1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
|
/* Target-dependent code for the Matsushita MN10200 for GDB, the GNU debugger.
Copyright 1997 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
/* Should call_function allocate stack space for a struct return? */
int
mn10200_use_struct_convention (gcc_p, type)
int gcc_p;
struct type *type;
{
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
}
/* *INDENT-OFF* */
/* The main purpose of this file is dealing with prologues to extract
information about stack frames and saved registers.
For reference here's how prologues look on the mn10200:
With frame pointer:
mov fp,a0
mov sp,fp
add <size>,sp
Register saves for d2, d3, a1, a2 as needed. Saves start
at fp - <size> + <outgoing_args_size> and work towards higher
addresses. Note that the saves are actually done off the stack
pointer in the prologue! This makes for smaller code and easier
prologue scanning as the displacement fields will unlikely
be more than 8 bits!
Without frame pointer:
add <size>,sp
Register saves for d2, d3, a1, a2 as needed. Saves start
at sp + <outgoing_args_size> and work towards higher addresses.
Out of line prologue:
add <local size>,sp -- optional
jsr __prologue
add <outgoing_size>,sp -- optional
The stack pointer remains constant throughout the life of most
functions. As a result the compiler will usually omit the
frame pointer, so we must handle frame pointerless functions. */
/* Analyze the prologue to determine where registers are saved,
the end of the prologue, etc etc. Return the end of the prologue
scanned.
We store into FI (if non-null) several tidbits of information:
* stack_size -- size of this stack frame. Note that if we stop in
certain parts of the prologue/epilogue we may claim the size of the
current frame is zero. This happens when the current frame has
not been allocated yet or has already been deallocated.
* fsr -- Addresses of registers saved in the stack by this frame.
* status -- A (relatively) generic status indicator. It's a bitmask
with the following bits:
MY_FRAME_IN_SP: The base of the current frame is actually in
the stack pointer. This can happen for frame pointerless
functions, or cases where we're stopped in the prologue/epilogue
itself. For these cases mn10200_analyze_prologue will need up
update fi->frame before returning or analyzing the register
save instructions.
MY_FRAME_IN_FP: The base of the current frame is in the
frame pointer register ($a2).
CALLER_A2_IN_A0: $a2 from the caller's frame is temporarily
in $a0. This can happen if we're stopped in the prologue.
NO_MORE_FRAMES: Set this if the current frame is "start" or
if the first instruction looks like mov <imm>,sp. This tells
frame chain to not bother trying to unwind past this frame. */
/* *INDENT-ON* */
#define MY_FRAME_IN_SP 0x1
#define MY_FRAME_IN_FP 0x2
#define CALLER_A2_IN_A0 0x4
#define NO_MORE_FRAMES 0x8
static CORE_ADDR
mn10200_analyze_prologue (fi, pc)
struct frame_info *fi;
CORE_ADDR pc;
{
CORE_ADDR func_addr, func_end, addr, stop;
CORE_ADDR stack_size;
unsigned char buf[4];
int status;
char *name;
int out_of_line_prologue = 0;
/* Use the PC in the frame if it's provided to look up the
start of this function. */
pc = (fi ? fi->pc : pc);
/* Find the start of this function. */
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
/* Do nothing if we couldn't find the start of this function or if we're
stopped at the first instruction in the prologue. */
if (status == 0)
return pc;
/* If we're in start, then give up. */
if (strcmp (name, "start") == 0)
{
if (fi)
fi->status = NO_MORE_FRAMES;
return pc;
}
/* At the start of a function our frame is in the stack pointer. */
if (fi)
fi->status = MY_FRAME_IN_SP;
/* If we're physically on an RTS instruction, then our frame has already
been deallocated.
fi->frame is bogus, we need to fix it. */
if (fi && fi->pc + 1 == func_end)
{
status = target_read_memory (fi->pc, buf, 1);
if (status != 0)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
if (buf[0] == 0xfe)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
}
/* Similarly if we're stopped on the first insn of a prologue as our
frame hasn't been allocated yet. */
if (fi && fi->pc == func_addr)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
/* Figure out where to stop scanning. */
stop = fi ? fi->pc : func_end;
/* Don't walk off the end of the function. */
stop = stop > func_end ? func_end : stop;
/* Start scanning on the first instruction of this function. */
addr = func_addr;
status = target_read_memory (addr, buf, 2);
if (status != 0)
{
if (fi && fi->next == NULL && fi->status & MY_FRAME_IN_SP)
fi->frame = read_sp ();
return addr;
}
/* First see if this insn sets the stack pointer; if so, it's something
we won't understand, so quit now. */
if (buf[0] == 0xdf
|| (buf[0] == 0xf4 && buf[1] == 0x77))
{
if (fi)
fi->status = NO_MORE_FRAMES;
return addr;
}
/* Now see if we have a frame pointer.
Search for mov a2,a0 (0xf278)
then mov a3,a2 (0xf27e). */
if (buf[0] == 0xf2 && buf[1] == 0x78)
{
/* Our caller's $a2 will be found in $a0 now. Note it for
our callers. */
if (fi)
fi->status |= CALLER_A2_IN_A0;
addr += 2;
if (addr >= stop)
{
/* We still haven't allocated our local stack. Handle this
as if we stopped on the first or last insn of a function. */
if (fi && fi->next == NULL)
fi->frame = read_sp ();
return addr;
}
status = target_read_memory (addr, buf, 2);
if (status != 0)
{
if (fi && fi->next == NULL)
fi->frame = read_sp ();
return addr;
}
if (buf[0] == 0xf2 && buf[1] == 0x7e)
{
addr += 2;
/* Our frame pointer is valid now. */
if (fi)
{
fi->status |= MY_FRAME_IN_FP;
fi->status &= ~MY_FRAME_IN_SP;
}
if (addr >= stop)
return addr;
}
else
{
if (fi && fi->next == NULL)
fi->frame = read_sp ();
return addr;
}
}
/* Next we should allocate the local frame.
Search for add imm8,a3 (0xd3XX)
or add imm16,a3 (0xf70bXXXX)
or add imm24,a3 (0xf467XXXXXX).
If none of the above was found, then this prologue has
no stack, and therefore can't have any register saves,
so quit now. */
status = target_read_memory (addr, buf, 2);
if (status != 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
if (buf[0] == 0xd3)
{
stack_size = extract_signed_integer (&buf[1], 1);
if (fi)
fi->stack_size = stack_size;
addr += 2;
if (addr >= stop)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp () - stack_size;
return addr;
}
}
else if (buf[0] == 0xf7 && buf[1] == 0x0b)
{
status = target_read_memory (addr + 2, buf, 2);
if (status != 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
stack_size = extract_signed_integer (buf, 2);
if (fi)
fi->stack_size = stack_size;
addr += 4;
if (addr >= stop)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp () - stack_size;
return addr;
}
}
else if (buf[0] == 0xf4 && buf[1] == 0x67)
{
status = target_read_memory (addr + 2, buf, 3);
if (status != 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
stack_size = extract_signed_integer (buf, 3);
if (fi)
fi->stack_size = stack_size;
addr += 5;
if (addr >= stop)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp () - stack_size;
return addr;
}
}
/* Now see if we have a call to __prologue for an out of line
prologue. */
status = target_read_memory (addr, buf, 2);
if (status != 0)
return addr;
/* First check for 16bit pc-relative call to __prologue. */
if (buf[0] == 0xfd)
{
CORE_ADDR temp;
status = target_read_memory (addr + 1, buf, 2);
if (status != 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
/* Get the PC this instruction will branch to. */
temp = (extract_signed_integer (buf, 2) + addr + 3) & 0xffffff;
/* Get the name of the function at the target address. */
status = find_pc_partial_function (temp, &name, NULL, NULL);
if (status == 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
/* Note if it is an out of line prologue. */
out_of_line_prologue = (strcmp (name, "__prologue") == 0);
/* This sucks up 3 bytes of instruction space. */
if (out_of_line_prologue)
addr += 3;
if (addr >= stop)
{
if (fi && fi->next == NULL)
{
fi->stack_size -= 16;
fi->frame = read_sp () - fi->stack_size;
}
return addr;
}
}
/* Now check for the 24bit pc-relative call to __prologue. */
else if (buf[0] == 0xf4 && buf[1] == 0xe1)
{
CORE_ADDR temp;
status = target_read_memory (addr + 2, buf, 3);
if (status != 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
/* Get the PC this instruction will branch to. */
temp = (extract_signed_integer (buf, 3) + addr + 5) & 0xffffff;
/* Get the name of the function at the target address. */
status = find_pc_partial_function (temp, &name, NULL, NULL);
if (status == 0)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
return addr;
}
/* Note if it is an out of line prologue. */
out_of_line_prologue = (strcmp (name, "__prologue") == 0);
/* This sucks up 5 bytes of instruction space. */
if (out_of_line_prologue)
addr += 5;
if (addr >= stop)
{
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
{
fi->stack_size -= 16;
fi->frame = read_sp () - fi->stack_size;
}
return addr;
}
}
/* Now actually handle the out of line prologue. */
if (out_of_line_prologue)
{
int outgoing_args_size = 0;
/* First adjust the stack size for this function. The out of
line prologue saves 4 registers (16bytes of data). */
if (fi)
fi->stack_size -= 16;
/* Update fi->frame if necessary. */
if (fi && fi->next == NULL)
fi->frame = read_sp () - fi->stack_size;
/* After the out of line prologue, there may be another
stack adjustment for the outgoing arguments.
Search for add imm8,a3 (0xd3XX)
or add imm16,a3 (0xf70bXXXX)
or add imm24,a3 (0xf467XXXXXX). */
status = target_read_memory (addr, buf, 2);
if (status != 0)
{
if (fi)
{
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
}
return addr;
}
if (buf[0] == 0xd3)
{
outgoing_args_size = extract_signed_integer (&buf[1], 1);
addr += 2;
}
else if (buf[0] == 0xf7 && buf[1] == 0x0b)
{
status = target_read_memory (addr + 2, buf, 2);
if (status != 0)
{
if (fi)
{
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
}
return addr;
}
outgoing_args_size = extract_signed_integer (buf, 2);
addr += 4;
}
else if (buf[0] == 0xf4 && buf[1] == 0x67)
{
status = target_read_memory (addr + 2, buf, 3);
if (status != 0)
{
if (fi && fi->next == NULL)
{
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
}
return addr;
}
outgoing_args_size = extract_signed_integer (buf, 3);
addr += 5;
}
else
outgoing_args_size = 0;
/* Now that we know the size of the outgoing arguments, fix
fi->frame again if this is the innermost frame. */
if (fi && fi->next == NULL)
fi->frame -= outgoing_args_size;
/* Note the register save information and update the stack
size for this frame too. */
if (fi)
{
fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
fi->stack_size += outgoing_args_size;
}
/* There can be no more prologue insns, so return now. */
return addr;
}
/* At this point fi->frame needs to be correct.
If MY_FRAME_IN_SP is set and we're the innermost frame, then we
need to fix fi->frame so that backtracing, find_frame_saved_regs,
etc work correctly. */
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP) != 0)
fi->frame = read_sp () - fi->stack_size;
/* And last we have the register saves. These are relatively
simple because they're physically done off the stack pointer,
and thus the number of different instructions we need to
check is greatly reduced because we know the displacements
will be small.
Search for movx d2,(X,a3) (0xf55eXX)
then movx d3,(X,a3) (0xf55fXX)
then mov a1,(X,a3) (0x5dXX) No frame pointer case
then mov a2,(X,a3) (0x5eXX) No frame pointer case
or mov a0,(X,a3) (0x5cXX) Frame pointer case. */
status = target_read_memory (addr, buf, 2);
if (status != 0)
return addr;
if (buf[0] == 0xf5 && buf[1] == 0x5e)
{
if (fi)
{
status = target_read_memory (addr + 2, buf, 1);
if (status != 0)
return addr;
fi->fsr.regs[2] = (fi->frame + stack_size
+ extract_signed_integer (buf, 1));
}
addr += 3;
if (addr >= stop)
return addr;
status = target_read_memory (addr, buf, 2);
if (status != 0)
return addr;
}
if (buf[0] == 0xf5 && buf[1] == 0x5f)
{
if (fi)
{
status = target_read_memory (addr + 2, buf, 1);
if (status != 0)
return addr;
fi->fsr.regs[3] = (fi->frame + stack_size
+ extract_signed_integer (buf, 1));
}
addr += 3;
if (addr >= stop)
return addr;
status = target_read_memory (addr, buf, 2);
if (status != 0)
return addr;
}
if (buf[0] == 0x5d)
{
if (fi)
{
status = target_read_memory (addr + 1, buf, 1);
if (status != 0)
return addr;
fi->fsr.regs[5] = (fi->frame + stack_size
+ extract_signed_integer (buf, 1));
}
addr += 2;
if (addr >= stop)
return addr;
status = target_read_memory (addr, buf, 2);
if (status != 0)
return addr;
}
if (buf[0] == 0x5e || buf[0] == 0x5c)
{
if (fi)
{
status = target_read_memory (addr + 1, buf, 1);
if (status != 0)
return addr;
fi->fsr.regs[6] = (fi->frame + stack_size
+ extract_signed_integer (buf, 1));
fi->status &= ~CALLER_A2_IN_A0;
}
addr += 2;
if (addr >= stop)
return addr;
return addr;
}
return addr;
}
/* Function: frame_chain
Figure out and return the caller's frame pointer given current
frame_info struct.
We don't handle dummy frames yet but we would probably just return the
stack pointer that was in use at the time the function call was made? */
CORE_ADDR
mn10200_frame_chain (fi)
struct frame_info *fi;
{
struct frame_info dummy_frame;
/* Walk through the prologue to determine the stack size,
location of saved registers, end of the prologue, etc. */
if (fi->status == 0)
mn10200_analyze_prologue (fi, (CORE_ADDR) 0);
/* Quit now if mn10200_analyze_prologue set NO_MORE_FRAMES. */
if (fi->status & NO_MORE_FRAMES)
return 0;
/* Now that we've analyzed our prologue, determine the frame
pointer for our caller.
If our caller has a frame pointer, then we need to
find the entry value of $a2 to our function.
If CALLER_A2_IN_A0, then the chain is in $a0.
If fsr.regs[6] is nonzero, then it's at the memory
location pointed to by fsr.regs[6].
Else it's still in $a2.
If our caller does not have a frame pointer, then his
frame base is fi->frame + -caller's stack size + 4. */
/* The easiest way to get that info is to analyze our caller's frame.
So we set up a dummy frame and call mn10200_analyze_prologue to
find stuff for us. */
dummy_frame.pc = FRAME_SAVED_PC (fi);
dummy_frame.frame = fi->frame;
memset (dummy_frame.fsr.regs, '\000', sizeof dummy_frame.fsr.regs);
dummy_frame.status = 0;
dummy_frame.stack_size = 0;
mn10200_analyze_prologue (&dummy_frame);
if (dummy_frame.status & MY_FRAME_IN_FP)
{
/* Our caller has a frame pointer. So find the frame in $a2, $a0,
or in the stack. */
if (fi->fsr.regs[6])
return (read_memory_integer (fi->fsr.regs[FP_REGNUM], REGISTER_SIZE)
& 0xffffff);
else if (fi->status & CALLER_A2_IN_A0)
return read_register (4);
else
return read_register (FP_REGNUM);
}
else
{
/* Our caller does not have a frame pointer. So his frame starts
at the base of our frame (fi->frame) + <his size> + 4 (saved pc). */
return fi->frame + -dummy_frame.stack_size + 4;
}
}
/* Function: skip_prologue
Return the address of the first inst past the prologue of the function. */
CORE_ADDR
mn10200_skip_prologue (pc)
CORE_ADDR pc;
{
/* We used to check the debug symbols, but that can lose if
we have a null prologue. */
return mn10200_analyze_prologue (NULL, pc);
}
/* Function: pop_frame
This routine gets called when either the user uses the `return'
command, or the call dummy breakpoint gets hit. */
void
mn10200_pop_frame (frame)
struct frame_info *frame;
{
int regnum;
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
{
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
/* Restore any saved registers. */
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->fsr.regs[regnum] != 0)
{
ULONGEST value;
value = read_memory_unsigned_integer (frame->fsr.regs[regnum],
REGISTER_RAW_SIZE (regnum));
write_register (regnum, value);
}
/* Actually cut back the stack. */
write_register (SP_REGNUM, FRAME_FP (frame));
/* Don't we need to set the PC?!? XXX FIXME. */
}
/* Throw away any cached frame information. */
flush_cached_frames ();
}
/* Function: push_arguments
Setup arguments for a call to the target. Arguments go in
order on the stack. */
CORE_ADDR
mn10200_push_arguments (nargs, args, sp, struct_return, struct_addr)
int nargs;
value_ptr *args;
CORE_ADDR sp;
unsigned char struct_return;
CORE_ADDR struct_addr;
{
int argnum = 0;
int len = 0;
int stack_offset = 0;
int regsused = struct_return ? 1 : 0;
/* This should be a nop, but align the stack just in case something
went wrong. Stacks are two byte aligned on the mn10200. */
sp &= ~1;
/* Now make space on the stack for the args.
XXX This doesn't appear to handle pass-by-invisible reference
arguments. */
for (argnum = 0; argnum < nargs; argnum++)
{
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 1) & ~1;
/* If we've used all argument registers, then this argument is
pushed. */
if (regsused >= 2 || arg_length > 4)
{
regsused = 2;
len += arg_length;
}
/* We know we've got some arg register space left. If this argument
will fit entirely in regs, then put it there. */
else if (arg_length <= 2
|| TYPE_CODE (VALUE_TYPE (args[argnum])) == TYPE_CODE_PTR)
{
regsused++;
}
else if (regsused == 0)
{
regsused = 2;
}
else
{
regsused = 2;
len += arg_length;
}
}
/* Allocate stack space. */
sp -= len;
regsused = struct_return ? 1 : 0;
/* Push all arguments onto the stack. */
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
char *val;
/* XXX Check this. What about UNIONS? */
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
{
/* XXX Wrong, we want a pointer to this argument. */
len = TYPE_LENGTH (VALUE_TYPE (*args));
val = (char *) VALUE_CONTENTS (*args);
}
else
{
len = TYPE_LENGTH (VALUE_TYPE (*args));
val = (char *) VALUE_CONTENTS (*args);
}
if (regsused < 2
&& (len <= 2
|| TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_PTR))
{
write_register (regsused, extract_unsigned_integer (val, 4));
regsused++;
}
else if (regsused == 0 && len == 4)
{
write_register (regsused, extract_unsigned_integer (val, 2));
write_register (regsused + 1, extract_unsigned_integer (val + 2, 2));
regsused = 2;
}
else
{
regsused = 2;
while (len > 0)
{
write_memory (sp + stack_offset, val, 2);
len -= 2;
val += 2;
stack_offset += 2;
}
}
args++;
}
return sp;
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
CORE_ADDR
mn10200_push_return_address (pc, sp)
CORE_ADDR pc;
CORE_ADDR sp;
{
unsigned char buf[4];
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
write_memory (sp - 4, buf, 4);
return sp - 4;
}
/* Function: store_struct_return (addr,sp)
Store the structure value return address for an inferior function
call. */
CORE_ADDR
mn10200_store_struct_return (addr, sp)
CORE_ADDR addr;
CORE_ADDR sp;
{
/* The structure return address is passed as the first argument. */
write_register (0, addr);
return sp;
}
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the
registers. If the inner frame is a dummy frame, return its PC
instead of RP, because that's where "caller" of the dummy-frame
will be found. */
CORE_ADDR
mn10200_frame_saved_pc (fi)
struct frame_info *fi;
{
/* The saved PC will always be at the base of the current frame. */
return (read_memory_integer (fi->frame, REGISTER_SIZE) & 0xffffff);
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in mn10200_analyze_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct. mn10200_analyze_prologue will fix fi->frame if
it's not valid.
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
void
mn10200_init_extra_frame_info (fi)
struct frame_info *fi;
{
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
fi->status = 0;
fi->stack_size = 0;
mn10200_analyze_prologue (fi, 0);
}
void
_initialize_mn10200_tdep ()
{
tm_print_insn = print_insn_mn10200;
}
|