1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
/* Target-dependent code for the Fujitsu FR30.
Copyright 1999, Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
/* An expression that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. */
int
fr30_frameless_function_invocation (fi)
struct frame_info *fi;
{
int frameless;
CORE_ADDR func_start, after_prologue;
func_start = (get_pc_function_start ((fi)->pc) +
FUNCTION_START_OFFSET);
after_prologue = func_start;
after_prologue = SKIP_PROLOGUE (after_prologue);
frameless = (after_prologue == func_start);
return frameless;
}
/* Function: pop_frame
This routine gets called when either the user uses the `return'
command, or the call dummy breakpoint gets hit. */
void
fr30_pop_frame ()
{
struct frame_info *frame = get_current_frame ();
int regnum;
CORE_ADDR sp = read_register (SP_REGNUM);
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
{
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->fsr.regs[regnum] != 0)
{
write_register (regnum,
read_memory_unsigned_integer (frame->fsr.regs[regnum],
REGISTER_RAW_SIZE (regnum)));
}
write_register (SP_REGNUM, sp + frame->framesize);
}
flush_cached_frames ();
}
/* Function: fr30_store_return_value
Put a value where a caller expects to see it. Used by the 'return'
command. */
void
fr30_store_return_value (struct type *type,
char *valbuf)
{
/* Here's how the FR30 returns values (gleaned from gcc/config/
fr30/fr30.h):
If the return value is 32 bits long or less, it goes in r4.
If the return value is 64 bits long or less, it goes in r4 (most
significant word) and r5 (least significant word.
If the function returns a structure, of any size, the caller
passes the function an invisible first argument where the callee
should store the value. But GDB doesn't let you do that anyway.
If you're returning a value smaller than a word, it's not really
necessary to zero the upper bytes of the register; the caller is
supposed to ignore them. However, the FR30 typically keeps its
values extended to the full register width, so we should emulate
that. */
/* The FR30 is big-endian, so if we return a small value (like a
short or a char), we need to position it correctly within the
register. We round the size up to a register boundary, and then
adjust the offset so as to place the value at the right end. */
int value_size = TYPE_LENGTH (type);
int returned_size = (value_size + FR30_REGSIZE - 1) & ~(FR30_REGSIZE - 1);
int offset = (REGISTER_BYTE (RETVAL_REG)
+ (returned_size - value_size));
char *zeros = alloca (returned_size);
memset (zeros, 0, returned_size);
write_register_bytes (REGISTER_BYTE (RETVAL_REG), zeros, returned_size);
write_register_bytes (offset, valbuf, value_size);
}
/* Function: skip_prologue
Return the address of the first code past the prologue of the function. */
CORE_ADDR
fr30_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end;
/* See what the symbol table says */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (sal.line != 0 && sal.end < func_end)
{
return sal.end;
}
}
/* Either we didn't find the start of this function (nothing we can do),
or there's no line info, or the line after the prologue is after
the end of the function (there probably isn't a prologue). */
return pc;
}
/* Function: push_arguments
Setup arguments and RP for a call to the target. First four args
go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
Structs are passed by reference. XXX not right now Z.R.
64 bit quantities (doubles and long longs) may be split between
the regs and the stack.
When calling a function that returns a struct, a pointer to the struct
is passed in as a secret first argument (always in FIRST_ARGREG).
Stack space for the args has NOT been allocated: that job is up to us.
*/
CORE_ADDR
fr30_push_arguments (nargs, args, sp, struct_return, struct_addr)
int nargs;
value_ptr *args;
CORE_ADDR sp;
int struct_return;
CORE_ADDR struct_addr;
{
int argreg;
int argnum;
int stack_offset;
struct stack_arg
{
char *val;
int len;
int offset;
};
struct stack_arg *stack_args =
(struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
int nstack_args = 0;
argreg = FIRST_ARGREG;
/* the struct_return pointer occupies the first parameter-passing reg */
if (struct_return)
write_register (argreg++, struct_addr);
stack_offset = 0;
/* Process args from left to right. Store as many as allowed in
registers, save the rest to be pushed on the stack */
for (argnum = 0; argnum < nargs; argnum++)
{
char *val;
value_ptr arg = args[argnum];
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
struct type *target_type = TYPE_TARGET_TYPE (arg_type);
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
CORE_ADDR regval;
int newarg;
val = (char *) VALUE_CONTENTS (arg);
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
while (len > 0)
{
if (argreg <= LAST_ARGREG)
{
int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
regval = extract_address (val, partial_len);
/* It's a simple argument being passed in a general
register. */
write_register (argreg, regval);
argreg++;
len -= partial_len;
val += partial_len;
}
else
{
/* keep for later pushing */
stack_args[nstack_args].val = val;
stack_args[nstack_args++].len = len;
break;
}
}
}
}
/* now do the real stack pushing, process args right to left */
while (nstack_args--)
{
sp -= stack_args[nstack_args].len;
write_memory (sp, stack_args[nstack_args].val,
stack_args[nstack_args].len);
}
/* Return adjusted stack pointer. */
return sp;
}
void _initialize_fr30_tdep PARAMS ((void));
void
_initialize_fr30_tdep ()
{
extern int print_insn_fr30 (bfd_vma, disassemble_info *);
tm_print_insn = print_insn_fr30;
}
/* Function: check_prologue_cache
Check if prologue for this frame's PC has already been scanned.
If it has, copy the relevant information about that prologue and
return non-zero. Otherwise do not copy anything and return zero.
The information saved in the cache includes:
* the frame register number;
* the size of the stack frame;
* the offsets of saved regs (relative to the old SP); and
* the offset from the stack pointer to the frame pointer
The cache contains only one entry, since this is adequate
for the typical sequence of prologue scan requests we get.
When performing a backtrace, GDB will usually ask to scan
the same function twice in a row (once to get the frame chain,
and once to fill in the extra frame information).
*/
static struct frame_info prologue_cache;
static int
check_prologue_cache (fi)
struct frame_info *fi;
{
int i;
if (fi->pc == prologue_cache.pc)
{
fi->framereg = prologue_cache.framereg;
fi->framesize = prologue_cache.framesize;
fi->frameoffset = prologue_cache.frameoffset;
for (i = 0; i <= NUM_REGS; i++)
fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
return 1;
}
else
return 0;
}
/* Function: save_prologue_cache
Copy the prologue information from fi to the prologue cache.
*/
static void
save_prologue_cache (fi)
struct frame_info *fi;
{
int i;
prologue_cache.pc = fi->pc;
prologue_cache.framereg = fi->framereg;
prologue_cache.framesize = fi->framesize;
prologue_cache.frameoffset = fi->frameoffset;
for (i = 0; i <= NUM_REGS; i++)
{
prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
}
}
/* Function: scan_prologue
Scan the prologue of the function that contains PC, and record what
we find in PI. PI->fsr must be zeroed by the called. Returns the
pc after the prologue. Note that the addresses saved in pi->fsr
are actually just frame relative (negative offsets from the frame
pointer). This is because we don't know the actual value of the
frame pointer yet. In some circumstances, the frame pointer can't
be determined till after we have scanned the prologue. */
static void
fr30_scan_prologue (fi)
struct frame_info *fi;
{
int sp_offset, fp_offset;
CORE_ADDR prologue_start, prologue_end, current_pc;
/* Check if this function is already in the cache of frame information. */
if (check_prologue_cache (fi))
return;
/* Assume there is no frame until proven otherwise. */
fi->framereg = SP_REGNUM;
fi->framesize = 0;
fi->frameoffset = 0;
/* Find the function prologue. If we can't find the function in
the symbol table, peek in the stack frame to find the PC. */
if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
{
/* Assume the prologue is everything between the first instruction
in the function and the first source line. */
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
if (sal.line == 0) /* no line info, use current PC */
prologue_end = fi->pc;
else if (sal.end < prologue_end) /* next line begins after fn end */
prologue_end = sal.end; /* (probably means no prologue) */
}
else
{
/* XXX Z.R. What now??? The following is entirely bogus */
prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
prologue_end = prologue_start + 40;
}
/* Now search the prologue looking for instructions that set up the
frame pointer, adjust the stack pointer, and save registers. */
sp_offset = fp_offset = 0;
for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
{
unsigned int insn;
insn = read_memory_unsigned_integer (current_pc, 2);
if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */
{
int reg, mask = insn & 0xff;
/* scan in one sweep - create virtual 16-bit mask from either insn's mask */
if ((insn & 0x0100) == 0)
{
mask <<= 8; /* stm0 - move to upper byte in virtual mask */
}
/* Calculate offsets of saved registers (to be turned later into addresses). */
for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
if (mask & (1 << (15 - reg)))
{
sp_offset -= 4;
fi->fsr.regs[reg] = sp_offset;
}
}
else if ((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */
{
int reg = insn & 0xf;
sp_offset -= 4;
fi->fsr.regs[reg] = sp_offset;
}
else if ((insn & 0xff00) == 0x0f00) /* enter */
{
fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
sp_offset -= 4 * (insn & 0xff);
fi->framereg = FP_REGNUM;
}
else if (insn == 0x1781) /* st rp,@-sp */
{
sp_offset -= 4;
fi->fsr.regs[RP_REGNUM] = sp_offset;
}
else if (insn == 0x170e) /* st fp,@-sp */
{
sp_offset -= 4;
fi->fsr.regs[FP_REGNUM] = sp_offset;
}
else if (insn == 0x8bfe) /* mov sp,fp */
{
fi->framereg = FP_REGNUM;
}
else if ((insn & 0xff00) == 0xa300) /* addsp xx */
{
sp_offset += 4 * (signed char) (insn & 0xff);
}
else if ((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */
read_memory_unsigned_integer (current_pc + 4, 2)
== 0xac0f) /* sub r0,sp */
{
/* large stack adjustment */
sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer (current_pc + 2, 2));
current_pc += 4;
}
else if (insn == 0x9f80 && /* ldi:32 xx,r0 */
read_memory_unsigned_integer (current_pc + 6, 2)
== 0xac0f) /* sub r0,sp */
{
/* large stack adjustment */
sp_offset -=
(read_memory_unsigned_integer (current_pc + 2, 2) << 16 |
read_memory_unsigned_integer (current_pc + 4, 2));
current_pc += 6;
}
}
/* The frame size is just the negative of the offset (from the original SP)
of the last thing thing we pushed on the stack. The frame offset is
[new FP] - [new SP]. */
fi->framesize = -sp_offset;
fi->frameoffset = fp_offset - sp_offset;
save_prologue_cache (fi);
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in scan_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from fr30_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
void
fr30_init_extra_frame_info (fi)
struct frame_info *fi;
{
int reg;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
fi->framesize = 0;
fi->frameoffset = 0;
return;
}
fr30_scan_prologue (fi);
if (!fi->next) /* this is the innermost frame? */
fi->frame = read_register (fi->framereg);
else
/* not the innermost frame */
/* If we have an FP, the callee saved it. */ if (fi->framereg == FP_REGNUM)
if (fi->next->fsr.regs[fi->framereg] != 0)
fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
4);
/* Calculate actual addresses of saved registers using offsets determined
by fr30_scan_prologue. */
for (reg = 0; reg < NUM_REGS; reg++)
if (fi->fsr.regs[reg] != 0)
{
fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
}
}
/* Function: find_callers_reg
Find REGNUM on the stack. Otherwise, it's in an active register.
One thing we might want to do here is to check REGNUM against the
clobber mask, and somehow flag it as invalid if it isn't saved on
the stack somewhere. This would provide a graceful failure mode
when trying to get the value of caller-saves registers for an inner
frame. */
CORE_ADDR
fr30_find_callers_reg (fi, regnum)
struct frame_info *fi;
int regnum;
{
for (; fi; fi = fi->next)
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->fsr.regs[regnum] != 0)
return read_memory_unsigned_integer (fi->fsr.regs[regnum],
REGISTER_RAW_SIZE (regnum));
return read_register (regnum);
}
/* Function: frame_chain
Figure out the frame prior to FI. Unfortunately, this involves
scanning the prologue of the caller, which will also be done
shortly by fr30_init_extra_frame_info. For the dummy frame, we
just return the stack pointer that was in use at the time the
function call was made. */
CORE_ADDR
fr30_frame_chain (fi)
struct frame_info *fi;
{
CORE_ADDR fn_start, callers_pc, fp;
struct frame_info caller_fi;
int framereg;
/* is this a dummy frame? */
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return fi->frame; /* dummy frame same as caller's frame */
/* is caller-of-this a dummy frame? */
callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
fp = fr30_find_callers_reg (fi, FP_REGNUM);
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
return fp; /* dummy frame's frame may bear no relation to ours */
if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
if (fn_start == entry_point_address ())
return 0; /* in _start fn, don't chain further */
framereg = fi->framereg;
/* If the caller is the startup code, we're at the end of the chain. */
if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
if (fn_start == entry_point_address ())
return 0;
memset (&caller_fi, 0, sizeof (caller_fi));
caller_fi.pc = callers_pc;
fr30_scan_prologue (&caller_fi);
framereg = caller_fi.framereg;
/* If the caller used a frame register, return its value.
Otherwise, return the caller's stack pointer. */
if (framereg == FP_REGNUM)
return fr30_find_callers_reg (fi, framereg);
else
return fi->frame + fi->framesize;
}
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the
registers. If the inner frame is a dummy frame, return its PC
instead of RP, because that's where "caller" of the dummy-frame
will be found. */
CORE_ADDR
fr30_frame_saved_pc (fi)
struct frame_info *fi;
{
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
else
return fr30_find_callers_reg (fi, RP_REGNUM);
}
/* Function: fix_call_dummy
Pokes the callee function's address into the CALL_DUMMY assembly stub.
Assumes that the CALL_DUMMY looks like this:
jarl <offset24>, r31
trap
*/
int
fr30_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
char *dummy;
CORE_ADDR sp;
CORE_ADDR fun;
int nargs;
value_ptr *args;
struct type *type;
int gcc_p;
{
long offset24;
offset24 = (long) fun - (long) entry_point_address ();
offset24 &= 0x3fffff;
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
return 0;
}
|