1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
/* Functions specific to running gdb native on a SPARC running SunOS4.
Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#ifdef __linux__
#include <asm/reg.h>
#else
#include <machine/reg.h>
#endif
#include <sys/user.h>
/* We don't store all registers immediately when requested, since they
get sent over in large chunks anyway. Instead, we accumulate most
of the changes and send them over once. "deferred_stores" keeps
track of which sets of registers we have locally-changed copies of,
so we only need send the groups that have changed. */
#define INT_REGS 1
#define STACK_REGS 2
#define FP_REGS 4
static void
fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
fetch_inferior_registers (regno)
int regno;
{
struct regs inferior_registers;
struct fp_status inferior_fp_registers;
int i;
/* We should never be called with deferred stores, because a prerequisite
for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
if (deferred_stores)
abort ();
DO_DEFERRED_STORES;
/* Global and Out regs are fetched directly, as well as the control
registers. If we're getting one of the in or local regs,
and the stack pointer has not yet been fetched,
we have to do that first, since they're found in memory relative
to the stack pointer. */
if (regno < O7_REGNUM /* including -1 */
|| regno >= Y_REGNUM
|| (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
{
if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0))
perror ("ptrace_getregs");
registers[REGISTER_BYTE (0)] = 0;
memcpy (®isters[REGISTER_BYTE (1)], &inferior_registers.r_g1,
15 * REGISTER_RAW_SIZE (G0_REGNUM));
*(int *) ®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
*(int *) ®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
*(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
*(int *) ®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
for (i = G0_REGNUM; i <= O7_REGNUM; i++)
register_valid[i] = 1;
register_valid[Y_REGNUM] = 1;
register_valid[PS_REGNUM] = 1;
register_valid[PC_REGNUM] = 1;
register_valid[NPC_REGNUM] = 1;
/* If we don't set these valid, read_register_bytes() rereads
all the regs every time it is called! FIXME. */
register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
}
/* Floating point registers */
if (regno == -1 ||
regno == FPS_REGNUM ||
(regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
{
if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fp_registers,
0))
perror ("ptrace_getfpregs");
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
sizeof inferior_fp_registers.fpu_fr);
memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)],
&inferior_fp_registers.Fpu_fsr,
sizeof (FPU_FSR_TYPE));
for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
register_valid[i] = 1;
register_valid[FPS_REGNUM] = 1;
}
/* These regs are saved on the stack by the kernel. Only read them
all (16 ptrace calls!) if we really need them. */
if (regno == -1)
{
target_read_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
®isters[REGISTER_BYTE (L0_REGNUM)],
16 * REGISTER_RAW_SIZE (L0_REGNUM));
for (i = L0_REGNUM; i <= I7_REGNUM; i++)
register_valid[i] = 1;
}
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
{
CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
i = REGISTER_BYTE (regno);
if (register_valid[regno])
printf_unfiltered ("register %d valid and read\n", regno);
target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
®isters[i], REGISTER_RAW_SIZE (regno));
register_valid[regno] = 1;
}
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (regno)
int regno;
{
struct regs inferior_registers;
struct fp_status inferior_fp_registers;
int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
/* First decide which pieces of machine-state we need to modify.
Default for regno == -1 case is all pieces. */
if (regno >= 0)
if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
{
wanna_store = FP_REGS;
}
else
{
if (regno == SP_REGNUM)
wanna_store = INT_REGS + STACK_REGS;
else if (regno < L0_REGNUM || regno > I7_REGNUM)
wanna_store = INT_REGS;
else if (regno == FPS_REGNUM)
wanna_store = FP_REGS;
else
wanna_store = STACK_REGS;
}
/* See if we're forcing the stores to happen now, or deferring. */
if (regno == -2)
{
wanna_store = deferred_stores;
deferred_stores = 0;
}
else
{
if (wanna_store == STACK_REGS)
{
/* Fall through and just store one stack reg. If we deferred
it, we'd have to store them all, or remember more info. */
}
else
{
deferred_stores |= wanna_store;
return;
}
}
if (wanna_store & STACK_REGS)
{
CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
if (regno < 0 || regno == SP_REGNUM)
{
if (!register_valid[L0_REGNUM + 5])
abort ();
target_write_memory (sp,
®isters[REGISTER_BYTE (L0_REGNUM)],
16 * REGISTER_RAW_SIZE (L0_REGNUM));
}
else
{
if (!register_valid[regno])
abort ();
target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
®isters[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno));
}
}
if (wanna_store & INT_REGS)
{
if (!register_valid[G1_REGNUM])
abort ();
memcpy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)],
15 * REGISTER_RAW_SIZE (G1_REGNUM));
inferior_registers.r_ps =
*(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
inferior_registers.r_pc =
*(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
inferior_registers.r_npc =
*(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
inferior_registers.r_y =
*(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0))
perror ("ptrace_setregs");
}
if (wanna_store & FP_REGS)
{
if (!register_valid[FP0_REGNUM + 9])
abort ();
memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
sizeof inferior_fp_registers.fpu_fr);
memcpy (&inferior_fp_registers.Fpu_fsr,
®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
if (0 !=
ptrace (PTRACE_SETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
perror ("ptrace_setfpregs");
}
}
static void
fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
char *core_reg_sect;
unsigned core_reg_size;
int which;
CORE_ADDR ignore; /* reg addr, unused in this version */
{
if (which == 0)
{
/* Integer registers */
#define gregs ((struct regs *)core_reg_sect)
/* G0 *always* holds 0. */
*(int *) ®isters[REGISTER_BYTE (0)] = 0;
/* The globals and output registers. */
memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
15 * REGISTER_RAW_SIZE (G1_REGNUM));
*(int *) ®isters[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
*(int *) ®isters[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
*(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
*(int *) ®isters[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
/* My best guess at where to get the locals and input
registers is exactly where they usually are, right above
the stack pointer. If the core dump was caused by a bus error
from blowing away the stack pointer (as is possible) then this
won't work, but it's worth the try. */
{
int sp;
sp = *(int *) ®isters[REGISTER_BYTE (SP_REGNUM)];
if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)],
16 * REGISTER_RAW_SIZE (L0_REGNUM)))
{
/* fprintf_unfiltered so user can still use gdb */
fprintf_unfiltered (gdb_stderr,
"Couldn't read input and local registers from core file\n");
}
}
}
else if (which == 2)
{
/* Floating point registers */
#define fpuregs ((struct fpu *) core_reg_sect)
if (core_reg_size >= sizeof (struct fpu))
{
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
sizeof (fpuregs->fpu_regs));
memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
sizeof (FPU_FSR_TYPE));
}
else
fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
}
}
int
kernel_u_size ()
{
return (sizeof (struct user));
}
/* Register that we are able to handle sparc core file formats.
FIXME: is this really bfd_target_unknown_flavour? */
static struct core_fns sparc_core_fns =
{
bfd_target_unknown_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
NULL /* next */
};
void
_initialize_core_sparc ()
{
add_core_fns (&sparc_core_fns);
}
|