| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 
 | /******************************************************************************
 *
 * Project:  FlatGeobuf
 * Purpose:  Packed RTree management
 * Author:   Björn Harrtell <bjorn at wololo dot org>
 *
 ******************************************************************************
 * Copyright (c) 2018-2020, Björn Harrtell <bjorn at wololo dot org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 ****************************************************************************/
// NOTE: The upstream of this file is in
// https://github.com/bjornharrtell/flatgeobuf/tree/master/src/cpp
#ifdef GDAL_COMPILATION
#include "cpl_port.h"
#else
#define CPL_IS_LSB 1
#endif
#include "packedrtree.h"
#include <algorithm>
#include <limits>
#include <map>
#include <unordered_map>
#include <iostream>
namespace FlatGeobuf
{
const NodeItem &NodeItem::expand(const NodeItem &r)
{
    if (r.minX < minX)
        minX = r.minX;
    if (r.minY < minY)
        minY = r.minY;
    if (r.maxX > maxX)
        maxX = r.maxX;
    if (r.maxY > maxY)
        maxY = r.maxY;
    return *this;
}
NodeItem NodeItem::create(uint64_t offset)
{
    return {std::numeric_limits<double>::infinity(),
            std::numeric_limits<double>::infinity(),
            -1 * std::numeric_limits<double>::infinity(),
            -1 * std::numeric_limits<double>::infinity(), offset};
}
bool NodeItem::intersects(const NodeItem &r) const
{
    if (maxX < r.minX)
        return false;
    if (maxY < r.minY)
        return false;
    if (minX > r.maxX)
        return false;
    if (minY > r.maxY)
        return false;
    return true;
}
std::vector<double> NodeItem::toVector()
{
    return std::vector<double>{minX, minY, maxX, maxY};
}
// Based on public domain code at
// https://github.com/rawrunprotected/hilbert_curves
uint32_t hilbert(uint32_t x, uint32_t y)
{
    uint32_t a = x ^ y;
    uint32_t b = 0xFFFF ^ a;
    uint32_t c = 0xFFFF ^ (x | y);
    uint32_t d = x & (y ^ 0xFFFF);
    uint32_t A = a | (b >> 1);
    uint32_t B = (a >> 1) ^ a;
    uint32_t C = ((c >> 1) ^ (b & (d >> 1))) ^ c;
    uint32_t D = ((a & (c >> 1)) ^ (d >> 1)) ^ d;
    a = A;
    b = B;
    c = C;
    d = D;
    A = ((a & (a >> 2)) ^ (b & (b >> 2)));
    B = ((a & (b >> 2)) ^ (b & ((a ^ b) >> 2)));
    C ^= ((a & (c >> 2)) ^ (b & (d >> 2)));
    D ^= ((b & (c >> 2)) ^ ((a ^ b) & (d >> 2)));
    a = A;
    b = B;
    c = C;
    d = D;
    A = ((a & (a >> 4)) ^ (b & (b >> 4)));
    B = ((a & (b >> 4)) ^ (b & ((a ^ b) >> 4)));
    C ^= ((a & (c >> 4)) ^ (b & (d >> 4)));
    D ^= ((b & (c >> 4)) ^ ((a ^ b) & (d >> 4)));
    a = A;
    b = B;
    c = C;
    d = D;
    C ^= ((a & (c >> 8)) ^ (b & (d >> 8)));
    D ^= ((b & (c >> 8)) ^ ((a ^ b) & (d >> 8)));
    a = C ^ (C >> 1);
    b = D ^ (D >> 1);
    uint32_t i0 = x ^ y;
    uint32_t i1 = b | (0xFFFF ^ (i0 | a));
    i0 = (i0 | (i0 << 8)) & 0x00FF00FF;
    i0 = (i0 | (i0 << 4)) & 0x0F0F0F0F;
    i0 = (i0 | (i0 << 2)) & 0x33333333;
    i0 = (i0 | (i0 << 1)) & 0x55555555;
    i1 = (i1 | (i1 << 8)) & 0x00FF00FF;
    i1 = (i1 | (i1 << 4)) & 0x0F0F0F0F;
    i1 = (i1 | (i1 << 2)) & 0x33333333;
    i1 = (i1 | (i1 << 1)) & 0x55555555;
    uint32_t value = ((i1 << 1) | i0);
    return value;
}
uint32_t hilbert(const NodeItem &r, uint32_t hilbertMax, const double minX,
                 const double minY, const double width, const double height)
{
    uint32_t x = 0;
    uint32_t y = 0;
    uint32_t v;
    if (width != 0.0)
        x = static_cast<uint32_t>(
            floor(hilbertMax * ((r.minX + r.maxX) / 2 - minX) / width));
    if (height != 0.0)
        y = static_cast<uint32_t>(
            floor(hilbertMax * ((r.minY + r.maxY) / 2 - minY) / height));
    v = hilbert(x, y);
    return v;
}
const uint32_t hilbertMax = (1 << 16) - 1;
void hilbertSort(std::vector<std::shared_ptr<Item>> &items)
{
    NodeItem extent = calcExtent(items);
    const double minX = extent.minX;
    const double minY = extent.minY;
    const double width = extent.width();
    const double height = extent.height();
    std::sort(items.begin(), items.end(),
              [minX, minY, width, height](std::shared_ptr<Item> a,
                                          std::shared_ptr<Item> b)
              {
                  uint32_t ha = hilbert(a->nodeItem, hilbertMax, minX, minY,
                                        width, height);
                  uint32_t hb = hilbert(b->nodeItem, hilbertMax, minX, minY,
                                        width, height);
                  return ha > hb;
              });
}
void hilbertSort(std::vector<NodeItem> &items)
{
    NodeItem extent = calcExtent(items);
    const double minX = extent.minX;
    const double minY = extent.minY;
    const double width = extent.width();
    const double height = extent.height();
    std::sort(items.begin(), items.end(),
              [minX, minY, width, height](const NodeItem &a, const NodeItem &b)
              {
                  uint32_t ha =
                      hilbert(a, hilbertMax, minX, minY, width, height);
                  uint32_t hb =
                      hilbert(b, hilbertMax, minX, minY, width, height);
                  return ha > hb;
              });
}
NodeItem calcExtent(const std::vector<std::shared_ptr<Item>> &items)
{
    return std::accumulate(items.begin(), items.end(), NodeItem::create(0),
                           [](NodeItem a, const std::shared_ptr<Item> &b)
                           { return a.expand(b->nodeItem); });
}
NodeItem calcExtent(const std::vector<NodeItem> &nodes)
{
    return std::accumulate(nodes.begin(), nodes.end(), NodeItem::create(0),
                           [](NodeItem a, const NodeItem &b)
                           { return a.expand(b); });
}
void PackedRTree::init(const uint16_t nodeSize)
{
    if (nodeSize < 2)
        throw std::invalid_argument("Node size must be at least 2");
    if (_numItems == 0)
        throw std::invalid_argument("Cannot create empty tree");
    _nodeSize = std::min(std::max(nodeSize, static_cast<uint16_t>(2)),
                         static_cast<uint16_t>(65535));
    _levelBounds = generateLevelBounds(_numItems, _nodeSize);
    _numNodes = _levelBounds.front().second;
    _nodeItems = new NodeItem[static_cast<size_t>(_numNodes)];
}
std::vector<std::pair<uint64_t, uint64_t>>
PackedRTree::generateLevelBounds(const uint64_t numItems,
                                 const uint16_t nodeSize)
{
    if (nodeSize < 2)
        throw std::invalid_argument("Node size must be at least 2");
    if (numItems == 0)
        throw std::invalid_argument("Number of items must be greater than 0");
    if (numItems >
        std::numeric_limits<uint64_t>::max() - ((numItems / nodeSize) * 2))
        throw std::overflow_error("Number of items too large");
    // number of nodes per level in bottom-up order
    std::vector<uint64_t> levelNumNodes;
    uint64_t n = numItems;
    uint64_t numNodes = n;
    levelNumNodes.push_back(n);
    do
    {
        n = (n + nodeSize - 1) / nodeSize;
        numNodes += n;
        levelNumNodes.push_back(n);
    } while (n != 1);
    // bounds per level in reversed storage order (top-down)
    std::vector<uint64_t> levelOffsets;
    n = numNodes;
    for (auto size : levelNumNodes)
        levelOffsets.push_back(n -= size);
    std::reverse(levelOffsets.begin(), levelOffsets.end());
    std::reverse(levelNumNodes.begin(), levelNumNodes.end());
    std::vector<std::pair<uint64_t, uint64_t>> levelBounds;
    for (size_t i = 0; i < levelNumNodes.size(); i++)
        levelBounds.push_back(std::pair<uint64_t, uint64_t>(
            levelOffsets[i], levelOffsets[i] + levelNumNodes[i]));
    std::reverse(levelBounds.begin(), levelBounds.end());
    return levelBounds;
}
void PackedRTree::generateNodes()
{
    for (uint32_t i = 0; i < _levelBounds.size() - 1; i++)
    {
        auto pos = _levelBounds[i].first;
        auto end = _levelBounds[i].second;
        auto newpos = _levelBounds[i + 1].first;
        while (pos < end)
        {
            NodeItem node = NodeItem::create(pos);
            for (uint32_t j = 0; j < _nodeSize && pos < end; j++)
                node.expand(_nodeItems[pos++]);
            _nodeItems[newpos++] = node;
        }
    }
}
void PackedRTree::fromData(const void *data)
{
    auto buf = reinterpret_cast<const uint8_t *>(data);
    const NodeItem *pn = reinterpret_cast<const NodeItem *>(buf);
    for (uint64_t i = 0; i < _numNodes; i++)
    {
        NodeItem n = *pn++;
        _nodeItems[i] = n;
        _extent.expand(n);
    }
}
PackedRTree::PackedRTree(const std::vector<std::shared_ptr<Item>> &items,
                         const NodeItem &extent, const uint16_t nodeSize)
    : _extent(extent), _numItems(items.size())
{
    init(nodeSize);
    for (size_t i = 0; i < _numItems; i++)
        _nodeItems[_numNodes - _numItems + i] = items[i]->nodeItem;
    generateNodes();
}
PackedRTree::PackedRTree(const std::vector<NodeItem> &nodes,
                         const NodeItem &extent, const uint16_t nodeSize)
    : _extent(extent), _numItems(nodes.size())
{
    init(nodeSize);
    for (size_t i = 0; i < _numItems; i++)
        _nodeItems[_numNodes - _numItems + i] = nodes[i];
    generateNodes();
}
PackedRTree::PackedRTree(const void *data, const uint64_t numItems,
                         const uint16_t nodeSize)
    : _extent(NodeItem::create(0)), _numItems(numItems)
{
    init(nodeSize);
    fromData(data);
}
std::vector<SearchResultItem>
PackedRTree::search(double minX, double minY, double maxX, double maxY) const
{
    uint64_t leafNodesOffset = _levelBounds.front().first;
    NodeItem n{minX, minY, maxX, maxY, 0};
    std::vector<SearchResultItem> results;
    std::unordered_map<uint64_t, uint64_t> queue;
    queue.insert(std::pair<uint64_t, uint64_t>(0, _levelBounds.size() - 1));
    while (queue.size() != 0)
    {
        auto next = queue.begin();
        uint64_t nodeIndex = next->first;
        uint64_t level = next->second;
        queue.erase(next);
        bool isLeafNode = nodeIndex >= _numNodes - _numItems;
        // find the end index of the node
        uint64_t end =
            std::min(static_cast<uint64_t>(nodeIndex + _nodeSize),
                     _levelBounds[static_cast<size_t>(level)].second);
        // search through child nodes
        for (uint64_t pos = nodeIndex; pos < end; pos++)
        {
            auto nodeItem = _nodeItems[static_cast<size_t>(pos)];
            if (!n.intersects(nodeItem))
                continue;
            if (isLeafNode)
                results.push_back({nodeItem.offset, pos - leafNodesOffset});
            else
                queue.insert(
                    std::pair<uint64_t, uint64_t>(nodeItem.offset, level - 1));
        }
    }
    return results;
}
std::vector<SearchResultItem> PackedRTree::streamSearch(
    const uint64_t numItems, const uint16_t nodeSize, const NodeItem &item,
    const std::function<void(uint8_t *, size_t, size_t)> &readNode)
{
    auto levelBounds = generateLevelBounds(numItems, nodeSize);
    uint64_t leafNodesOffset = levelBounds.front().first;
    uint64_t numNodes = levelBounds.front().second;
    auto nodeItems = std::vector<NodeItem>(nodeSize);
    uint8_t *nodesBuf = reinterpret_cast<uint8_t *>(nodeItems.data());
    // use ordered search queue to make index traversal in sequential order
    std::map<uint64_t, uint64_t> queue;
    std::vector<SearchResultItem> results;
    queue.insert(std::pair<uint64_t, uint64_t>(0, levelBounds.size() - 1));
    while (queue.size() != 0)
    {
        auto next = queue.begin();
        uint64_t nodeIndex = next->first;
        uint64_t level = next->second;
        queue.erase(next);
        bool isLeafNode = nodeIndex >= numNodes - numItems;
        // find the end index of the node
        uint64_t end = std::min(static_cast<uint64_t>(nodeIndex + nodeSize),
                                levelBounds[static_cast<size_t>(level)].second);
        uint64_t length = end - nodeIndex;
        readNode(nodesBuf, static_cast<size_t>(nodeIndex * sizeof(NodeItem)),
                 static_cast<size_t>(length * sizeof(NodeItem)));
#if !CPL_IS_LSB
        for (size_t i = 0; i < static_cast<size_t>(length); i++)
        {
            CPL_LSBPTR64(&nodeItems[i].minX);
            CPL_LSBPTR64(&nodeItems[i].minY);
            CPL_LSBPTR64(&nodeItems[i].maxX);
            CPL_LSBPTR64(&nodeItems[i].maxY);
            CPL_LSBPTR64(&nodeItems[i].offset);
        }
#endif
        // search through child nodes
        for (uint64_t pos = nodeIndex; pos < end; pos++)
        {
            uint64_t nodePos = pos - nodeIndex;
            auto nodeItem = nodeItems[static_cast<size_t>(nodePos)];
            if (!item.intersects(nodeItem))
                continue;
            if (isLeafNode)
                results.push_back({nodeItem.offset, pos - leafNodesOffset});
            else
                queue.insert(
                    std::pair<uint64_t, uint64_t>(nodeItem.offset, level - 1));
        }
    }
    return results;
}
uint64_t PackedRTree::size() const
{
    return _numNodes * sizeof(NodeItem);
}
uint64_t PackedRTree::size(const uint64_t numItems, const uint16_t nodeSize)
{
    if (nodeSize < 2)
        throw std::invalid_argument("Node size must be at least 2");
    if (numItems == 0)
        throw std::invalid_argument("Number of items must be greater than 0");
    const uint16_t nodeSizeMin =
        std::min(std::max(nodeSize, static_cast<uint16_t>(2)),
                 static_cast<uint16_t>(65535));
    // limit so that resulting size in bytes can be represented by uint64_t
    if (numItems > static_cast<uint64_t>(1) << 56)
        throw std::overflow_error("Number of items must be less than 2^56");
    uint64_t n = numItems;
    uint64_t numNodes = n;
    do
    {
        n = (n + nodeSizeMin - 1) / nodeSizeMin;
        numNodes += n;
    } while (n != 1);
    return numNodes * sizeof(NodeItem);
}
void PackedRTree::streamWrite(
    const std::function<void(uint8_t *, size_t)> &writeData)
{
#if !CPL_IS_LSB
    for (size_t i = 0; i < static_cast<size_t>(_numNodes); i++)
    {
        CPL_LSBPTR64(&_nodeItems[i].minX);
        CPL_LSBPTR64(&_nodeItems[i].minY);
        CPL_LSBPTR64(&_nodeItems[i].maxX);
        CPL_LSBPTR64(&_nodeItems[i].maxY);
        CPL_LSBPTR64(&_nodeItems[i].offset);
    }
#endif
    writeData(reinterpret_cast<uint8_t *>(_nodeItems),
              static_cast<size_t>(_numNodes * sizeof(NodeItem)));
#if !CPL_IS_LSB
    for (size_t i = 0; i < static_cast<size_t>(_numNodes); i++)
    {
        CPL_LSBPTR64(&_nodeItems[i].minX);
        CPL_LSBPTR64(&_nodeItems[i].minY);
        CPL_LSBPTR64(&_nodeItems[i].maxX);
        CPL_LSBPTR64(&_nodeItems[i].maxY);
        CPL_LSBPTR64(&_nodeItems[i].offset);
    }
#endif
}
NodeItem PackedRTree::getExtent() const
{
    return _extent;
}
}  // namespace FlatGeobuf
 |