (i.e. going from the float to the integer case).
*
* @param pValueIn pointer to 4 input values of type Tin.
* @param pValueOut pointer to 4 output values of type Tout.
*/
template <class Tin, class Tout>
inline void GDALCopy4Words(const Tin *pValueIn, Tout *const pValueOut)
{
GDALCopyWord(pValueIn[0], pValueOut[0]);
GDALCopyWord(pValueIn[1], pValueOut[1]);
GDALCopyWord(pValueIn[2], pValueOut[2]);
GDALCopyWord(pValueIn[3], pValueOut[3]);
}
/************************************************************************/
/* GDALCopy8Words() */
/************************************************************************/
/**
* Copy 8 packed words to 8 packed words, optionally rounding if appropriate
* (i.e. going from the float to the integer case).
*
* @param pValueIn pointer to 8 input values of type Tin.
* @param pValueOut pointer to 8 output values of type Tout.
*/
template <class Tin, class Tout>
inline void GDALCopy8Words(const Tin *pValueIn, Tout *const pValueOut)
{
GDALCopy4Words(pValueIn, pValueOut);
GDALCopy4Words(pValueIn + 4, pValueOut + 4);
}
// Needs SSE2
#if (defined(__x86_64) || defined(_M_X64))
#include <emmintrin.h>
static inline void GDALCopyXMMToInt32(const __m128i xmm, void *pDest)
{
#ifdef CPL_CPU_REQUIRES_ALIGNED_ACCESS
int n32 = _mm_cvtsi128_si32(xmm); // Extract lower 32 bit word
memcpy(pDest, &n32, sizeof(n32));
#else
*static_cast<int *>(pDest) = _mm_cvtsi128_si32(xmm);
#endif
}
static inline void GDALCopyXMMToInt64(const __m128i xmm, void *pDest)
{
#ifdef CPL_CPU_REQUIRES_ALIGNED_ACCESS
GInt64 n64 = _mm_cvtsi128_si64(xmm); // Extract lower 64 bit word
memcpy(pDest, &n64, sizeof(n64));
#else
*static_cast<GInt64 *>(pDest) = _mm_cvtsi128_si64(xmm);
#endif
}
#if __SSSE3__
#include <tmmintrin.h>
#endif
#if __SSE4_1__
#include <smmintrin.h>
#endif
template <>
inline void GDALCopy4Words(const float *pValueIn, GByte *const pValueOut)
{
__m128 xmm = _mm_loadu_ps(pValueIn);
// The following clamping would be useless due to the final saturating
// packing if we could guarantee the input range in [INT_MIN,INT_MAX]
const __m128 p0d5 = _mm_set1_ps(0.5f);
const __m128 xmm_max = _mm_set1_ps(255);
xmm = _mm_add_ps(xmm, p0d5);
xmm = _mm_min_ps(_mm_max_ps(xmm, p0d5), xmm_max);
__m128i xmm_i = _mm_cvttps_epi32(xmm);
#if __SSSE3__
xmm_i = _mm_shuffle_epi8(
xmm_i, _mm_cvtsi32_si128(0 | (4 << 8) | (8 << 16) | (12 << 24)));
#else
xmm_i = _mm_packs_epi32(xmm_i, xmm_i); // Pack int32 to int16
xmm_i = _mm_packus_epi16(xmm_i, xmm_i); // Pack int16 to uint8
#endif
GDALCopyXMMToInt32(xmm_i, pValueOut);
}
template <>
inline void GDALCopy4Words(const float *pValueIn, GInt16 *const pValueOut)
{
__m128 xmm = _mm_loadu_ps(pValueIn);
const __m128 xmm_min = _mm_set1_ps(-32768);
const __m128 xmm_max = _mm_set1_ps(32767);
xmm = _mm_min_ps(_mm_max_ps(xmm, xmm_min), xmm_max);
const __m128 p0d5 = _mm_set1_ps(0.5f);
const __m128 m0d5 = _mm_set1_ps(-0.5f);
const __m128 mask = _mm_cmpge_ps(xmm, p0d5);
// f >= 0.5f ? f + 0.5f : f - 0.5f
xmm = _mm_add_ps(
xmm, _mm_or_ps(_mm_and_ps(mask, p0d5), _mm_andnot_ps(mask, m0d5)));
__m128i xmm_i = _mm_cvttps_epi32(xmm);
xmm_i = _mm_packs_epi32(xmm_i, xmm_i); // Pack int32 to int16
GDALCopyXMMToInt64(xmm_i, pValueOut);
}
template <>
inline void GDALCopy4Words(const float *pValueIn, GUInt16 *const pValueOut)
{
__m128 xmm = _mm_loadu_ps(pValueIn);
const __m128 p0d5 = _mm_set1_ps(0.5f);
const __m128 xmm_max = _mm_set1_ps(65535);
xmm = _mm_add_ps(xmm, p0d5);
xmm = _mm_min_ps(_mm_max_ps(xmm, p0d5), xmm_max);
__m128i xmm_i = _mm_cvttps_epi32(xmm);
#if __SSE4_1__
xmm_i = _mm_packus_epi32(xmm_i, xmm_i); // Pack int32 to uint16
#else
// Translate to int16 range because _mm_packus_epi32 is SSE4.1 only
xmm_i = _mm_add_epi32(xmm_i, _mm_set1_epi32(-32768));
xmm_i = _mm_packs_epi32(xmm_i, xmm_i); // Pack int32 to int16
// Translate back to uint16 range (actually -32768==32768 in int16)
xmm_i = _mm_add_epi16(xmm_i, _mm_set1_epi16(-32768));
#endif
GDALCopyXMMToInt64(xmm_i, pValueOut);
}
#ifdef __AVX2__
#include <immintrin.h>
template <>
inline void GDALCopy8Words(const float *pValueIn, GByte *const pValueOut)
{
__m256 ymm = _mm256_loadu_ps(pValueIn);
const __m256 p0d5 = _mm256_set1_ps(0.5f);
const __m256 ymm_max = _mm256_set1_ps(255);
ymm = _mm256_add_ps(ymm, p0d5);
ymm = _mm256_min_ps(_mm256_max_ps(ymm, p0d5), ymm_max);
__m256i ymm_i = _mm256_cvttps_epi32(ymm);
ymm_i = _mm256_packus_epi32(ymm_i, ymm_i); // Pack int32 to uint16
ymm_i = _mm256_permute4x64_epi64(ymm_i, 0 | (2 << 2)); // AVX2
__m128i xmm_i = _mm256_castsi256_si128(ymm_i);
xmm_i = _mm_packus_epi16(xmm_i, xmm_i);
GDALCopyXMMToInt64(xmm_i, pValueOut);
}
template <>
inline void GDALCopy8Words(const float *pValueIn, GUInt16 *const pValueOut)
{
__m256 ymm = _mm256_loadu_ps(pValueIn);
const __m256 p0d5 = _mm256_set1_ps(0.5f);
const __m256 ymm_max = _mm256_set1_ps(65535);
ymm = _mm256_add_ps(ymm, p0d5);
ymm = _mm256_min_ps(_mm256_max_ps(ymm, p0d5), ymm_max);
__m256i ymm_i = _mm256_cvttps_epi32(ymm);
ymm_i = _mm256_packus_epi32(ymm_i, ymm_i); // Pack int32 to uint16
ymm_i = _mm256_permute4x64_epi64(ymm_i, 0 | (2 << 2)); // AVX2
_mm_storeu_si128(reinterpret_cast<__m128i *>(pValueOut),
_mm256_castsi256_si128(ymm_i));
}
#else
template <>
inline void GDALCopy8Words(const float *pValueIn, GUInt16 *const pValueOut)
{
__m128 xmm = _mm_loadu_ps(pValueIn);
__m128 xmm1 = _mm_loadu_ps(pValueIn + 4);
const __m128 p0d5 = _mm_set1_ps(0.5f);
const __m128 xmm_max = _mm_set1_ps(65535);
xmm = _mm_add_ps(xmm, p0d5);
xmm1 = _mm_add_ps(xmm1, p0d5);
xmm = _mm_min_ps(_mm_max_ps(xmm, p0d5), xmm_max);
xmm1 = _mm_min_ps(_mm_max_ps(xmm1, p0d5), xmm_max);
__m128i xmm_i = _mm_cvttps_epi32(xmm);
__m128i xmm1_i = _mm_cvttps_epi32(xmm1);
#if __SSE4_1__
xmm_i = _mm_packus_epi32(xmm_i, xmm1_i); // Pack int32 to uint16
#else
// Translate to int16 range because _mm_packus_epi32 is SSE4.1 only
xmm_i = _mm_add_epi32(xmm_i, _mm_set1_epi32(-32768));
xmm1_i = _mm_add_epi32(xmm1_i, _mm_set1_epi32(-32768));
xmm_i = _mm_packs_epi32(xmm_i, xmm1_i); // Pack int32 to int16
// Translate back to uint16 range (actually -32768==32768 in int16)
xmm_i = _mm_add_epi16(xmm_i, _mm_set1_epi16(-32768));
#endif
_mm_storeu_si128(reinterpret_cast<__m128i *>(pValueOut), xmm_i);
}
#endif
#ifdef notdef_because_slightly_slower_than_default_implementation
template <>
inline void GDALCopy4Words(const double *pValueIn, float *const pValueOut)
{
__m128d float_posmax = _mm_set1_pd(std::numeric_limits<float>::max());
__m128d float_negmax = _mm_set1_pd(-std::numeric_limits<float>::max());
__m128d float_posinf = _mm_set1_pd(std::numeric_limits<float>::infinity());
__m128d float_neginf = _mm_set1_pd(-std::numeric_limits<float>::infinity());
__m128d val01 = _mm_loadu_pd(pValueIn);
__m128d val23 = _mm_loadu_pd(pValueIn + 2);
__m128d mask_max = _mm_cmpge_pd(val01, float_posmax);
__m128d mask_max23 = _mm_cmpge_pd(val23, float_posmax);
val01 = _mm_or_pd(_mm_and_pd(mask_max, float_posinf),
_mm_andnot_pd(mask_max, val01));
val23 = _mm_or_pd(_mm_and_pd(mask_max23, float_posinf),
_mm_andnot_pd(mask_max23, val23));
__m128d mask_min = _mm_cmple_pd(val01, float_negmax);
__m128d mask_min23 = _mm_cmple_pd(val23, float_negmax);
val01 = _mm_or_pd(_mm_and_pd(mask_min, float_neginf),
_mm_andnot_pd(mask_min, val01));
val23 = _mm_or_pd(_mm_and_pd(mask_min23, float_neginf),
_mm_andnot_pd(mask_min23, val23));
__m128 val01_s = _mm_cvtpd_ps(val01);
__m128 val23_s = _mm_cvtpd_ps(val23);
__m128i val01_i = _mm_castps_si128(val01_s);
__m128i val23_i = _mm_castps_si128(val23_s);
GDALCopyXMMToInt64(val01_i, pValueOut);
GDALCopyXMMToInt64(val23_i, pValueOut + 2);
}
#endif
#endif // defined(__x86_64) || defined(_M_X64)
#endif // GDAL_PRIV_TEMPLATES_HPP_INCLUDED
|