1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
|
/******************************************************************************
*
* Project: OpenGIS Simple Features Reference Implementation
* Purpose: OGRSpatialReference translation to/from USGS georeferencing
* information (used in GCTP package).
* Author: Andrey Kiselev, dron@ak4719.spb.edu
*
******************************************************************************
* Copyright (c) 2004, Andrey Kiselev <dron@ak4719.spb.edu>
* Copyright (c) 2008-2009, Even Rouault <even dot rouault at spatialys.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
****************************************************************************/
#include "cpl_port.h"
#include "ogr_srs_api.h"
#include <cmath>
#include <cstddef>
#include "cpl_conv.h"
#include "cpl_csv.h"
#include "cpl_error.h"
#include "cpl_string.h"
#include "ogr_core.h"
#include "ogr_p.h"
#include "ogr_spatialref.h"
/************************************************************************/
/* GCTP projection codes. */
/************************************************************************/
constexpr long GEO = 0L; // Geographic
constexpr long UTM = 1L; // Universal Transverse Mercator (UTM)
constexpr long SPCS = 2L; // State Plane Coordinates
constexpr long ALBERS = 3L; // Albers Conical Equal Area
constexpr long LAMCC = 4L; // Lambert Conformal Conic
constexpr long MERCAT = 5L; // Mercator
constexpr long PS = 6L; // Polar Stereographic
constexpr long POLYC = 7L; // Polyconic
constexpr long EQUIDC = 8L; // Equidistant Conic
constexpr long TM = 9L; // Transverse Mercator
constexpr long STEREO = 10L; // Stereographic
constexpr long LAMAZ = 11L; // Lambert Azimuthal Equal Area
constexpr long AZMEQD = 12L; // Azimuthal Equidistant
constexpr long GNOMON = 13L; // Gnomonic
constexpr long ORTHO = 14L; // Orthographic
// constexpr long GVNSP = 15L; // General Vertical Near-Side Perspective
constexpr long SNSOID = 16L; // Sinusiodal
constexpr long EQRECT = 17L; // Equirectangular
constexpr long MILLER = 18L; // Miller Cylindrical
constexpr long VGRINT = 19L; // Van der Grinten
constexpr long HOM = 20L; // (Hotine) Oblique Mercator
constexpr long ROBIN = 21L; // Robinson
// constexpr long SOM = 22L; // Space Oblique Mercator (SOM)
// constexpr long ALASKA = 23L; // Alaska Conformal
// constexpr long GOODE = 24L; // Interrupted Goode Homolosine
constexpr long MOLL = 25L; // Mollweide
// constexpr long IMOLL = 26L; // Interrupted Mollweide
// constexpr long HAMMER = 27L; // Hammer
constexpr long WAGIV = 28L; // Wagner IV
constexpr long WAGVII = 29L; // Wagner VII
// constexpr long OBEQA = 30L; // Oblated Equal Area
// constexpr long ISINUS1 = 31L; // Integerized Sinusoidal Grid (the same as 99)
// constexpr long CEA = 97L; // Cylindrical Equal Area (Grid corners set
// in meters for EASE grid)
// constexpr long BCEA = 98L; // Cylindrical Equal Area (Grid corners set
// in DMS degs for EASE grid)
// constexpr long ISINUS = 99L; // Integerized Sinusoidal Grid
// (added by Raj Gejjagaraguppe ARC for MODIS)
/************************************************************************/
/* GCTP ellipsoid codes. */
/************************************************************************/
constexpr long CLARKE1866 = 0L;
// constexpr long CLARKE1880 = 1L;
// constexpr long BESSEL = 2L;
// constexpr long INTERNATIONAL1967 = 3L;
// constexpr long INTERNATIONAL1909 = 4L;
// constexpr long WGS72 = 5L;
// constexpr long EVEREST = 6L;
// constexpr long WGS66 = 7L;
constexpr long GRS1980 = 8L;
// constexpr long AIRY = 9L;
// constexpr long MODIFIED_EVEREST = 10L;
// constexpr long MODIFIED_AIRY = 11L;
constexpr long WGS84 = 12L;
// constexpr long SOUTHEAST_ASIA = 13L;
// constexpr long AUSTRALIAN_NATIONAL= 14L;
// constexpr long KRASSOVSKY = 15L;
// constexpr long HOUGH = 16L;
// constexpr long MERCURY1960 = 17L;
// constexpr long MODIFIED_MERCURY = 18L;
// constexpr long SPHERE = 19L;
/************************************************************************/
/* Correspondence between GCTP and EPSG ellipsoid codes. */
/************************************************************************/
constexpr int aoEllips[] = {
7008, // Clarke, 1866 (NAD1927)
7034, // Clarke, 1880
7004, // Bessel, 1841
0, // FIXME: New International, 1967 --- skipped
7022, // International, 1924 (Hayford, 1909) XXX?
7043, // WGS, 1972
7042, // Everest, 1830
7025, // FIXME: WGS, 1966
7019, // GRS, 1980 (NAD1983)
7001, // Airy, 1830
7018, // Modified Everest
7002, // Modified Airy
7030, // WGS, 1984 (GPS)
0, // FIXME: Southeast Asia --- skipped
7003, // Australian National, 1965
7024, // Krassovsky, 1940
7053, // Hough
0, // FIXME: Mercury, 1960 --- skipped
0, // FIXME: Modified Mercury, 1968 --- skipped
7047, // Sphere, rad 6370997 m (normal sphere)
7006, // Bessel, 1841 (Namibia)
7016, // Everest (Sabah & Sarawak)
7044, // Everest, 1956
7056, // Everest, Malaysia 1969
7018, // Everest, Malay & Singapr 1948
0, // FIXME: Everest, Pakistan --- skipped
7022, // Hayford (International 1924) XXX?
7020, // Helmert 1906
7021, // Indonesian, 1974
7036, // South American, 1969
0 // FIXME: WGS 60 --- skipped
};
#define NUMBER_OF_ELLIPSOIDS static_cast<int>(CPL_ARRAYSIZE(aoEllips))
/************************************************************************/
/* OSRImportFromUSGS() */
/************************************************************************/
/**
* \brief Import coordinate system from USGS projection definition.
*
* This function is the same as OGRSpatialReference::importFromUSGS().
*/
OGRErr OSRImportFromUSGS(OGRSpatialReferenceH hSRS, long iProjsys, long iZone,
double *padfPrjParams, long iDatum)
{
VALIDATE_POINTER1(hSRS, "OSRImportFromUSGS", OGRERR_FAILURE);
return OGRSpatialReference::FromHandle(hSRS)->importFromUSGS(
iProjsys, iZone, padfPrjParams, iDatum);
}
static double OGRSpatialReferenceUSGSUnpackNoOp(double dfVal)
{
return dfVal;
}
static double OGRSpatialReferenceUSGSUnpackRadian(double dfVal)
{
return dfVal * 180.0 / M_PI;
}
/************************************************************************/
/* importFromUSGS() */
/************************************************************************/
/**
\brief Import coordinate system from USGS projection definition.
This method will import projection definition in style, used by USGS GCTP
software. GCTP operates on angles in packed DMS format (see
CPLDecToPackedDMS() function for details), so all angle values (latitudes,
longitudes, azimuths, etc.) specified in the padfPrjParams array should
be in the packed DMS format, unless bAnglesInPackedDMSFormat is set to FALSE.
*
This function is the equivalent of the C function OSRImportFromUSGS().
Note that the bAnglesInPackedDMSFormat parameter is only present in the C++
method. The C function assumes bAnglesInPackedFormat = TRUE.
@param iProjSys Input projection system code, used in GCTP.
@param iZone Input zone for UTM and State Plane projection systems. For
Southern Hemisphere UTM use a negative zone code. iZone ignored for all
other projections.
@param padfPrjParams Array of 15 coordinate system parameters. These
parameters differs for different projections.
\verbatim
Projection Transformation Package Projection Parameters:
----------------------------------------------------------------------------
| Array Element
Code & Projection Id |---------------------------------------------------
| 0 | 1 | 2 | 3 | 4 | 5 |6 | 7
----------------------------------------------------------------------------
0 Geographic | | | | | | | |
1 U T M |Lon/Z |Lat/Z | | | | | |
2 State Plane | | | | | | | |
3 Albers Equal Area |SMajor|SMinor|STDPR1|STDPR2|CentMer|OriginLat|FE|FN
4 Lambert Conformal C |SMajor|SMinor|STDPR1|STDPR2|CentMer|OriginLat|FE|FN
5 Mercator |SMajor|SMinor| | |CentMer|TrueScale|FE|FN
6 Polar Stereographic |SMajor|SMinor| | |LongPol|TrueScale|FE|FN
7 Polyconic |SMajor|SMinor| | |CentMer|OriginLat|FE|FN
8 Equid. Conic A |SMajor|SMinor|STDPAR| |CentMer|OriginLat|FE|FN
Equid. Conic B |SMajor|SMinor|STDPR1|STDPR2|CentMer|OriginLat|FE|FN
9 Transverse Mercator |SMajor|SMinor|Factor| |CentMer|OriginLat|FE|FN
10 Stereographic |Sphere| | | |CentLon|CenterLat|FE|FN
11 Lambert Azimuthal |Sphere| | | |CentLon|CenterLat|FE|FN
12 Azimuthal |Sphere| | | |CentLon|CenterLat|FE|FN
13 Gnomonic |Sphere| | | |CentLon|CenterLat|FE|FN
14 Orthographic |Sphere| | | |CentLon|CenterLat|FE|FN
15 Gen. Vert. Near Per |Sphere| |Height| |CentLon|CenterLat|FE|FN
16 Sinusoidal |Sphere| | | |CentMer| |FE|FN
17 Equirectangular |Sphere| | | |CentMer|TrueScale|FE|FN
18 Miller Cylindrical |Sphere| | | |CentMer| |FE|FN
19 Van der Grinten |Sphere| | | |CentMer|OriginLat|FE|FN
20 Hotin Oblique Merc A |SMajor|SMinor|Factor| | |OriginLat|FE|FN
Hotin Oblique Merc B |SMajor|SMinor|Factor|AziAng|AzmthPt|OriginLat|FE|FN
21 Robinson |Sphere| | | |CentMer| |FE|FN
22 Space Oblique Merc A |SMajor|SMinor| |IncAng|AscLong| |FE|FN
Space Oblique Merc B |SMajor|SMinor|Satnum|Path | | |FE|FN
23 Alaska Conformal |SMajor|SMinor| | | | |FE|FN
24 Interrupted Goode |Sphere| | | | | | |
25 Mollweide |Sphere| | | |CentMer| |FE|FN
26 Interrupt Mollweide |Sphere| | | | | | |
27 Hammer |Sphere| | | |CentMer| |FE|FN
28 Wagner IV |Sphere| | | |CentMer| |FE|FN
29 Wagner VII |Sphere| | | |CentMer| |FE|FN
30 Oblated Equal Area |Sphere| |Shapem|Shapen|CentLon|CenterLat|FE|FN
----------------------------------------------------------------------------
----------------------------------------------------
| Array Element |
Code & Projection Id |---------------------------
| 8 | 9 | 10 | 11 | 12 |
----------------------------------------------------
0 Geographic | | | | | |
1 U T M | | | | | |
2 State Plane | | | | | |
3 Albers Equal Area | | | | | |
4 Lambert Conformal C | | | | | |
5 Mercator | | | | | |
6 Polar Stereographic | | | | | |
7 Polyconic | | | | | |
8 Equid. Conic A |zero | | | | |
Equid. Conic B |one | | | | |
9 Transverse Mercator | | | | | |
10 Stereographic | | | | | |
11 Lambert Azimuthal | | | | | |
12 Azimuthal | | | | | |
13 Gnomonic | | | | | |
14 Orthographic | | | | | |
15 Gen. Vert. Near Per | | | | | |
16 Sinusoidal | | | | | |
17 Equirectangular | | | | | |
18 Miller Cylindrical | | | | | |
19 Van der Grinten | | | | | |
20 Hotin Oblique Merc A |Long1|Lat1|Long2|Lat2|zero|
Hotin Oblique Merc B | | | | |one |
21 Robinson | | | | | |
22 Space Oblique Merc A |PSRev|LRat|PFlag| |zero|
Space Oblique Merc B | | | | |one |
23 Alaska Conformal | | | | | |
24 Interrupted Goode | | | | | |
25 Mollweide | | | | | |
26 Interrupt Mollweide | | | | | |
27 Hammer | | | | | |
28 Wagner IV | | | | | |
29 Wagner VII | | | | | |
30 Oblated Equal Area |Angle| | | | |
----------------------------------------------------
where
Lon/Z Longitude of any point in the UTM zone or zero. If zero,
a zone code must be specified.
Lat/Z Latitude of any point in the UTM zone or zero. If zero, a
zone code must be specified.
SMajor Semi-major axis of ellipsoid. If zero, Clarke 1866 in meters
is assumed.
SMinor Eccentricity squared of the ellipsoid if less than zero,
if zero, a spherical form is assumed, or if greater than
zero, the semi-minor axis of ellipsoid.
Sphere Radius of reference sphere. If zero, 6370997 meters is used.
STDPAR Latitude of the standard parallel
STDPR1 Latitude of the first standard parallel
STDPR2 Latitude of the second standard parallel
CentMer Longitude of the central meridian
OriginLat Latitude of the projection origin
FE False easting in the same units as the semi-major axis
FN False northing in the same units as the semi-major axis
TrueScale Latitude of true scale
LongPol Longitude down below pole of map
Factor Scale factor at central meridian (Transverse Mercator) or
center of projection (Hotine Oblique Mercator)
CentLon Longitude of center of projection
CenterLat Latitude of center of projection
Height Height of perspective point
Long1 Longitude of first point on center line (Hotine Oblique
Mercator, format A)
Long2 Longitude of second point on center line (Hotine Oblique
Mercator, format A)
Lat1 Latitude of first point on center line (Hotine Oblique
Mercator, format A)
Lat2 Latitude of second point on center line (Hotine Oblique
Mercator, format A)
AziAng Azimuth angle east of north of center line (Hotine Oblique
Mercator, format B)
AzmthPt Longitude of point on central meridian where azimuth occurs
(Hotine Oblique Mercator, format B)
IncAng Inclination of orbit at ascending node, counter-clockwise
from equator (SOM, format A)
AscLong Longitude of ascending orbit at equator (SOM, format A)
PSRev Period of satellite revolution in minutes (SOM, format A)
LRat Landsat ratio to compensate for confusion at northern end
of orbit (SOM, format A -- use 0.5201613)
PFlag End of path flag for Landsat: 0 = start of path,
1 = end of path (SOM, format A)
Satnum Landsat Satellite Number (SOM, format B)
Path Landsat Path Number (Use WRS-1 for Landsat 1, 2 and 3 and
WRS-2 for Landsat 4, 5 and 6.) (SOM, format B)
Shapem Oblated Equal Area oval shape parameter m
Shapen Oblated Equal Area oval shape parameter n
Angle Oblated Equal Area oval rotation angle
Array elements 13 and 14 are set to zero. All array elements with blank
fields are set to zero too.
\endverbatim
@param iDatum Input spheroid.<p>
If the datum code is negative, the first two values in the parameter array
(param) are used to define the values as follows:
<ul>
<li> If padfPrjParams[0] is a non-zero value and padfPrjParams[1] is
greater than one, the semimajor axis is set to padfPrjParams[0] and
the semiminor axis is set to padfPrjParams[1].
<li> If padfPrjParams[0] is nonzero and padfPrjParams[1] is greater than
zero but less than or equal to one, the semimajor axis is set to
padfPrjParams[0] and the semiminor axis is computed from the eccentricity
squared value padfPrjParams[1]:<p>
semiminor = sqrt(1.0 - ES)semimajor<p>
where<p>
ES = eccentricity squared
<li> If padfPrjParams[0] is nonzero and padfPrjParams[1] is equal to zero,
the semimajor axis and semiminor axis are set to padfPrjParams[0].
<li> If padfPrjParams[0] equals zero and padfPrjParams[1] is greater than
zero, the default Clarke 1866 is used to assign values to the semimajor
axis and semiminor axis.
<li> If padfPrjParams[0] and padfPrjParams[1] equals zero, the semimajor
axis is set to 6370997.0 and the semiminor axis is set to zero.
</ul>
If a datum code is zero or greater, the semimajor and semiminor axis are
defined by the datum code as found in the following table:
Supported Datums are:
<ul>
<li>0: Clarke 1866 (default)
<li>1: Clarke 1880
<li>2: Bessel
<li>3: International 1967
<li>4: International 1909
<li>5: WGS 72
<li>6: Everest
<li>7: WGS 66
<li>8: GRS 1980/WGS 84
<li>9: Airy
<li>10: Modified Everest
<li>11: Modified Airy
<li>12: WGS 84
<li>13: Southeast Asia
<li>14: Australian National
<li>15: Krassovsky
<li>16: Hough
<li>17: Mercury 1960
<li>18: Modified Mercury 1968
<li>19: Sphere of Radius 6370997 meters
</ul>
@param nUSGSAngleFormat one of USGS_ANGLE_DECIMALDEGREES,
USGS_ANGLE_PACKEDDMS, or USGS_ANGLE_RADIANS (default is
USGS_ANGLE_PACKEDDMS).
@return OGRERR_NONE on success or an error code in case of failure.
*/
OGRErr OGRSpatialReference::importFromUSGS(long iProjSys, long iZone,
double *padfPrjParams, long iDatum,
int nUSGSAngleFormat)
{
if (!padfPrjParams)
return OGRERR_CORRUPT_DATA;
double (*pfnUnpackAnglesFn)(double) = nullptr;
if (nUSGSAngleFormat == USGS_ANGLE_DECIMALDEGREES)
pfnUnpackAnglesFn = OGRSpatialReferenceUSGSUnpackNoOp;
else if (nUSGSAngleFormat == USGS_ANGLE_RADIANS)
pfnUnpackAnglesFn = OGRSpatialReferenceUSGSUnpackRadian;
else
pfnUnpackAnglesFn = CPLPackedDMSToDec;
/* -------------------------------------------------------------------- */
/* Operate on the basis of the projection code. */
/* -------------------------------------------------------------------- */
switch (iProjSys)
{
case GEO:
break;
case UTM:
{
int bNorth = TRUE;
if (!iZone)
{
if (padfPrjParams[2] != 0.0)
{
iZone = static_cast<long>(padfPrjParams[2]);
}
else if (padfPrjParams[0] != 0.0 && padfPrjParams[1] != 0.0)
{
const double dfUnpackedAngle =
pfnUnpackAnglesFn(padfPrjParams[0]);
iZone = static_cast<long>(
((dfUnpackedAngle + 180.0) / 6.0) + 1.0);
if (dfUnpackedAngle < 0)
bNorth = FALSE;
}
}
if (iZone < -60 || iZone > 60)
return OGRERR_CORRUPT_DATA;
if (iZone < 0)
{
iZone = -iZone;
bNorth = FALSE;
}
SetUTM(static_cast<int>(iZone), bNorth);
}
break;
case SPCS:
{
int bNAD83 = TRUE;
if (iDatum == 0)
bNAD83 = FALSE;
else if (iDatum != 8)
CPLError(CE_Warning, CPLE_AppDefined,
"Wrong datum for State Plane projection %d. "
"Should be 0 or 8.",
static_cast<int>(iDatum));
SetStatePlane(static_cast<int>(iZone), bNAD83);
}
break;
case ALBERS:
SetACEA(pfnUnpackAnglesFn(padfPrjParams[2]),
pfnUnpackAnglesFn(padfPrjParams[3]),
pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case LAMCC:
SetLCC(pfnUnpackAnglesFn(padfPrjParams[2]),
pfnUnpackAnglesFn(padfPrjParams[3]),
pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case MERCAT:
SetMercator(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), 1.0,
padfPrjParams[6], padfPrjParams[7]);
break;
case PS:
SetPS(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), 1.0, padfPrjParams[6],
padfPrjParams[7]);
break;
case POLYC:
SetPolyconic(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case EQUIDC:
if (padfPrjParams[8] != 0.0)
{
SetEC(pfnUnpackAnglesFn(padfPrjParams[2]),
pfnUnpackAnglesFn(padfPrjParams[3]),
pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
}
else
{
SetEC(pfnUnpackAnglesFn(padfPrjParams[2]),
pfnUnpackAnglesFn(padfPrjParams[2]),
pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
}
break;
case TM:
SetTM(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[2],
padfPrjParams[6], padfPrjParams[7]);
break;
case STEREO:
SetStereographic(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), 1.0,
padfPrjParams[6], padfPrjParams[7]);
break;
case LAMAZ:
SetLAEA(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case AZMEQD:
SetAE(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case GNOMON:
SetGnomonic(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case ORTHO:
SetOrthographic(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]),
padfPrjParams[6], padfPrjParams[7]);
break;
// FIXME: GVNSP --- General Vertical Near-Side Perspective skipped.
case SNSOID:
SetSinusoidal(pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case EQRECT:
SetEquirectangular2(0.0, pfnUnpackAnglesFn(padfPrjParams[4]),
pfnUnpackAnglesFn(padfPrjParams[5]),
padfPrjParams[6], padfPrjParams[7]);
break;
case MILLER:
SetMC(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case VGRINT:
SetVDG(pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
case HOM:
if (padfPrjParams[12] != 0.0)
{
SetHOM(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[4]),
pfnUnpackAnglesFn(padfPrjParams[3]), 0.0,
padfPrjParams[2], padfPrjParams[6], padfPrjParams[7]);
}
else
{
SetHOM2PNO(pfnUnpackAnglesFn(padfPrjParams[5]),
pfnUnpackAnglesFn(padfPrjParams[9]),
pfnUnpackAnglesFn(padfPrjParams[8]),
pfnUnpackAnglesFn(padfPrjParams[11]),
pfnUnpackAnglesFn(padfPrjParams[10]),
padfPrjParams[2], padfPrjParams[6],
padfPrjParams[7]);
}
break;
case ROBIN:
SetRobinson(pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
// FIXME: SOM --- Space Oblique Mercator skipped.
// FIXME: ALASKA --- Alaska Conformal skipped.
// FIXME: GOODE --- Interrupted Goode skipped.
case MOLL:
SetMollweide(pfnUnpackAnglesFn(padfPrjParams[4]), padfPrjParams[6],
padfPrjParams[7]);
break;
// FIXME: IMOLL --- Interrupted Mollweide skipped.
// FIXME: HAMMER --- Hammer skipped.
case WAGIV:
SetWagner(4, 0.0, padfPrjParams[6], padfPrjParams[7]);
break;
case WAGVII:
SetWagner(7, 0.0, padfPrjParams[6], padfPrjParams[7]);
break;
// FIXME: OBEQA --- Oblated Equal Area skipped.
// FIXME: ISINUS1 --- Integerized Sinusoidal Grid (the same as 99).
// FIXME: CEA --- Cylindrical Equal Area skipped (Grid corners set
// in meters for EASE grid).
// FIXME: BCEA --- Cylindrical Equal Area skipped (Grid corners set
// in DMS degs for EASE grid).
// FIXME: ISINUS --- Integrized Sinusoidal skipped.
default:
CPLDebug("OSR_USGS", "Unsupported projection: %ld", iProjSys);
SetLocalCS(
CPLString().Printf("GCTP projection number %ld", iProjSys));
break;
}
/* -------------------------------------------------------------------- */
/* Try to translate the datum/spheroid. */
/* -------------------------------------------------------------------- */
if (!IsLocal())
{
char *pszName = nullptr;
double dfSemiMajor = 0.0;
double dfInvFlattening = 0.0;
if (iDatum < 0) // Use specified ellipsoid parameters.
{
if (padfPrjParams[0] > 0.0)
{
if (padfPrjParams[1] > 1.0)
{
dfInvFlattening = OSRCalcInvFlattening(padfPrjParams[0],
padfPrjParams[1]);
}
else if (padfPrjParams[1] > 0.0)
{
dfInvFlattening =
1.0 / (1.0 - sqrt(1.0 - padfPrjParams[1]));
}
else
{
dfInvFlattening = 0.0;
}
SetGeogCS("Unknown datum based upon the custom spheroid",
"Not specified (based on custom spheroid)",
"Custom spheroid", padfPrjParams[0], dfInvFlattening,
nullptr, 0, nullptr, 0);
}
else if (padfPrjParams[1] > 0.0) // Clarke 1866.
{
if (OSRGetEllipsoidInfo(7008, &pszName, &dfSemiMajor,
&dfInvFlattening) == OGRERR_NONE)
{
SetGeogCS(
CPLString().Printf(
"Unknown datum based upon the %s ellipsoid",
pszName),
CPLString().Printf(
"Not specified (based on %s spheroid)", pszName),
pszName, dfSemiMajor, dfInvFlattening, nullptr, 0.0,
nullptr, 0.0);
SetAuthority("SPHEROID", "EPSG", 7008);
}
}
else // Sphere, rad 6370997 m
{
if (OSRGetEllipsoidInfo(7047, &pszName, &dfSemiMajor,
&dfInvFlattening) == OGRERR_NONE)
{
SetGeogCS(
CPLString().Printf(
"Unknown datum based upon the %s ellipsoid",
pszName),
CPLString().Printf(
"Not specified (based on %s spheroid)", pszName),
pszName, dfSemiMajor, dfInvFlattening, nullptr, 0.0,
nullptr, 0.0);
SetAuthority("SPHEROID", "EPSG", 7047);
}
}
}
else if (iDatum < NUMBER_OF_ELLIPSOIDS && aoEllips[iDatum])
{
if (OSRGetEllipsoidInfo(aoEllips[iDatum], &pszName, &dfSemiMajor,
&dfInvFlattening) == OGRERR_NONE)
{
SetGeogCS(
CPLString().Printf(
"Unknown datum based upon the %s ellipsoid", pszName),
CPLString().Printf("Not specified (based on %s spheroid)",
pszName),
pszName, dfSemiMajor, dfInvFlattening, nullptr, 0.0,
nullptr, 0.0);
SetAuthority("SPHEROID", "EPSG", aoEllips[iDatum]);
}
else
{
CPLError(CE_Warning, CPLE_AppDefined,
"Failed to lookup datum code %d. "
"Falling back to use WGS84.",
static_cast<int>(iDatum));
SetWellKnownGeogCS("WGS84");
}
}
else
{
CPLError(CE_Warning, CPLE_AppDefined,
"Wrong datum code %d. Supported datums 0--%d only. "
"Setting WGS84 as a fallback.",
static_cast<int>(iDatum), NUMBER_OF_ELLIPSOIDS);
SetWellKnownGeogCS("WGS84");
}
CPLFree(pszName);
}
/* -------------------------------------------------------------------- */
/* Grid units translation */
/* -------------------------------------------------------------------- */
if (IsLocal() || IsProjected())
SetLinearUnits(SRS_UL_METER, 1.0);
return OGRERR_NONE;
}
/************************************************************************/
/* OSRExportToUSGS() */
/************************************************************************/
/**
* \brief Export coordinate system in USGS GCTP projection definition.
*
* This function is the same as OGRSpatialReference::exportToUSGS().
*/
OGRErr OSRExportToUSGS(OGRSpatialReferenceH hSRS, long *piProjSys, long *piZone,
double **ppadfPrjParams, long *piDatum)
{
VALIDATE_POINTER1(hSRS, "OSRExportToUSGS", OGRERR_FAILURE);
*ppadfPrjParams = nullptr;
return OGRSpatialReference::FromHandle(hSRS)->exportToUSGS(
piProjSys, piZone, ppadfPrjParams, piDatum);
}
/************************************************************************/
/* exportToUSGS() */
/************************************************************************/
/**
* \brief Export coordinate system in USGS GCTP projection definition.
*
* This method is the equivalent of the C function OSRExportToUSGS().
*
* @param piProjSys Pointer to variable, where the projection system code will
* be returned.
*
* @param piZone Pointer to variable, where the zone for UTM and State Plane
* projection systems will be returned.
*
* @param ppadfPrjParams Pointer to which dynamically allocated array of
* 15 projection parameters will be assigned. See importFromUSGS() for
* the list of parameters. Caller responsible to free this array.
*
* @param piDatum Pointer to variable, where the datum code will
* be returned.
*
* @return OGRERR_NONE on success or an error code on failure.
*/
OGRErr OGRSpatialReference::exportToUSGS(long *piProjSys, long *piZone,
double **ppadfPrjParams,
long *piDatum) const
{
const char *pszProjection = GetAttrValue("PROJECTION");
/* -------------------------------------------------------------------- */
/* Fill all projection parameters with zero. */
/* -------------------------------------------------------------------- */
*ppadfPrjParams = static_cast<double *>(CPLMalloc(15 * sizeof(double)));
for (int i = 0; i < 15; i++)
(*ppadfPrjParams)[i] = 0.0;
*piZone = 0L;
/* ==================================================================== */
/* Handle the projection definition. */
/* ==================================================================== */
if (IsLocal())
*piProjSys = GEO;
else if (pszProjection == nullptr)
{
#ifdef DEBUG
CPLDebug("OSR_USGS",
"Empty projection definition, considered as Geographic");
#endif
*piProjSys = GEO;
}
else if (EQUAL(pszProjection, SRS_PT_ALBERS_CONIC_EQUAL_AREA))
{
*piProjSys = ALBERS;
(*ppadfPrjParams)[2] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0));
(*ppadfPrjParams)[3] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_2, 0.0));
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_LAMBERT_CONFORMAL_CONIC_2SP))
{
*piProjSys = LAMCC;
(*ppadfPrjParams)[2] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0));
(*ppadfPrjParams)[3] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_2, 0.0));
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_MERCATOR_1SP))
{
*piProjSys = MERCAT;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_POLAR_STEREOGRAPHIC))
{
*piProjSys = PS;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_POLYCONIC))
{
*piProjSys = POLYC;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_EQUIDISTANT_CONIC))
{
*piProjSys = EQUIDC;
(*ppadfPrjParams)[2] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0));
(*ppadfPrjParams)[3] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_2, 0.0));
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
(*ppadfPrjParams)[8] = 1.0;
}
else if (EQUAL(pszProjection, SRS_PT_TRANSVERSE_MERCATOR))
{
int bNorth;
*piZone = GetUTMZone(&bNorth);
if (*piZone != 0)
{
*piProjSys = UTM;
if (!bNorth)
*piZone = -*piZone;
}
else
{
*piProjSys = TM;
(*ppadfPrjParams)[2] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
(*ppadfPrjParams)[4] = CPLDecToPackedDMS(
GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] = CPLDecToPackedDMS(
GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
}
else if (EQUAL(pszProjection, SRS_PT_STEREOGRAPHIC))
{
*piProjSys = STEREO;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_LAMBERT_AZIMUTHAL_EQUAL_AREA))
{
*piProjSys = LAMAZ;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_AZIMUTHAL_EQUIDISTANT))
{
*piProjSys = AZMEQD;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_GNOMONIC))
{
*piProjSys = GNOMON;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_ORTHOGRAPHIC))
{
*piProjSys = ORTHO;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_ORIGIN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_SINUSOIDAL))
{
*piProjSys = SNSOID;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_EQUIRECTANGULAR))
{
*piProjSys = EQRECT;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_STANDARD_PARALLEL_1, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_MILLER_CYLINDRICAL))
{
*piProjSys = MILLER;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_VANDERGRINTEN))
{
*piProjSys = VGRINT;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_HOTINE_OBLIQUE_MERCATOR))
{
*piProjSys = HOM;
(*ppadfPrjParams)[2] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
(*ppadfPrjParams)[3] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_AZIMUTH, 0.0));
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
(*ppadfPrjParams)[12] = 1.0;
}
else if (EQUAL(pszProjection,
SRS_PT_HOTINE_OBLIQUE_MERCATOR_TWO_POINT_NATURAL_ORIGIN))
{
*piProjSys = HOM;
(*ppadfPrjParams)[2] = GetNormProjParm(SRS_PP_SCALE_FACTOR, 1.0);
(*ppadfPrjParams)[5] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
(*ppadfPrjParams)[8] = CPLDecToPackedDMS(
GetNormProjParm(SRS_PP_LONGITUDE_OF_POINT_1, 0.0));
(*ppadfPrjParams)[9] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_POINT_1, 0.0));
(*ppadfPrjParams)[10] = CPLDecToPackedDMS(
GetNormProjParm(SRS_PP_LONGITUDE_OF_POINT_2, 0.0));
(*ppadfPrjParams)[11] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LATITUDE_OF_POINT_2, 0.0));
(*ppadfPrjParams)[12] = 0.0;
}
else if (EQUAL(pszProjection, SRS_PT_ROBINSON))
{
*piProjSys = ROBIN;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_LONGITUDE_OF_CENTER, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_MOLLWEIDE))
{
*piProjSys = MOLL;
(*ppadfPrjParams)[4] =
CPLDecToPackedDMS(GetNormProjParm(SRS_PP_CENTRAL_MERIDIAN, 0.0));
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_WAGNER_IV))
{
*piProjSys = WAGIV;
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
else if (EQUAL(pszProjection, SRS_PT_WAGNER_VII))
{
*piProjSys = WAGVII;
(*ppadfPrjParams)[6] = GetNormProjParm(SRS_PP_FALSE_EASTING, 0.0);
(*ppadfPrjParams)[7] = GetNormProjParm(SRS_PP_FALSE_NORTHING, 0.0);
}
// Projection unsupported by GCTP.
else
{
CPLDebug("OSR_USGS",
"Projection \"%s\" unsupported by USGS GCTP. "
"Geographic system will be used.",
pszProjection);
*piProjSys = GEO;
}
/* -------------------------------------------------------------------- */
/* Translate the datum. */
/* -------------------------------------------------------------------- */
const char *pszDatum = GetAttrValue("DATUM");
if (pszDatum)
{
if (EQUAL(pszDatum, SRS_DN_NAD27))
{
*piDatum = CLARKE1866;
}
else if (EQUAL(pszDatum, SRS_DN_NAD83))
{
*piDatum = GRS1980;
}
else if (EQUAL(pszDatum, SRS_DN_WGS84))
{
*piDatum = WGS84;
}
// If not found well known datum, translate ellipsoid.
else
{
const double dfSemiMajor = GetSemiMajor();
const double dfInvFlattening = GetInvFlattening();
#ifdef DEBUG
CPLDebug("OSR_USGS",
"Datum \"%s\" unsupported by USGS GCTP. "
"Try to translate ellipsoid definition.",
pszDatum);
#endif
int i = 0; // Used after for.
for (; i < NUMBER_OF_ELLIPSOIDS; i++)
{
double dfSM = 0.0;
double dfIF = 0.0;
if (OSRGetEllipsoidInfo(aoEllips[i], nullptr, &dfSM, &dfIF) ==
OGRERR_NONE &&
CPLIsEqual(dfSemiMajor, dfSM) &&
CPLIsEqual(dfInvFlattening, dfIF))
{
*piDatum = i;
break;
}
}
if (i == NUMBER_OF_ELLIPSOIDS) // Didn't found matches; set
{ // custom ellipsoid parameters.
#ifdef DEBUG
CPLDebug("OSR_USGS",
"Ellipsoid \"%s\" unsupported by USGS GCTP. "
"Custom ellipsoid definition will be used.",
pszDatum);
#endif
*piDatum = -1;
(*ppadfPrjParams)[0] = dfSemiMajor;
if (std::abs(dfInvFlattening) < 0.000000000001)
{
(*ppadfPrjParams)[1] = dfSemiMajor;
}
else
{
(*ppadfPrjParams)[1] =
dfSemiMajor * (1.0 - 1.0 / dfInvFlattening);
}
}
}
}
else
{
*piDatum = -1;
}
return OGRERR_NONE;
}
|