1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
/******************************************************************************
*
* Project: GDAL/OGR Geography Network support (Geographic Network Model)
* Purpose: GNM graph implementation.
* Authors: Mikhail Gusev (gusevmihs at gmail dot com)
* Dmitry Baryshnikov, polimax@mail.ru
*
******************************************************************************
* Copyright (c) 2014, Mikhail Gusev
* Copyright (c) 2014-2015, NextGIS <info@nextgis.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
****************************************************************************/
#include "gnmgraph.h"
#include "gnm_priv.h"
#include <algorithm>
#include <limits>
#include <set>
//! @cond Doxygen_Suppress
GNMGraph::GNMGraph()
{
}
GNMGraph::~GNMGraph()
{
}
void GNMGraph::AddVertex(GNMGFID nFID)
{
if (m_mstVertices.find(nFID) != m_mstVertices.end())
return;
GNMStdVertex stVertex;
stVertex.bIsBlocked = false;
m_mstVertices[nFID] = stVertex;
}
void GNMGraph::DeleteVertex(GNMGFID nFID)
{
m_mstVertices.erase(nFID);
// remove all edges with this vertex
std::vector<GNMGFID> aoIdsToErase;
for (std::map<GNMGFID, GNMStdEdge>::iterator it = m_mstEdges.begin();
it != m_mstEdges.end(); ++it)
{
if (it->second.nSrcVertexFID == nFID ||
it->second.nTgtVertexFID == nFID)
aoIdsToErase.push_back(it->first);
}
for (size_t i = 0; i < aoIdsToErase.size(); i++)
m_mstEdges.erase(aoIdsToErase[i]);
}
void GNMGraph::AddEdge(GNMGFID nConFID, GNMGFID nSrcFID, GNMGFID nTgtFID,
bool bIsBidir, double dfCost, double dfInvCost)
{
// We do not add edge if an edge with the same id already exist
// because each edge must have only one source and one target vertex.
std::map<GNMGFID, GNMStdEdge>::iterator it = m_mstEdges.find(nConFID);
if (it != m_mstEdges.end())
{
CPLError(CE_Failure, CPLE_AppDefined, "The edge already exist.");
return;
}
AddVertex(nSrcFID);
AddVertex(nTgtFID);
std::map<GNMGFID, GNMStdVertex>::iterator itSrs =
m_mstVertices.find(nSrcFID);
std::map<GNMGFID, GNMStdVertex>::iterator itTgt =
m_mstVertices.find(nTgtFID);
// Insert edge to the array of edges.
GNMStdEdge stEdge;
stEdge.nSrcVertexFID = nSrcFID;
stEdge.nTgtVertexFID = nTgtFID;
stEdge.bIsBidir = bIsBidir;
stEdge.dfDirCost = dfCost;
stEdge.dfInvCost = dfInvCost;
stEdge.bIsBlocked = false;
m_mstEdges[nConFID] = stEdge;
if (bIsBidir)
{
itSrs->second.anOutEdgeFIDs.push_back(nConFID);
itTgt->second.anOutEdgeFIDs.push_back(nConFID);
}
else
{
itSrs->second.anOutEdgeFIDs.push_back(nConFID);
}
}
void GNMGraph::DeleteEdge(GNMGFID nConFID)
{
m_mstEdges.erase(nConFID);
// remove edge from all vertices anOutEdgeFIDs
for (std::map<GNMGFID, GNMStdVertex>::iterator it = m_mstVertices.begin();
it != m_mstVertices.end(); ++it)
{
it->second.anOutEdgeFIDs.erase(
std::remove(it->second.anOutEdgeFIDs.begin(),
it->second.anOutEdgeFIDs.end(), nConFID),
it->second.anOutEdgeFIDs.end());
}
}
void GNMGraph::ChangeEdge(GNMGFID nFID, double dfCost, double dfInvCost)
{
std::map<GNMGFID, GNMStdEdge>::iterator it = m_mstEdges.find(nFID);
if (it != m_mstEdges.end())
{
it->second.dfDirCost = dfCost;
it->second.dfInvCost = dfInvCost;
}
}
void GNMGraph::ChangeBlockState(GNMGFID nFID, bool bBlock)
{
// check vertices
std::map<GNMGFID, GNMStdVertex>::iterator itv = m_mstVertices.find(nFID);
if (itv != m_mstVertices.end())
{
itv->second.bIsBlocked = bBlock;
return;
}
// check edges
std::map<GNMGFID, GNMStdEdge>::iterator ite = m_mstEdges.find(nFID);
if (ite != m_mstEdges.end())
{
ite->second.bIsBlocked = bBlock;
}
}
bool GNMGraph::CheckVertexBlocked(GNMGFID nFID) const
{
std::map<GNMGFID, GNMStdVertex>::const_iterator it =
m_mstVertices.find(nFID);
if (it != m_mstVertices.end())
return it->second.bIsBlocked;
return false;
}
void GNMGraph::ChangeAllBlockState(bool bBlock)
{
for (std::map<GNMGFID, GNMStdVertex>::iterator itv = m_mstVertices.begin();
itv != m_mstVertices.end(); ++itv)
{
itv->second.bIsBlocked = bBlock;
}
for (std::map<GNMGFID, GNMStdEdge>::iterator ite = m_mstEdges.begin();
ite != m_mstEdges.end(); ++ite)
{
ite->second.bIsBlocked = bBlock;
}
}
GNMPATH
GNMGraph::DijkstraShortestPath(GNMGFID nStartFID, GNMGFID nEndFID,
const std::map<GNMGFID, GNMStdEdge> &mstEdges)
{
std::map<GNMGFID, GNMGFID> mnShortestTree;
DijkstraShortestPathTree(nStartFID, mstEdges, mnShortestTree);
// We search for a path in the resulting tree, starting from end point to
// start point.
GNMPATH aoShortestPath;
GNMGFID nNextVertexId = nEndFID;
std::map<GNMGFID, GNMGFID>::iterator it;
EDGEVERTEXPAIR buf;
while (true)
{
it = mnShortestTree.find(nNextVertexId);
if (it == mnShortestTree.end())
{
// We haven't found the start vertex - there is no path between
// to given vertices in a shortest-path tree.
break;
}
else if (it->first == nStartFID)
{
// We've reached the start vertex and return an array.
aoShortestPath.push_back(std::make_pair(nNextVertexId, -1));
// Revert array because the first vertex is now the last in path.
int size = static_cast<int>(aoShortestPath.size());
for (int i = 0; i < size / 2; ++i)
{
buf = aoShortestPath[i];
aoShortestPath[i] = aoShortestPath[size - i - 1];
aoShortestPath[size - i - 1] = buf;
}
return aoShortestPath;
}
else
{
// There is only one edge which leads to this vertex, because we
// analyse a tree. We add this edge with its target vertex into
// final array.
aoShortestPath.push_back(std::make_pair(nNextVertexId, it->second));
// An edge has only two vertices, so we get the opposite one to the
// current vertex in order to continue search backwards.
nNextVertexId = GetOppositVertex(it->second, it->first);
}
}
// return empty array
GNMPATH oRet;
return oRet;
}
GNMPATH GNMGraph::DijkstraShortestPath(GNMGFID nStartFID, GNMGFID nEndFID)
{
return DijkstraShortestPath(nStartFID, nEndFID, m_mstEdges);
}
std::vector<GNMPATH> GNMGraph::KShortestPaths(GNMGFID nStartFID,
GNMGFID nEndFID, size_t nK)
{
// Resulting array with paths.
// A will be sorted by the path costs' descending.
std::vector<GNMPATH> A;
if (nK == 0)
return A; // return empty array if K is incorrect.
// Temporary array for storing paths-candidates.
// B will be automatically sorted by the cost descending order. We
// need multimap because there can be physically different paths but
// with the same costs.
std::multimap<double, GNMPATH> B;
// Firstly get the very shortest path.
// Note, that it is important to obtain the path from DijkstraShortestPath()
// as vector, rather than the map, because we need the correct order of the
// path segments in the Yen's algorithm iterations.
GNMPATH aoFirstPath = DijkstraShortestPath(nStartFID, nEndFID);
if (aoFirstPath.empty())
return A; // return empty array if there is no path between points.
A.push_back(aoFirstPath);
size_t i, k, l;
GNMPATH::iterator itAk, tempIt, itR;
std::vector<GNMPATH>::iterator itA;
std::map<GNMGFID, double>::iterator itDel;
GNMPATH aoRootPath, aoRootPathOther, aoSpurPath;
GNMGFID nSpurNode, nVertexToDel, nEdgeToDel;
double dfSumCost;
std::map<GNMGFID, GNMStdEdge> mstEdges = m_mstEdges;
for (k = 0; k < nK - 1; ++k) // -1 because we have already found one
{
std::map<GNMGFID, double>
mDeletedEdges; // for infinity costs assignment
itAk = A[k].begin();
for (i = 0; i < A[k].size() - 1; ++i) // avoid end node
{
// Get the current node.
nSpurNode = A[k][i].first;
// Get the root path from the 0 to the current node.
// Equivalent to A[k][i]
// because we will use std::vector::assign, which assigns [..)
// range, not [..]
++itAk;
aoRootPath.assign(A[k].begin(), itAk);
// Remove old incidence edges of all other best paths.
// i.e. if the spur vertex can be reached in already found best
// paths we must remove the following edge after the end of root
// path from the graph in order not to take in account these already
// seen best paths.
// i.e. it ensures that the spur path will be different.
for (itA = A.begin(); itA != A.end(); ++itA)
{
// check if the number of node exceed the number of last node in
// the path array (i.e. if one of the A paths has less amount of
// segments than the current candidate path)
if (i >= itA->size())
continue;
// + 1, because we will use std::vector::assign, which assigns
// [..) range, not [..]
aoRootPathOther.assign(itA->begin(), itA->begin() + i + 1);
// Get the edge which follows the spur node for current path
// and delete it.
//
// NOTE: we do not delete edges due to performance reasons,
// because the deletion of edge and all its GFIDs in vertex
// records is slower than the infinity cost assignment.
// also check if node number exceed the number of the last node
// in root array.
if ((aoRootPath == aoRootPathOther) &&
(i < aoRootPathOther.size()))
{
tempIt = itA->begin() + i + 1;
mDeletedEdges.insert(std::make_pair(
tempIt->second, mstEdges[tempIt->second].dfDirCost));
mstEdges[tempIt->second].dfDirCost =
std::numeric_limits<double>::infinity();
}
}
// Remove root path nodes from the graph. If we do not delete them
// the path will be found backwards and some parts of the path will
// duplicate the parts of old paths.
// Note: we "delete" all the incidence to the root nodes edges, so
// to restore them in a common way.
// end()-1, because we should not remove the spur node
for (itR = aoRootPath.begin(); itR != aoRootPath.end() - 1; ++itR)
{
nVertexToDel = itR->first;
for (l = 0;
l < m_mstVertices[nVertexToDel].anOutEdgeFIDs.size(); ++l)
{
nEdgeToDel = m_mstVertices[nVertexToDel].anOutEdgeFIDs[l];
mDeletedEdges.insert(std::make_pair(
nEdgeToDel, mstEdges[nEdgeToDel].dfDirCost));
mstEdges[nEdgeToDel].dfDirCost =
std::numeric_limits<double>::infinity();
}
}
// Find the new best path in the modified graph.
aoSpurPath = DijkstraShortestPath(nSpurNode, nEndFID, mstEdges);
// Firstly, restore deleted edges in order to calculate the summary
// cost of the path correctly later, because the costs will be
// gathered from the initial graph.
// We must do it here, after each edge removing, because the later
// Dijkstra searches must consider these edges.
for (itDel = mDeletedEdges.begin(); itDel != mDeletedEdges.end();
++itDel)
{
mstEdges[itDel->first].dfDirCost = itDel->second;
}
mDeletedEdges.clear();
// If the part of a new best path has been found we form a full one
// and add it to the candidates array.
if (!aoSpurPath.empty())
{
// + 1 so not to consider the first node in the found path,
// which is already the last node in the root path
aoRootPath.insert(aoRootPath.end(), aoSpurPath.begin() + 1,
aoSpurPath.end());
// Calculate the summary cost of the path.
// TODO: get the summary cost from the Dejkstra method?
dfSumCost = 0.0;
for (itR = aoRootPath.begin(); itR != aoRootPath.end(); ++itR)
{
// TODO: check: Note, that here the current cost can not be
// infinity, because every time we assign infinity costs for
// edges of old paths, we anyway have the alternative edges
// with non-infinity costs.
dfSumCost += mstEdges[itR->second].dfDirCost;
}
B.insert(std::make_pair(dfSumCost, aoRootPath));
}
}
if (B.empty())
break;
// The best path is the first, because the map is sorted accordingly.
// Note, that here we won't clear the path candidates array and select
// the best path from all of the rest paths, even from those which were
// found on previous iterations. That's why we need k iterations at all.
// Note, that if there were two paths with the same costs and it is the
// LAST iteration the first occurred path will be added, rather than
// random.
A.push_back(B.begin()->second);
// Sometimes B contains fully duplicate paths. Such duplicates have been
// formed during the search of alternative for almost the same paths
// which were already in A.
// We allowed to add them into B so here we must delete all duplicates.
while (!B.empty() && B.begin()->second == A.back())
{
B.erase(B.begin());
}
}
return A;
}
GNMPATH GNMGraph::ConnectedComponents(const GNMVECTOR &anEmittersIDs)
{
GNMPATH anConnectedIDs;
if (anEmittersIDs.empty())
{
CPLError(CE_Failure, CPLE_IllegalArg, "Emitters list is empty.");
return anConnectedIDs;
}
std::set<GNMGFID> anMarkedVertIDs;
std::queue<GNMGFID> anStartQueue;
GNMVECTOR::const_iterator it;
for (it = anEmittersIDs.begin(); it != anEmittersIDs.end(); ++it)
{
anStartQueue.push(*it);
}
// Begin the iterations of the Breadth-first search.
TraceTargets(anStartQueue, anMarkedVertIDs, anConnectedIDs);
return anConnectedIDs;
}
void GNMGraph::Clear()
{
m_mstVertices.clear();
m_mstEdges.clear();
}
void GNMGraph::DijkstraShortestPathTree(
GNMGFID nFID, const std::map<GNMGFID, GNMStdEdge> &mstEdges,
std::map<GNMGFID, GNMGFID> &mnPathTree)
{
// Initialize all vertices in graph with infinity mark.
double dfInfinity = std::numeric_limits<double>::infinity();
std::map<GNMGFID, double> mMarks;
std::map<GNMGFID, GNMStdVertex>::iterator itv;
for (itv = m_mstVertices.begin(); itv != m_mstVertices.end(); ++itv)
{
mMarks[itv->first] = dfInfinity;
}
mMarks[nFID] = 0.0;
mnPathTree[nFID] = -1;
// Initialize all vertices as unseen (there are no seen vertices).
std::set<GNMGFID> snSeen;
// We use multimap to maintain the ascending order of costs and because
// there can be different vertices with the equal cost.
std::multimap<double, GNMGFID> to_see;
std::multimap<double, GNMGFID>::iterator it;
to_see.insert(std::pair<double, GNMGFID>(0.0, nFID));
LPGNMCONSTVECTOR panOutcomeEdgeId;
size_t i;
GNMGFID nCurrentVertId, nCurrentEdgeId, nTargetVertId;
double dfCurrentEdgeCost, dfCurrentVertMark, dfNewVertexMark;
std::map<GNMGFID, GNMStdEdge>::const_iterator ite;
// Continue iterations while there are some vertices to see.
while (!to_see.empty())
{
// We must see vertices with minimal costs at first.
// In multimap the first cost is the minimal.
it = to_see.begin();
nCurrentVertId = it->second;
dfCurrentVertMark = it->first;
snSeen.insert(it->second);
to_see.erase(it);
// For all neighbours for the current vertex.
panOutcomeEdgeId = GetOutEdges(nCurrentVertId);
if (nullptr == panOutcomeEdgeId)
continue;
for (i = 0; i < panOutcomeEdgeId->size(); ++i)
{
nCurrentEdgeId = panOutcomeEdgeId->operator[](i);
ite = mstEdges.find(nCurrentEdgeId);
if (ite == mstEdges.end() || ite->second.bIsBlocked)
continue;
// We go in any edge from source to target so we take only
// direct cost (even if an edge is bi-directed).
dfCurrentEdgeCost = ite->second.dfDirCost;
// While we see outcome edges of current vertex id we definitely
// know that target vertex id will be target for current edge id.
nTargetVertId = GetOppositVertex(nCurrentEdgeId, nCurrentVertId);
// Calculate a new mark assuming the full path cost (mark of the
// current vertex) to this vertex.
dfNewVertexMark = dfCurrentVertMark + dfCurrentEdgeCost;
// Update mark of the vertex if needed.
if (snSeen.find(nTargetVertId) == snSeen.end() &&
dfNewVertexMark < mMarks[nTargetVertId] &&
!CheckVertexBlocked(nTargetVertId))
{
mMarks[nTargetVertId] = dfNewVertexMark;
mnPathTree[nTargetVertId] = nCurrentEdgeId;
// The vertex with minimal cost will be inserted to the
// beginning.
to_see.insert(
std::pair<double, GNMGFID>(dfNewVertexMark, nTargetVertId));
}
}
}
}
LPGNMCONSTVECTOR GNMGraph::GetOutEdges(GNMGFID nFID) const
{
std::map<GNMGFID, GNMStdVertex>::const_iterator it =
m_mstVertices.find(nFID);
if (it != m_mstVertices.end())
return &it->second.anOutEdgeFIDs;
return nullptr;
}
GNMGFID GNMGraph::GetOppositVertex(GNMGFID nEdgeFID, GNMGFID nVertexFID) const
{
std::map<GNMGFID, GNMStdEdge>::const_iterator it =
m_mstEdges.find(nEdgeFID);
if (it != m_mstEdges.end())
{
if (nVertexFID == it->second.nSrcVertexFID)
{
return it->second.nTgtVertexFID;
}
else if (nVertexFID == it->second.nTgtVertexFID)
{
return it->second.nSrcVertexFID;
}
}
return -1;
}
void GNMGraph::TraceTargets(std::queue<GNMGFID> &vertexQueue,
std::set<GNMGFID> &markedVertIds,
GNMPATH &connectedIds)
{
GNMCONSTVECTOR::const_iterator it;
std::queue<GNMGFID> neighbours_queue;
// See all given vertices except thouse that have been already seen.
while (!vertexQueue.empty())
{
GNMGFID nCurVertID = vertexQueue.front();
// There may be duplicate unmarked vertices in a current queue. Check
// it.
if (markedVertIds.find(nCurVertID) == markedVertIds.end())
{
markedVertIds.insert(nCurVertID);
// See all outcome edges, add them to connected and than see the
// target vertex of each edge. Add it to the queue, which will be
// recursively seen the same way on the next iteration.
LPGNMCONSTVECTOR panOutcomeEdgeIDs = GetOutEdges(nCurVertID);
if (nullptr != panOutcomeEdgeIDs)
{
for (it = panOutcomeEdgeIDs->begin();
it != panOutcomeEdgeIDs->end(); ++it)
{
GNMGFID nCurEdgeID = *it;
// ISSUE: think about to return a sequence of vertices and
// edges (which is more universal), as now we are going to
// return only sequence of edges.
connectedIds.push_back(
std::make_pair(nCurVertID, nCurEdgeID));
// Get the only target vertex of this edge. If edge is
// bidirected get not that vertex that with nCurVertID.
GNMGFID nTargetVertID;
/*
std::vector<GNMGFID> target_vert_ids =
_getTgtVert(cur_edge_id); std::vector<GNMGFID>::iterator
itt; for (itt = target_vert_ids.begin(); itt !=
target_vert_ids.end(); ++itt)
{
if ((*itt) != cur_vert_id)
{
target_vert_id = *itt;
break;
}
}
*/
nTargetVertID = GetOppositVertex(nCurEdgeID, nCurVertID);
// Avoid marked or blocked vertices.
if ((markedVertIds.find(nTargetVertID) ==
markedVertIds.end()) &&
(!CheckVertexBlocked(nTargetVertID)))
neighbours_queue.push(nTargetVertID);
}
}
}
vertexQueue.pop();
}
if (!neighbours_queue.empty())
TraceTargets(neighbours_queue, markedVertIds, connectedIds);
}
//! @endcond
|