1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
/*
* Copyright 2014-2021 Esri
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
*
* Project: Meta Raster File Format Driver Implementation, overlay support
* Purpose: Implementation overlay support for MRF
*
* Author: Lucian Plesea, Lucian.Plesea jpl.nasa.gov, lplesea esri.com
*
******************************************************************************
* This source file contains the non GDAL standard part of the MRF overview
*building The PatchOverview method only handles powers of 2 overviews!!
****************************************************************************/
#include "marfa.h"
#include <vector>
NAMESPACE_MRF_START
//
// Scales by 2x2 a buffer in place, using Nearest resampling
// Always pick the top-left corner
//
template <typename T> static void NearByFour(T *buff, int xsz, int ysz)
{
T *obuff = buff;
for (int line = 0; line < ysz; line++)
{
// Copy every other pixel
for (int col = 0; col < xsz; col++, buff++)
{
*obuff++ = *buff++;
}
// Skip every other line
buff += xsz * 2;
}
}
//
// If the NoData value exists, pick a valid pixel if possible
//
template <typename T> static void NearByFour(T *buff, int xsz, int ysz, T ndv)
{
T *obuff = buff;
T *evenline = buff;
for (int line = 0; line < ysz; line++)
{
T *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
if (evenline[0] != ndv)
*obuff++ = evenline[0];
else if (evenline[1] != ndv)
*obuff++ = evenline[1];
else if (oddline[0] != ndv)
*obuff++ = oddline[0];
else
*obuff++ = oddline[1];
evenline += 2;
oddline += 2;
}
evenline += xsz * 2; // Skips the other input line
}
}
// Scales by 2x2 using averaging
// There are lots of these AverageByFour templates, because some types have to
// be treated slightly different than others. Some could be folded by using
// is_integral(), but support is not universal There are two categories,
// depending on NoData presence
//
// Integer data types shorter than 32 bit use integer math safely
template <typename T> static void AverageByFour(T *buff, int xsz, int ysz)
{
T *obuff = buff;
T *evenline = buff;
for (int line = 0; line < ysz; line++)
{
T *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
*obuff++ =
(2 + evenline[0] + evenline[1] + oddline[0] + oddline[1]) / 4;
evenline += 2;
oddline += 2;
}
evenline += xsz * 2; // Skips the other line
}
}
// 32bit int specialization, avoiding overflow by using 64bit int math
template <> void AverageByFour<GInt32>(GInt32 *buff, int xsz, int ysz)
{
GInt32 *obuff = buff;
GInt32 *evenline = buff;
for (int line = 0; line < ysz; line++)
{
GInt32 *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
*obuff++ = (GIntBig(2) + evenline[0] + evenline[1] + oddline[0] +
oddline[1]) /
4;
evenline += 2;
oddline += 2;
}
evenline += xsz * 2; // Skips the other line
}
}
// Same for 32bit unsigned int specialization
template <> void AverageByFour<GUInt32>(GUInt32 *buff, int xsz, int ysz)
{
GUInt32 *obuff = buff;
GUInt32 *evenline = buff;
for (int line = 0; line < ysz; line++)
{
GUInt32 *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
*obuff++ = (GIntBig(2) + evenline[0] + evenline[1] + oddline[0] +
oddline[1]) /
4;
evenline += 2;
oddline += 2;
}
evenline += xsz * 2; // Skips the other line
}
}
// float specialization
template <> void AverageByFour<float>(float *buff, int xsz, int ysz)
{
float *obuff = buff;
float *evenline = buff;
for (int line = 0; line < ysz; line++)
{
float *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
*obuff++ =
(evenline[0] + evenline[1] + oddline[0] + oddline[1]) * 0.25f;
evenline += 2;
oddline += 2;
}
evenline += xsz * 2; // Skips the other line
}
}
// double specialization
template <> void AverageByFour<double>(double *buff, int xsz, int ysz)
{
double *obuff = buff;
double *evenline = buff;
for (int line = 0; line < ysz; line++)
{
double *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
*obuff++ =
(evenline[0] + evenline[1] + oddline[0] + oddline[1]) * 0.25;
evenline += 2;
oddline += 2;
}
evenline += xsz * 2; // Skips the other line
}
}
//
// Integer type specialization, with roundup and integer math, avoids overflow
// using GIntBig accumulator Speedup by specialization for smaller byte count
// int types is probably not worth much since there are so many conditions here
//
template <typename T>
static void AverageByFour(T *buff, int xsz, int ysz, T ndv)
{
T *obuff = buff;
T *evenline = buff;
for (int line = 0; line < ysz; line++)
{
T *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
GIntBig acc = 0;
int count = 0;
// Temporary macro to accumulate the sum, uses the value, increments the pointer
// Careful with this one, it has side effects
#define use(valp) \
if (*valp != ndv) \
{ \
acc += *valp; \
count++; \
}; \
valp++;
use(evenline);
use(evenline);
use(oddline);
use(oddline);
#undef use
// The count/2 is the bias to obtain correct rounding
*obuff++ = T((count != 0) ? ((acc + count / 2) / count) : ndv);
}
evenline += xsz * 2; // Skips every other line
}
}
// float specialization
template <> void AverageByFour<float>(float *buff, int xsz, int ysz, float ndv)
{
float *obuff = buff;
float *evenline = buff;
for (int line = 0; line < ysz; line++)
{
float *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
double acc = 0;
double count = 0;
// Temporary macro to accumulate the sum, uses the value, increments the pointer
// Careful with this one, it has side effects
#define use(valp) \
if (*valp != ndv) \
{ \
acc += *valp; \
count += 1.0; \
}; \
valp++;
use(evenline);
use(evenline);
use(oddline);
use(oddline);
#undef use
// Output value is eiher accumulator divided by count or the
// NoDataValue
*obuff++ = float((count != 0.0) ? acc / count : ndv);
}
evenline += xsz * 2; // Skips every other line
}
}
// double specialization, same as above
template <>
void AverageByFour<double>(double *buff, int xsz, int ysz, double ndv)
{
double *obuff = buff;
double *evenline = buff;
for (int line = 0; line < ysz; line++)
{
double *oddline = evenline + xsz * 2;
for (int col = 0; col < xsz; col++)
{
double acc = 0;
double count = 0;
// Temporary macro to accumulate the sum, uses the value, increments the pointer
// Careful with this one, it has side effects
#define use(valp) \
if (*valp != ndv) \
{ \
acc += *valp; \
count += 1.0; \
}; \
valp++;
use(evenline);
use(evenline);
use(oddline);
use(oddline);
#undef use
// Output value is eiher accumulator divided by count or the
// NoDataValue
*obuff++ = ((count != 0.0) ? acc / count : ndv);
}
evenline += xsz * 2; // Skips every other line
}
}
/*
*\brief Patches an overview for the selected area
* arguments are in blocks in the source level, if toTheTop is false it only
*does the next level It will read adjacent blocks if they are needed, so actual
*area read might be padded by one block in either side
*/
CPLErr MRFDataset::PatchOverview(int BlockX, int BlockY, int Width, int Height,
int srcLevel, int recursive, int sampling_mode)
{
CPLErr status = CE_None;
GDALRasterBand *b0 = GetRasterBand(1);
if (b0->GetOverviewCount() <= srcLevel)
return CE_None;
int BlockXOut = BlockX / 2; // Round down
Width += BlockX & 1; // Increment width if rounding down
int BlockYOut = BlockY / 2; // Round down
Height += BlockY & 1; // Increment height if rounding down
int WidthOut = Width / 2 + (Width & 1); // Round up
int HeightOut = Height / 2 + (Height & 1); // Round up
int bands = GetRasterCount();
int tsz_x, tsz_y;
b0->GetBlockSize(&tsz_x, &tsz_y);
GDALDataType eDataType = b0->GetRasterDataType();
int pixel_size =
GDALGetDataTypeSizeBytes(eDataType); // Bytes per pixel per band
int line_size = tsz_x * pixel_size; // A line has this many bytes
int buffer_size = line_size * tsz_y; // A block size in bytes
// Build a vector of input and output bands
std::vector<GDALRasterBand *> src_b;
std::vector<GDALRasterBand *> dst_b;
for (int band = 1; band <= bands; band++)
{
if (srcLevel == 0)
src_b.push_back(GetRasterBand(band));
else
src_b.push_back(GetRasterBand(band)->GetOverview(srcLevel - 1));
dst_b.push_back(GetRasterBand(band)->GetOverview(srcLevel));
}
// Allocate input space for four blocks
std::vector<GByte> buffer(buffer_size * 4);
// If the page is interleaved, we only need to check the page exists
// otherwise we need to check each band block
int check_bands = (bands == current.pagesize.c) ? 1 : bands;
//
// The inner loop is the band, so it is efficient for interleaved data.
// There is no penalty for separate bands either.
//
for (int y = 0; y < HeightOut && CE_None == status; y++)
{
int dst_offset_y = BlockYOut + y;
int src_offset_y = dst_offset_y * 2;
for (int x = 0; x < WidthOut && CE_None == status; x++)
{
int dst_offset_x = BlockXOut + x;
int src_offset_x = dst_offset_x * 2;
// If none of the source blocks exists, there is no need to
// read/write the blocks themselves
bool has_data = false;
for (int band = 0; band < check_bands; band++)
{
MRFRasterBand *bsrc =
reinterpret_cast<MRFRasterBand *>(src_b[band]);
has_data |= bsrc->TestBlock(src_offset_x, src_offset_y);
has_data |= bsrc->TestBlock(src_offset_x + 1, src_offset_y);
has_data |= bsrc->TestBlock(src_offset_x, src_offset_y + 1);
has_data |= bsrc->TestBlock(src_offset_x + 1, src_offset_y + 1);
}
// No data in any of the bands for this output block
if (!has_data)
{
// check that the output is already empty, otherwise force write
// an empty block
for (int band = 0; band < check_bands; band++)
{
MRFRasterBand *bdst =
reinterpret_cast<MRFRasterBand *>(dst_b[band]);
if (bdst->TestBlock(dst_offset_x, dst_offset_y))
{
// Output block exists, but it should not, force it
ILSize req(dst_offset_x, dst_offset_y, 0, band,
bdst->m_l);
WriteTile(nullptr, IdxOffset(req, bdst->img));
}
}
// No blocks in -> No block out
continue;
}
// Do it band at a time so we can work in grayscale
for (int band = 0; band < bands; band++)
{ // Counting from zero in a vector
int sz_x = 2 * tsz_x, sz_y = 2 * tsz_y;
MRFRasterBand *bsrc = static_cast<MRFRasterBand *>(src_b[band]);
MRFRasterBand *bdst = static_cast<MRFRasterBand *>(dst_b[band]);
//
// Clip to the size to the input image
// This is one of the worst features of GDAL, it doesn't
// tolerate any padding
//
bool adjusted = false;
if (bsrc->GetXSize() < (src_offset_x + 2) * tsz_x)
{
sz_x = bsrc->GetXSize() - src_offset_x * tsz_x;
adjusted = true;
}
if (bsrc->GetYSize() < (src_offset_y + 2) * tsz_y)
{
sz_y = bsrc->GetYSize() - src_offset_y * tsz_y;
adjusted = true;
}
if (adjusted)
{ // Fill with no data for partial buffer, instead of padding
// afterwards
size_t bsb = bsrc->blockSizeBytes();
auto b = buffer.data();
bsrc->FillBlock(b);
bsrc->FillBlock(b + bsb);
bsrc->FillBlock(b + 2 * bsb);
bsrc->FillBlock(b + 3 * bsb);
}
int hasNoData = 0;
double ndv = bsrc->GetNoDataValue(&hasNoData);
status = bsrc->RasterIO(
GF_Read, src_offset_x * tsz_x,
src_offset_y * tsz_y, // offset in input image
sz_x, sz_y, // Size in output image
buffer.data(), sz_x, sz_y, // Buffer and size in buffer
eDataType, pixel_size, 2 * line_size, nullptr);
if (CE_None != status)
{
CPLError(CE_Failure, CPLE_AppDefined,
"MRF: Patch - RasterIO() read failed");
break; // Get out now
}
// Count the NoData values
int count = 0; // Assume all points are data
if (sampling_mode == SAMPLING_Avg)
{
// Dispatch based on data type
// Use a temporary macro to make it look easy
// Runs the optimized version if the page is full with data
#define resample(T) \
if (hasNoData) \
{ \
count = MatchCount((T *)buffer.data(), 4 * tsz_x * tsz_y, T(ndv)); \
if (4 * tsz_x * tsz_y == count) \
bdst->FillBlock(buffer.data()); \
else if (0 != count) \
AverageByFour((T *)buffer.data(), tsz_x, tsz_y, T(ndv)); \
} \
if (0 == count) \
AverageByFour((T *)buffer.data(), tsz_x, tsz_y); \
break;
switch (eDataType)
{
case GDT_Byte:
resample(GByte);
case GDT_UInt16:
resample(GUInt16);
case GDT_Int16:
resample(GInt16);
case GDT_UInt32:
resample(GUInt32);
case GDT_Int32:
resample(GInt32);
case GDT_Float32:
resample(float);
case GDT_Float64:
resample(double);
default:
CPLAssert(false);
break;
}
#undef resample
}
else if (sampling_mode == SAMPLING_Near)
{
#define resample(T) \
if (hasNoData) \
{ \
count = MatchCount((T *)buffer.data(), 4 * tsz_x * tsz_y, T(ndv)); \
if (4 * tsz_x * tsz_y == count) \
bdst->FillBlock(buffer.data()); \
else if (0 != count) \
NearByFour((T *)buffer.data(), tsz_x, tsz_y, T(ndv)); \
} \
if (0 == count) \
NearByFour((T *)buffer.data(), tsz_x, tsz_y); \
break;
switch (eDataType)
{
case GDT_Byte:
resample(GByte);
case GDT_UInt16:
resample(GUInt16);
case GDT_Int16:
resample(GInt16);
case GDT_UInt32:
resample(GUInt32);
case GDT_Int32:
resample(GInt32);
case GDT_Float32:
resample(float);
case GDT_Float64:
resample(double);
default:
CPLAssert(false);
break;
}
#undef resample
}
// Done filling the buffer
// Argh, still need to clip the output to the band size on the
// right and bottom The offset should be fine, just the size
// might need adjustments
sz_x = tsz_x;
sz_y = tsz_y;
if (bdst->GetXSize() < dst_offset_x * sz_x + sz_x)
sz_x = bdst->GetXSize() - dst_offset_x * sz_x;
if (bdst->GetYSize() < dst_offset_y * sz_y + sz_y)
sz_y = bdst->GetYSize() - dst_offset_y * sz_y;
status = bdst->RasterIO(
GF_Write, dst_offset_x * tsz_x,
dst_offset_y * tsz_y, // offset in output image
sz_x, sz_y, // Size in output image
buffer.data(), sz_x, sz_y, // Buffer and size in buffer
eDataType, pixel_size, line_size, nullptr);
if (CE_None != status)
{
CPLError(CE_Failure, CPLE_AppDefined,
"MRF: Patch - RasterIO() write failed");
break;
}
} // Band loop
// Mark input data as no longer needed, saves RAM
for (int band = 0; band < bands; band++)
src_b[band]->FlushCache(false);
}
}
if (CE_None != status)
return status; // Report problems
for (int band = 0; band < bands; band++)
dst_b[band]->FlushCache(
false); // Commit destination to disk after each overview
if (!recursive)
return CE_None;
return PatchOverview(BlockXOut, BlockYOut, WidthOut, HeightOut,
srcLevel + 1, true);
}
NAMESPACE_MRF_END
|