1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
|
/******************************************************************************
*
* Project: OpenGIS Simple Features Reference Implementation
* Purpose: OGRSpatialReference translation to/from "Panorama" GIS
* georeferencing information (also know as GIS "Integration").
* Author: Andrey Kiselev, dron@ak4719.spb.edu
*
******************************************************************************
* Copyright (c) 2005, Andrey Kiselev <dron@ak4719.spb.edu>
* Copyright (c) 2008-2012, Even Rouault <even dot rouault at spatialys.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
****************************************************************************/
#include "ogr_spatialref.h"
#include "cpl_conv.h"
#include "cpl_csv.h"
#include "ogr_p.h"
#include <cmath>
constexpr double TO_DEGREES = 57.2957795130823208766;
constexpr double TO_RADIANS = 0.017453292519943295769;
// XXX: this macro computes zone number from the central meridian parameter.
// Note, that "Panorama" parameters are set in radians.
// In degrees it means formula:
//
// zone = (central_meridian + 3) / 6
//
static int TO_ZONE(double x)
{
return static_cast<int>((x + 0.05235987755982989) / 0.1047197551196597 +
0.5);
}
/************************************************************************/
/* "Panorama" projection codes. */
/************************************************************************/
constexpr long PAN_PROJ_NONE = -1L;
constexpr long PAN_PROJ_TM = 1L; // Gauss-Kruger (Transverse Mercator)
constexpr long PAN_PROJ_LCC = 2L; // Lambert Conformal Conic 2SP
constexpr long PAN_PROJ_STEREO = 5L; // Stereographic
constexpr long PAN_PROJ_AE = 6L; // Azimuthal Equidistant (Postel)
constexpr long PAN_PROJ_MERCAT = 8L; // Mercator
constexpr long PAN_PROJ_POLYC = 10L; // Polyconic
constexpr long PAN_PROJ_PS = 13L; // Polar Stereographic
constexpr long PAN_PROJ_GNOMON = 15L; // Gnomonic
constexpr long PAN_PROJ_UTM = 17L; // Universal Transverse Mercator (UTM)
constexpr long PAN_PROJ_WAG1 = 18L; // Wagner I (Kavraisky VI)
constexpr long PAN_PROJ_MOLL = 19L; // Mollweide
constexpr long PAN_PROJ_EC = 20L; // Equidistant Conic
constexpr long PAN_PROJ_LAEA = 24L; // Lambert Azimuthal Equal Area
constexpr long PAN_PROJ_EQC = 27L; // Equirectangular
constexpr long PAN_PROJ_CEA = 28L; // Cylindrical Equal Area (Lambert)
constexpr long PAN_PROJ_IMWP = 29L; // International Map of the World Polyconic
constexpr long PAN_PROJ_MILLER = 34L; // Miller
/************************************************************************/
/* "Panorama" datum codes. */
/************************************************************************/
constexpr long PAN_DATUM_NONE = -1L;
constexpr long PAN_DATUM_PULKOVO42 = 1L; // Pulkovo 1942
constexpr long PAN_DATUM_WGS84 = 2L; // WGS84
/************************************************************************/
/* "Panorama" ellipsoid codes. */
/************************************************************************/
constexpr long PAN_ELLIPSOID_NONE = -1L;
constexpr long PAN_ELLIPSOID_KRASSOVSKY = 1L; // Krassovsky, 1940
// constexpr long PAN_ELLIPSOID_WGS72 = 2L; // WGS, 1972
// constexpr long PAN_ELLIPSOID_INT1924 = 3L; // International, 1924
// (Hayford, 1909) constexpr long PAN_ELLIPSOID_CLARCKE1880 = 4L; // Clarke,
// 1880 constexpr long PAN_ELLIPSOID_CLARCKE1866 = 5L; // Clarke, 1866
// (NAD1927) constexpr long PAN_ELLIPSOID_EVEREST1830 = 6L; // Everest, 1830
// constexpr long PAN_ELLIPSOID_BESSEL1841 = 7L; // Bessel, 1841
// constexpr long PAN_ELLIPSOID_AIRY1830 = 8L; // Airy, 1830
constexpr long PAN_ELLIPSOID_WGS84 = 9L; // WGS, 1984 (GPS)
constexpr long PAN_ELLIPSOID_GSK2011 = 46L; // GSK-2011
constexpr long PAN_ELLIPSOID_PZ90 = 47L; // PZ90
/************************************************************************/
/* Correspondence between "Panorama" and EPSG datum codes. */
/************************************************************************/
constexpr int aoDatums[] = {
0,
4284, // Pulkovo, 1942
4326, // WGS, 1984,
4277, // OSGB 1936 (British National Grid)
0, 0, 0, 0, 0,
4200 // Pulkovo, 1995
};
#define NUMBER_OF_DATUMS static_cast<long>(CPL_ARRAYSIZE(aoDatums))
/************************************************************************/
/* Correspondence between "Panorama" and EPSG ellipsoid codes. */
/************************************************************************/
constexpr int aoEllips[] = {
0,
7024, // Krassovsky, 1940
7043, // WGS, 1972
7022, // International, 1924 (Hayford, 1909)
7034, // Clarke, 1880
7008, // Clarke, 1866 (NAD1927)
7015, // Everest, 1830
7004, // Bessel, 1841
7001, // Airy, 1830
7030, // WGS, 1984 (GPS)
0, // FIXME: PZ90.02
7019, // GRS, 1980 (NAD1983)
7022, // International, 1924 (Hayford, 1909) XXX?
7036, // South American, 1969
7021, // Indonesian, 1974
7020, // Helmert 1906
0, // FIXME: Fisher 1960
0, // FIXME: Fisher 1968
0, // FIXME: Haff 1960
7042, // Everest, 1830
7003 // Australian National, 1965
};
constexpr int NUMBER_OF_ELLIPSOIDS = static_cast<int>(CPL_ARRAYSIZE(aoEllips));
/************************************************************************/
/* Correspondence between "Panorama" and EPSG vertical CS. */
/************************************************************************/
constexpr int aoVCS[] = {
0,
8357, // 1
5711, // 2
0, // 3
5710, // 4
5710, // 5
0, // 6
0, // 7
0, // 8
0, // 9
5716, // 10
5733, // 11
0, // 12
0, // 13
0, // 14
0, // 15
5709, // 16
5776, // 17
0, // 18
0, // 19
5717, // 20
5613, // 21
0, // 22
5775, // 23
5702, // 24
5705, // 25
0, // 26
5714 // 27
};
constexpr int NUMBER_OF_VERTICALCS = (sizeof(aoVCS) / sizeof(aoVCS[0]));
/************************************************************************/
/* OSRImportFromPanorama() */
/************************************************************************/
/** Import coordinate system from "Panorama" GIS projection definition.
*
* See OGRSpatialReference::importFromPanorama()
*/
OGRErr OSRImportFromPanorama(OGRSpatialReferenceH hSRS, long iProjSys,
long iDatum, long iEllips, double *padfPrjParams)
{
VALIDATE_POINTER1(hSRS, "OSRImportFromPanorama", OGRERR_FAILURE);
return reinterpret_cast<OGRSpatialReference *>(hSRS)->importFromPanorama(
iProjSys, iDatum, iEllips, padfPrjParams);
}
/************************************************************************/
/* importFromPanorama() */
/************************************************************************/
/**
* Import coordinate system from "Panorama" GIS projection definition.
*
* This method will import projection definition in style, used by
* "Panorama" GIS.
*
* This function is the equivalent of the C function OSRImportFromPanorama().
*
* @param iProjSys Input projection system code, used in GIS "Panorama".
*
* Supported Projections are:
* <ul>
* <li>1: Gauss-Kruger (Transverse Mercator)</li>
* <li>2: Lambert Conformal Conic 2SP</li>
* <li>5: Stereographic</li>
* <li>6: Azimuthal Equidistant (Postel)</li>
* <li>8: Mercator</li>
* <li>10: Polyconic</li>
* <li>13: Polar Stereographic</li>
* <li>15: Gnomonic</li>
* <li>17: Universal Transverse Mercator (UTM)</li>
* <li>18: Wagner I (Kavraisky VI)</li>
* <li>19: Mollweide</li>
* <li>20: Equidistant Conic</li>
* <li>24: Lambert Azimuthal Equal Area</li>
* <li>27: Equirectangular</li>
* <li>28: Cylindrical Equal Area (Lambert)</li>
* <li>29: International Map of the World Polyconic</li>
* </ul>
*
* @param iDatum Input coordinate system.
*
* Supported Datums are:
* <ul>
* <li>1: Pulkovo, 1942</li>
* <li>2: WGS, 1984</li>
* <li>3: OSGB 1936 (British National Grid)</li>
* <li>9: Pulkovo, 1995</li>
* </ul>
*
* @param iEllips Input spheroid.
*
* Supported Spheroids are:
* <ul>
* <li>1: Krassovsky, 1940</li>
* <li>2: WGS, 1972</li>
* <li>3: International, 1924 (Hayford, 1909)</li>
* <li>4: Clarke, 1880</li>
* <li>5: Clarke, 1866 (NAD1927)</li>
* <li>6: Everest, 1830</li>
* <li>7: Bessel, 1841</li>
* <li>8: Airy, 1830</li>
* <li>9: WGS, 1984 (GPS)</li>
* </ul>
*
* @param padfPrjParams Array of 8 coordinate system parameters:
*
* <ul>
* <li>[0] Latitude of the first standard parallel (radians)</li>
* <li>[1] Latitude of the second standard parallel (radians)</li>
* <li>[2] Latitude of center of projection (radians)</li>
* <li>[3] Longitude of center of projection (radians)</li>
* <li>[4] Scaling factor</li>
* <li>[5] False Easting</li>
* <li>[6] False Northing</li>
* <li>[7] Zone number</li>
* </ul>
*
* Particular projection uses different parameters, unused ones may be set to
* zero. If NULL supplied instead of array pointer default values will be used
* (i.e., zeroes).
*
* @return OGRERR_NONE on success or an error code in case of failure.
*/
OGRErr OGRSpatialReference::importFromPanorama(long iProjSys, long iDatum,
long iEllips,
double *padfPrjParams)
{
Clear();
/* -------------------------------------------------------------------- */
/* Use safe defaults if projection parameters are not supplied. */
/* -------------------------------------------------------------------- */
bool bProjAllocated = false;
if (padfPrjParams == nullptr)
{
padfPrjParams = static_cast<double *>(CPLMalloc(8 * sizeof(double)));
if (!padfPrjParams)
return OGRERR_NOT_ENOUGH_MEMORY;
for (int i = 0; i < 7; i++)
padfPrjParams[i] = 0.0;
bProjAllocated = true;
}
/* -------------------------------------------------------------------- */
/* Operate on the basis of the projection code. */
/* -------------------------------------------------------------------- */
switch (iProjSys)
{
case PAN_PROJ_NONE:
break;
case PAN_PROJ_UTM:
{
const int nZone = padfPrjParams[7] == 0.0
? TO_ZONE(padfPrjParams[3])
: static_cast<int>(padfPrjParams[7]);
// XXX: no way to determine south hemisphere. Always assume
// northern hemisphere.
SetUTM(nZone, TRUE);
}
break;
case PAN_PROJ_WAG1:
SetWagner(1, 0.0, padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_MERCAT:
SetMercator(TO_DEGREES * padfPrjParams[0],
TO_DEGREES * padfPrjParams[3], padfPrjParams[4],
padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_PS:
SetPS(TO_DEGREES * padfPrjParams[2], TO_DEGREES * padfPrjParams[3],
padfPrjParams[4], padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_POLYC:
SetPolyconic(TO_DEGREES * padfPrjParams[2],
TO_DEGREES * padfPrjParams[3], padfPrjParams[5],
padfPrjParams[6]);
break;
case PAN_PROJ_EC:
SetEC(TO_DEGREES * padfPrjParams[0], TO_DEGREES * padfPrjParams[1],
TO_DEGREES * padfPrjParams[2], TO_DEGREES * padfPrjParams[3],
padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_LCC:
SetLCC(TO_DEGREES * padfPrjParams[0], TO_DEGREES * padfPrjParams[1],
TO_DEGREES * padfPrjParams[2], TO_DEGREES * padfPrjParams[3],
padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_TM:
{
// XXX: we need zone number to compute false easting
// parameter, because usually it is not contained in the
// "Panorama" projection definition.
// FIXME: what to do with negative values?
int nZone = 0;
double dfCenterLong = 0.0;
if (padfPrjParams[7] == 0.0)
{
nZone = TO_ZONE(padfPrjParams[3]);
dfCenterLong = TO_DEGREES * padfPrjParams[3];
}
else
{
nZone = static_cast<int>(padfPrjParams[7]);
dfCenterLong = 6.0 * nZone - 3.0;
}
padfPrjParams[5] = nZone * 1000000.0 + 500000.0;
padfPrjParams[4] = 1.0;
SetTM(TO_DEGREES * padfPrjParams[2], dfCenterLong, padfPrjParams[4],
padfPrjParams[5], padfPrjParams[6]);
}
break;
case PAN_PROJ_STEREO:
SetStereographic(TO_DEGREES * padfPrjParams[2],
TO_DEGREES * padfPrjParams[3], padfPrjParams[4],
padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_AE:
SetAE(TO_DEGREES * padfPrjParams[0], TO_DEGREES * padfPrjParams[3],
padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_GNOMON:
SetGnomonic(TO_DEGREES * padfPrjParams[2],
TO_DEGREES * padfPrjParams[3], padfPrjParams[5],
padfPrjParams[6]);
break;
case PAN_PROJ_MOLL:
SetMollweide(TO_DEGREES * padfPrjParams[3], padfPrjParams[5],
padfPrjParams[6]);
break;
case PAN_PROJ_LAEA:
SetLAEA(TO_DEGREES * padfPrjParams[0],
TO_DEGREES * padfPrjParams[3], padfPrjParams[5],
padfPrjParams[6]);
break;
case PAN_PROJ_EQC:
SetEquirectangular(TO_DEGREES * padfPrjParams[0],
TO_DEGREES * padfPrjParams[3], padfPrjParams[5],
padfPrjParams[6]);
break;
case PAN_PROJ_CEA:
SetCEA(TO_DEGREES * padfPrjParams[0], TO_DEGREES * padfPrjParams[3],
padfPrjParams[5], padfPrjParams[6]);
break;
case PAN_PROJ_IMWP:
SetIWMPolyconic(TO_DEGREES * padfPrjParams[0],
TO_DEGREES * padfPrjParams[1],
TO_DEGREES * padfPrjParams[3], padfPrjParams[5],
padfPrjParams[6]);
break;
case PAN_PROJ_MILLER:
SetMC(TO_DEGREES * padfPrjParams[5], TO_DEGREES * padfPrjParams[4],
padfPrjParams[6], padfPrjParams[7]);
break;
default:
CPLDebug("OSR_Panorama", "Unsupported projection: %ld", iProjSys);
SetLocalCS(CPLString().Printf("\"Panorama\" projection number %ld",
iProjSys));
break;
}
/* -------------------------------------------------------------------- */
/* Try to translate the datum/spheroid. */
/* -------------------------------------------------------------------- */
if (!IsLocal())
{
if (iDatum > 0 && iDatum < NUMBER_OF_DATUMS && aoDatums[iDatum])
{
OGRSpatialReference oGCS;
oGCS.importFromEPSG(aoDatums[iDatum]);
CopyGeogCSFrom(&oGCS);
}
else if (iEllips == PAN_ELLIPSOID_GSK2011)
{
OGRSpatialReference oGCS;
oGCS.importFromEPSG(7683);
CopyGeogCSFrom(&oGCS);
}
else if (iEllips == PAN_ELLIPSOID_PZ90)
{
SetGeogCS("PZ-90.11", "Parametry_Zemli_1990_11", "PZ-90", 6378136,
298.257839303);
SetAuthority("SPHEROID", "EPSG", 7054);
}
else if (iEllips > 0 && iEllips < NUMBER_OF_ELLIPSOIDS &&
aoEllips[iEllips])
{
char *pszName = nullptr;
double dfSemiMajor = 0.0;
double dfInvFlattening = 0.0;
if (OSRGetEllipsoidInfo(aoEllips[iEllips], &pszName, &dfSemiMajor,
&dfInvFlattening) == OGRERR_NONE)
{
SetGeogCS(
CPLString().Printf(
"Unknown datum based upon the %s ellipsoid", pszName),
CPLString().Printf("Not specified (based on %s spheroid)",
pszName),
pszName, dfSemiMajor, dfInvFlattening, nullptr, 0.0,
nullptr, 0.0);
SetAuthority("SPHEROID", "EPSG", aoEllips[iEllips]);
}
else
{
CPLError(CE_Warning, CPLE_AppDefined,
"Failed to lookup ellipsoid code %ld. "
"Falling back to use Pulkovo 42.",
iEllips);
SetWellKnownGeogCS("EPSG:4284");
}
CPLFree(pszName);
}
else
{
CPLError(CE_Warning, CPLE_AppDefined,
"Wrong datum code %ld. Supported datums are 1--%ld "
"only. Falling back to use Pulkovo 42.",
iDatum, NUMBER_OF_DATUMS - 1);
SetWellKnownGeogCS("EPSG:4284");
}
}
/* -------------------------------------------------------------------- */
/* Grid units translation */
/* -------------------------------------------------------------------- */
if (IsLocal() || IsProjected())
SetLinearUnits(SRS_UL_METER, 1.0);
if (bProjAllocated && padfPrjParams)
CPLFree(padfPrjParams);
return OGRERR_NONE;
}
/**
* Import vertical coordinate system from "Panorama" GIS projection definition.
*
* @param iVCS Input vertical coordinate system ID.
*
* Supported VCS are:
* <ul>
* <li>1: Baltic 1977 height (EPSG:5705)</li>
* <li>2: AHD height (EPSG:5711)</li>
* <li>4: Ostend height (EPSG:5710)</li>
* <li>5: Ostend height (EPSG:5710)</li>
* <li>10: Piraeus height (EPSG:5716)</li>
* <li>11: DNN height (EPSG:5733)</li>
* <li>16: NAP height (EPSG:5709)</li>
* <li>17: NN54 height (EPSG:5776)</li>
* <li>20: N60 height (EPSG:5717)</li>
* <li>21: RH2000 height (EPSG:5613)</li>
* <li>23: Antalya height (EPSG:5775)</li>
* <li>24: NGVD29 height (ftUS) (EPSG:5702)</li>
* <li>25: Baltic 1977 height (EPSG:5705)</li>
* <li>27: MSL height (EPSG:5714)</li>
* </ul>
*/
OGRErr OGRSpatialReference::importVertCSFromPanorama(int iVCS)
{
if (iVCS < 0 || iVCS >= NUMBER_OF_VERTICALCS)
{
return OGRERR_CORRUPT_DATA;
}
const int nEPSG = aoVCS[iVCS];
if (nEPSG == 0)
{
CPLError(CE_Warning, CPLE_NotSupported,
"Vertical coordinate system (Panorama index %d) not supported",
iVCS);
return OGRERR_UNSUPPORTED_SRS;
}
OGRSpatialReference sr;
sr.SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER);
OGRErr eImportFromEPSGErr = sr.importFromEPSG(nEPSG);
if (eImportFromEPSGErr != OGRERR_NONE)
{
CPLError(CE_Warning, CPLE_None,
"Vertical coordinate system (Panorama index %d, EPSG %d) "
"import from EPSG error",
iVCS, nEPSG);
return OGRERR_UNSUPPORTED_SRS;
}
if (sr.IsVertical() != 1)
{
CPLError(CE_Warning, CPLE_None,
"Coordinate system (Panorama index %d, EPSG %d) "
"is not Vertical",
iVCS, nEPSG);
return OGRERR_UNSUPPORTED_SRS;
}
OGRErr eSetVertCSErr =
SetVertCS(sr.GetAttrValue("VERT_CS"), sr.GetAttrValue("VERT_DATUM"));
if (eSetVertCSErr != OGRERR_NONE)
{
CPLError(CE_Warning, CPLE_None,
"Vertical coordinate system (Panorama index %d, EPSG %d) "
"set error",
iVCS, nEPSG);
return eSetVertCSErr;
}
return OGRERR_NONE;
}
/************************************************************************/
/* OSRExportToPanorama() */
/************************************************************************/
/** Export coordinate system in "Panorama" GIS projection definition.
*
* See OGRSpatialReference::exportToPanorama()
*/
OGRErr OSRExportToPanorama(OGRSpatialReferenceH hSRS, long *piProjSys,
long *piDatum, long *piEllips, long *piZone,
double *padfPrjParams)
{
VALIDATE_POINTER1(hSRS, "OSRExportToPanorama", OGRERR_FAILURE);
VALIDATE_POINTER1(piProjSys, "OSRExportToPanorama", OGRERR_FAILURE);
VALIDATE_POINTER1(piDatum, "OSRExportToPanorama", OGRERR_FAILURE);
VALIDATE_POINTER1(piEllips, "OSRExportToPanorama", OGRERR_FAILURE);
VALIDATE_POINTER1(padfPrjParams, "OSRExportToPanorama", OGRERR_FAILURE);
return reinterpret_cast<OGRSpatialReference *>(hSRS)->exportToPanorama(
piProjSys, piDatum, piEllips, piZone, padfPrjParams);
}
/************************************************************************/
/* exportToPanorama() */
/************************************************************************/
/**
* Export coordinate system in "Panorama" GIS projection definition.
*
* This method is the equivalent of the C function OSRExportToPanorama().
*
* @param piProjSys Pointer to variable, where the projection system code will
* be returned.
*
* @param piDatum Pointer to variable, where the coordinate system code will
* be returned.
*
* @param piEllips Pointer to variable, where the spheroid code will be
* returned.
*
* @param piZone Pointer to variable, where the zone for UTM projection
* system will be returned.
*
* @param padfPrjParams an existing 7 double buffer into which the
* projection parameters will be placed. See importFromPanorama()
* for the list of parameters.
*
* @return OGRERR_NONE on success or an error code on failure.
*/
OGRErr OGRSpatialReference::exportToPanorama(long *piProjSys, long *piDatum,
long *piEllips, long *piZone,
double *padfPrjParams) const
{
CPLAssert(padfPrjParams);
const char *pszProjection = GetAttrValue("PROJECTION");
/* -------------------------------------------------------------------- */
/* Fill all projection parameters with zero. */
/* -------------------------------------------------------------------- */
*piDatum = 0L;
*piEllips = 0L;
*piZone = 0L;
for (int i = 0; i < 7; i++)
padfPrjParams[i] = 0.0;
/* ==================================================================== */
/* Handle the projection definition. */
/* ==================================================================== */
if (IsLocal())
{
*piProjSys = PAN_PROJ_NONE;
}
else if (pszProjection == nullptr)
{
#ifdef DEBUG
CPLDebug("OSR_Panorama",
"Empty projection definition, considered as Geographic");
#endif
*piProjSys = PAN_PROJ_NONE;
}
else if (EQUAL(pszProjection, SRS_PT_MERCATOR_1SP))
{
*piProjSys = PAN_PROJ_MERCAT;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[4] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_POLAR_STEREOGRAPHIC))
{
*piProjSys = PAN_PROJ_PS;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[4] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_POLYCONIC))
{
*piProjSys = PAN_PROJ_POLYC;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_EQUIDISTANT_CONIC))
{
*piProjSys = PAN_PROJ_EC;
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0);
padfPrjParams[1] =
TO_RADIANS * GetNormProjParm(SRS_PP_STANDARD_PARALLEL_2, 0.0);
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_LAMBERT_CONFORMAL_CONIC_2SP))
{
*piProjSys = PAN_PROJ_LCC;
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0);
padfPrjParams[1] =
TO_RADIANS * GetNormProjParm(SRS_PP_STANDARD_PARALLEL_2, 0.0);
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_TRANSVERSE_MERCATOR))
{
int bNorth = FALSE;
*piZone = GetUTMZone(&bNorth);
if (*piZone != 0)
{
*piProjSys = PAN_PROJ_UTM;
if (!bNorth)
*piZone = -*piZone;
}
else
{
*piProjSys = PAN_PROJ_TM;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[4] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
}
else if (EQUAL(pszProjection, SRS_PT_WAGNER_I))
{
*piProjSys = PAN_PROJ_WAG1;
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_STEREOGRAPHIC))
{
*piProjSys = PAN_PROJ_STEREO;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[4] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_AZIMUTHAL_EQUIDISTANT))
{
*piProjSys = PAN_PROJ_AE;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0);
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_CENTER, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_GNOMONIC))
{
*piProjSys = PAN_PROJ_GNOMON;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_MOLLWEIDE))
{
*piProjSys = PAN_PROJ_MOLL;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_LAMBERT_AZIMUTHAL_EQUAL_AREA))
{
*piProjSys = PAN_PROJ_LAEA;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_EQUIRECTANGULAR))
{
*piProjSys = PAN_PROJ_EQC;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_CYLINDRICAL_EQUAL_AREA))
{
*piProjSys = PAN_PROJ_CEA;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[2] =
TO_RADIANS * GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_IMW_POLYCONIC))
{
*piProjSys = PAN_PROJ_IMWP;
padfPrjParams[3] =
TO_RADIANS * GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0);
padfPrjParams[0] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_1ST_POINT, 0.0);
padfPrjParams[1] =
TO_RADIANS * GetNormProjParm(SRS_PP_LATITUDE_OF_2ND_POINT, 0.0);
padfPrjParams[5] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
padfPrjParams[6] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
// Projection unsupported by "Panorama" GIS
else
{
CPLDebug("OSR_Panorama",
"Projection \"%s\" unsupported by \"Panorama\" GIS. "
"Geographic system will be used.",
pszProjection);
*piProjSys = PAN_PROJ_NONE;
}
/* -------------------------------------------------------------------- */
/* Translate the datum. */
/* -------------------------------------------------------------------- */
const char *pszDatum = GetAttrValue("DATUM");
if (pszDatum == nullptr)
{
*piDatum = PAN_DATUM_NONE;
*piEllips = PAN_ELLIPSOID_NONE;
}
else if (EQUAL(pszDatum, "Pulkovo_1942"))
{
*piDatum = PAN_DATUM_PULKOVO42;
*piEllips = PAN_ELLIPSOID_KRASSOVSKY;
}
else if (EQUAL(pszDatum, SRS_DN_WGS84))
{
*piDatum = PAN_DATUM_WGS84;
*piEllips = PAN_ELLIPSOID_WGS84;
}
// If not found well known datum, translate ellipsoid.
else
{
const double dfSemiMajor = GetSemiMajor();
const double dfInvFlattening = GetInvFlattening();
#ifdef DEBUG
CPLDebug("OSR_Panorama",
"Datum \"%s\" unsupported by \"Panorama\" GIS. "
"Trying to translate an ellipsoid definition.",
pszDatum);
#endif
int i = 0; // Used after for.
for (; i < NUMBER_OF_ELLIPSOIDS; i++)
{
if (aoEllips[i])
{
double dfSM = 0.0;
double dfIF = 1.0;
if (OSRGetEllipsoidInfo(aoEllips[i], nullptr, &dfSM, &dfIF) ==
OGRERR_NONE &&
std::abs(dfSemiMajor - dfSM) < 1e-10 * dfSemiMajor &&
std::abs(dfInvFlattening - dfIF) < 1e-10 * dfInvFlattening)
{
*piEllips = i;
break;
}
}
}
if (i == NUMBER_OF_ELLIPSOIDS) // Didn't found matches.
{
#ifdef DEBUG
CPLDebug("OSR_Panorama",
R"(Ellipsoid "%s" unsupported by "Panorama" GIS.)",
pszDatum);
#endif
*piDatum = PAN_DATUM_NONE;
*piEllips = PAN_ELLIPSOID_NONE;
}
}
return OGRERR_NONE;
}
|