1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
|
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#ifdef USE_PROC_FS
#include <sys/procfs.h>
#endif
#include "gdbcore.h"
#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
#define SPARC_HAS_FPU 0
#else
#define SPARC_HAS_FPU 1
#endif
#ifdef GDB_TARGET_IS_SPARC64
#define FP_REGISTER_BYTES (64 * 4)
#else
#define FP_REGISTER_BYTES (32 * 4)
#endif
/* If not defined, assume 32 bit sparc. */
#ifndef FP_MAX_REGNUM
#define FP_MAX_REGNUM (FP0_REGNUM + 32)
#endif
#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
/* From infrun.c */
extern int stop_after_trap;
/* We don't store all registers immediately when requested, since they
get sent over in large chunks anyway. Instead, we accumulate most
of the changes and send them over once. "deferred_stores" keeps
track of which sets of registers we have locally-changed copies of,
so we only need send the groups that have changed. */
int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
where instructions are big-endian and data are little-endian.
This flag is set when we detect that the target is of this type. */
int bi_endian = 0;
/* Fetch a single instruction. Even on bi-endian machines
such as sparc86x, instructions are always big-endian. */
static unsigned long
fetch_instruction (pc)
CORE_ADDR pc;
{
unsigned long retval;
int i;
unsigned char buf[4];
read_memory (pc, buf, sizeof (buf));
/* Start at the most significant end of the integer, and work towards
the least significant. */
retval = 0;
for (i = 0; i < sizeof (buf); ++i)
retval = (retval << 8) | buf[i];
return retval;
}
/* Branches with prediction are treated like their non-predicting cousins. */
/* FIXME: What about floating point branches? */
/* Macros to extract fields from sparc instructions. */
#define X_OP(i) (((i) >> 30) & 0x3)
#define X_RD(i) (((i) >> 25) & 0x1f)
#define X_A(i) (((i) >> 29) & 1)
#define X_COND(i) (((i) >> 25) & 0xf)
#define X_OP2(i) (((i) >> 22) & 0x7)
#define X_IMM22(i) ((i) & 0x3fffff)
#define X_OP3(i) (((i) >> 19) & 0x3f)
#define X_RS1(i) (((i) >> 14) & 0x1f)
#define X_I(i) (((i) >> 13) & 1)
#define X_IMM13(i) ((i) & 0x1fff)
/* Sign extension macros. */
#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
#define X_CC(i) (((i) >> 20) & 3)
#define X_P(i) (((i) >> 19) & 1)
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
#define X_RCOND(i) (((i) >> 25) & 7)
#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
#define X_FCN(i) (((i) >> 25) & 31)
typedef enum
{
Error, not_branch, bicc, bicca, ba, baa, ticc, ta,
#ifdef GDB_TARGET_IS_SPARC64
done_retry
#endif
}
branch_type;
/* Simulate single-step ptrace call for sun4. Code written by Gary
Beihl (beihl@mcc.com). */
/* npc4 and next_pc describe the situation at the time that the
step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
static CORE_ADDR next_pc, npc4, target;
static int brknpc4, brktrg;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem[3];
static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *));
/* single_step() is called just before we want to resume the inferior,
if we want to single-step it but there is no hardware or kernel single-step
support (as on all SPARCs). We find all the possible targets of the
coming instruction and breakpoint them.
single_step is also called just after the inferior stops. If we had
set up a simulated single-step, we undo our damage. */
void
sparc_software_single_step (ignore, insert_breakpoints_p)
enum target_signal ignore; /* pid, but we don't need it */
int insert_breakpoints_p;
{
branch_type br;
CORE_ADDR pc;
long pc_instruction;
if (insert_breakpoints_p)
{
/* Always set breakpoint for NPC. */
next_pc = read_register (NPC_REGNUM);
npc4 = next_pc + 4; /* branch not taken */
target_insert_breakpoint (next_pc, break_mem[0]);
/* printf_unfiltered ("set break at %x\n",next_pc); */
pc = read_register (PC_REGNUM);
pc_instruction = fetch_instruction (pc);
br = isbranch (pc_instruction, pc, &target);
brknpc4 = brktrg = 0;
if (br == bicca)
{
/* Conditional annulled branch will either end up at
npc (if taken) or at npc+4 (if not taken).
Trap npc+4. */
brknpc4 = 1;
target_insert_breakpoint (npc4, break_mem[1]);
}
else if (br == baa && target != next_pc)
{
/* Unconditional annulled branch will always end up at
the target. */
brktrg = 1;
target_insert_breakpoint (target, break_mem[2]);
}
#ifdef GDB_TARGET_IS_SPARC64
else if (br == done_retry)
{
brktrg = 1;
target_insert_breakpoint (target, break_mem[2]);
}
#endif
}
else
{
/* Remove breakpoints */
target_remove_breakpoint (next_pc, break_mem[0]);
if (brknpc4)
target_remove_breakpoint (npc4, break_mem[1]);
if (brktrg)
target_remove_breakpoint (target, break_mem[2]);
}
}
/* Call this for each newly created frame. For SPARC, we need to calculate
the bottom of the frame, and do some extra work if the prologue
has been generated via the -mflat option to GCC. In particular,
we need to know where the previous fp and the pc have been stashed,
since their exact position within the frame may vary. */
void
sparc_init_extra_frame_info (fromleaf, fi)
int fromleaf;
struct frame_info *fi;
{
char *name;
CORE_ADDR prologue_start, prologue_end;
int insn;
fi->bottom =
(fi->next ?
(fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) :
read_sp ());
/* If fi->next is NULL, then we already set ->frame by passing read_fp()
to create_new_frame. */
if (fi->next)
{
char buf[MAX_REGISTER_RAW_SIZE];
/* Compute ->frame as if not flat. If it is flat, we'll change
it later. */
if (fi->next->next != NULL
&& (fi->next->next->signal_handler_caller
|| frame_in_dummy (fi->next->next))
&& frameless_look_for_prologue (fi->next))
{
/* A frameless function interrupted by a signal did not change
the frame pointer, fix up frame pointer accordingly. */
fi->frame = FRAME_FP (fi->next);
fi->bottom = fi->next->bottom;
}
else
{
/* Should we adjust for stack bias here? */
get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
#ifdef GDB_TARGET_IS_SPARC64
if (fi->frame & 1)
fi->frame += 2047;
#endif
}
}
/* Decide whether this is a function with a ``flat register window''
frame. For such functions, the frame pointer is actually in %i7. */
fi->flat = 0;
fi->in_prologue = 0;
if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
{
/* See if the function starts with an add (which will be of a
negative number if a flat frame) to the sp. FIXME: Does not
handle large frames which will need more than one instruction
to adjust the sp. */
insn = fetch_instruction (prologue_start, 4);
if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
&& X_I (insn) && X_SIMM13 (insn) < 0)
{
int offset = X_SIMM13 (insn);
/* Then look for a save of %i7 into the frame. */
insn = fetch_instruction (prologue_start + 4);
if (X_OP (insn) == 3
&& X_RD (insn) == 31
&& X_OP3 (insn) == 4
&& X_RS1 (insn) == 14)
{
char buf[MAX_REGISTER_RAW_SIZE];
/* We definitely have a flat frame now. */
fi->flat = 1;
fi->sp_offset = offset;
/* Overwrite the frame's address with the value in %i7. */
get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
#ifdef GDB_TARGET_IS_SPARC64
if (fi->frame & 1)
fi->frame += 2047;
#endif
/* Record where the fp got saved. */
fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
/* Also try to collect where the pc got saved to. */
fi->pc_addr = 0;
insn = fetch_instruction (prologue_start + 12);
if (X_OP (insn) == 3
&& X_RD (insn) == 15
&& X_OP3 (insn) == 4
&& X_RS1 (insn) == 14)
fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
}
}
else
{
/* Check if the PC is in the function prologue before a SAVE
instruction has been executed yet. If so, set the frame
to the current value of the stack pointer and set
the in_prologue flag. */
CORE_ADDR addr;
struct symtab_and_line sal;
sal = find_pc_line (prologue_start, 0);
if (sal.line == 0) /* no line info, use PC */
prologue_end = fi->pc;
else if (sal.end < prologue_end)
prologue_end = sal.end;
if (fi->pc < prologue_end)
{
for (addr = prologue_start; addr < fi->pc; addr += 4)
{
insn = read_memory_integer (addr, 4);
if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
break; /* SAVE seen, stop searching */
}
if (addr >= fi->pc)
{
fi->in_prologue = 1;
fi->frame = read_register (SP_REGNUM);
}
}
}
}
if (fi->next && fi->frame == 0)
{
/* Kludge to cause init_prev_frame_info to destroy the new frame. */
fi->frame = fi->next->frame;
fi->pc = fi->next->pc;
}
}
CORE_ADDR
sparc_frame_chain (frame)
struct frame_info *frame;
{
/* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
value. If it realy is zero, we detect it later in
sparc_init_prev_frame. */
return (CORE_ADDR) 1;
}
CORE_ADDR
sparc_extract_struct_value_address (regbuf)
char regbuf[REGISTER_BYTES];
{
return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
REGISTER_RAW_SIZE (O0_REGNUM));
}
/* Find the pc saved in frame FRAME. */
CORE_ADDR
sparc_frame_saved_pc (frame)
struct frame_info *frame;
{
char buf[MAX_REGISTER_RAW_SIZE];
CORE_ADDR addr;
if (frame->signal_handler_caller)
{
/* This is the signal trampoline frame.
Get the saved PC from the sigcontext structure. */
#ifndef SIGCONTEXT_PC_OFFSET
#define SIGCONTEXT_PC_OFFSET 12
#endif
CORE_ADDR sigcontext_addr;
char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
char *name = NULL;
/* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
as the third parameter. The offset to the saved pc is 12. */
find_pc_partial_function (frame->pc, &name,
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
if (name && STREQ (name, "ucbsigvechandler"))
saved_pc_offset = 12;
/* The sigcontext address is contained in register O2. */
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
frame, O0_REGNUM + 2, (enum lval_type *) NULL);
sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
/* Don't cause a memory_error when accessing sigcontext in case the
stack layout has changed or the stack is corrupt. */
target_read_memory (sigcontext_addr + saved_pc_offset,
scbuf, sizeof (scbuf));
return extract_address (scbuf, sizeof (scbuf));
}
else if (frame->in_prologue ||
(frame->next != NULL
&& (frame->next->signal_handler_caller
|| frame_in_dummy (frame->next))
&& frameless_look_for_prologue (frame)))
{
/* A frameless function interrupted by a signal did not save
the PC, it is still in %o7. */
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
frame, O7_REGNUM, (enum lval_type *) NULL);
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
}
if (frame->flat)
addr = frame->pc_addr;
else
addr = frame->bottom + FRAME_SAVED_I0 +
SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
if (addr == 0)
/* A flat frame leaf function might not save the PC anywhere,
just leave it in %o7. */
return PC_ADJUST (read_register (O7_REGNUM));
read_memory (addr, buf, SPARC_INTREG_SIZE);
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
}
/* Since an individual frame in the frame cache is defined by two
arguments (a frame pointer and a stack pointer), we need two
arguments to get info for an arbitrary stack frame. This routine
takes two arguments and makes the cached frames look as if these
two arguments defined a frame on the cache. This allows the rest
of info frame to extract the important arguments without
difficulty. */
struct frame_info *
setup_arbitrary_frame (argc, argv)
int argc;
CORE_ADDR *argv;
{
struct frame_info *frame;
if (argc != 2)
error ("Sparc frame specifications require two arguments: fp and sp");
frame = create_new_frame (argv[0], 0);
if (!frame)
internal_error ("create_new_frame returned invalid frame");
frame->bottom = argv[1];
frame->pc = FRAME_SAVED_PC (frame);
return frame;
}
/* Given a pc value, skip it forward past the function prologue by
disassembling instructions that appear to be a prologue.
If FRAMELESS_P is set, we are only testing to see if the function
is frameless. This allows a quicker answer.
This routine should be more specific in its actions; making sure
that it uses the same register in the initial prologue section. */
static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *,
struct frame_saved_regs *));
static CORE_ADDR
examine_prologue (start_pc, frameless_p, fi, saved_regs)
CORE_ADDR start_pc;
int frameless_p;
struct frame_info *fi;
struct frame_saved_regs *saved_regs;
{
int insn;
int dest = -1;
CORE_ADDR pc = start_pc;
int is_flat = 0;
insn = fetch_instruction (pc);
/* Recognize the `sethi' insn and record its destination. */
if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
{
dest = X_RD (insn);
pc += 4;
insn = fetch_instruction (pc);
}
/* Recognize an add immediate value to register to either %g1 or
the destination register recorded above. Actually, this might
well recognize several different arithmetic operations.
It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
followed by "save %sp, %g1, %sp" is a valid prologue (Not that
I imagine any compiler really does that, however). */
if (X_OP (insn) == 2
&& X_I (insn)
&& (X_RD (insn) == 1 || X_RD (insn) == dest))
{
pc += 4;
insn = fetch_instruction (pc);
}
/* Recognize any SAVE insn. */
if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
{
pc += 4;
if (frameless_p) /* If the save is all we care about, */
return pc; /* return before doing more work */
insn = fetch_instruction (pc);
}
/* Recognize add to %sp. */
else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
{
pc += 4;
if (frameless_p) /* If the add is all we care about, */
return pc; /* return before doing more work */
is_flat = 1;
insn = fetch_instruction (pc);
/* Recognize store of frame pointer (i7). */
if (X_OP (insn) == 3
&& X_RD (insn) == 31
&& X_OP3 (insn) == 4
&& X_RS1 (insn) == 14)
{
pc += 4;
insn = fetch_instruction (pc);
/* Recognize sub %sp, <anything>, %i7. */
if (X_OP (insn) == 2
&& X_OP3 (insn) == 4
&& X_RS1 (insn) == 14
&& X_RD (insn) == 31)
{
pc += 4;
insn = fetch_instruction (pc);
}
else
return pc;
}
else
return pc;
}
else
/* Without a save or add instruction, it's not a prologue. */
return start_pc;
while (1)
{
/* Recognize stores into the frame from the input registers.
This recognizes all non alternate stores of input register,
into a location offset from the frame pointer. */
if ((X_OP (insn) == 3
&& (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
&& (X_RD (insn) & 0x18) == 0x18 /* Input register. */
&& X_I (insn) /* Immediate mode. */
&& X_RS1 (insn) == 30 /* Off of frame pointer. */
/* Into reserved stack space. */
&& X_SIMM13 (insn) >= 0x44
&& X_SIMM13 (insn) < 0x5b))
;
else if (is_flat
&& X_OP (insn) == 3
&& X_OP3 (insn) == 4
&& X_RS1 (insn) == 14
)
{
if (saved_regs && X_I (insn))
saved_regs->regs[X_RD (insn)] =
fi->frame + fi->sp_offset + X_SIMM13 (insn);
}
else
break;
pc += 4;
insn = fetch_instruction (pc);
}
return pc;
}
CORE_ADDR
sparc_skip_prologue (start_pc, frameless_p)
CORE_ADDR start_pc;
int frameless_p;
{
return examine_prologue (start_pc, frameless_p, NULL, NULL);
}
/* Check instruction at ADDR to see if it is a branch.
All non-annulled instructions will go to NPC or will trap.
Set *TARGET if we find a candidate branch; set to zero if not.
This isn't static as it's used by remote-sa.sparc.c. */
static branch_type
isbranch (instruction, addr, target)
long instruction;
CORE_ADDR addr, *target;
{
branch_type val = not_branch;
long int offset = 0; /* Must be signed for sign-extend. */
*target = 0;
if (X_OP (instruction) == 0
&& (X_OP2 (instruction) == 2
|| X_OP2 (instruction) == 6
|| X_OP2 (instruction) == 1
|| X_OP2 (instruction) == 3
|| X_OP2 (instruction) == 5
#ifndef GDB_TARGET_IS_SPARC64
|| X_OP2 (instruction) == 7
#endif
))
{
if (X_COND (instruction) == 8)
val = X_A (instruction) ? baa : ba;
else
val = X_A (instruction) ? bicca : bicc;
switch (X_OP2 (instruction))
{
case 2:
case 6:
#ifndef GDB_TARGET_IS_SPARC64
case 7:
#endif
offset = 4 * X_DISP22 (instruction);
break;
case 1:
case 5:
offset = 4 * X_DISP19 (instruction);
break;
case 3:
offset = 4 * X_DISP16 (instruction);
break;
}
*target = addr + offset;
}
#ifdef GDB_TARGET_IS_SPARC64
else if (X_OP (instruction) == 2
&& X_OP3 (instruction) == 62)
{
if (X_FCN (instruction) == 0)
{
/* done */
*target = read_register (TNPC_REGNUM);
val = done_retry;
}
else if (X_FCN (instruction) == 1)
{
/* retry */
*target = read_register (TPC_REGNUM);
val = done_retry;
}
}
#endif
return val;
}
/* Find register number REGNUM relative to FRAME and put its
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
was optimized out (and thus can't be fetched). If the variable
was fetched from memory, set *ADDRP to where it was fetched from,
otherwise it was fetched from a register.
The argument RAW_BUFFER must point to aligned memory. */
void
sparc_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
char *raw_buffer;
int *optimized;
CORE_ADDR *addrp;
struct frame_info *frame;
int regnum;
enum lval_type *lval;
{
struct frame_info *frame1;
CORE_ADDR addr;
if (!target_has_registers)
error ("No registers.");
if (optimized)
*optimized = 0;
addr = 0;
/* FIXME This code extracted from infcmd.c; should put elsewhere! */
if (frame == NULL)
{
/* error ("No selected frame."); */
if (!target_has_registers)
error ("The program has no registers now.");
if (selected_frame == NULL)
error ("No selected frame.");
/* Try to use selected frame */
frame = get_prev_frame (selected_frame);
if (frame == 0)
error ("Cmd not meaningful in the outermost frame.");
}
frame1 = frame->next;
/* Get saved PC from the frame info if not in innermost frame. */
if (regnum == PC_REGNUM && frame1 != NULL)
{
if (lval != NULL)
*lval = not_lval;
if (raw_buffer != NULL)
{
/* Put it back in target format. */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
}
if (addrp != NULL)
*addrp = 0;
return;
}
while (frame1 != NULL)
{
if (frame1->pc >= (frame1->bottom ? frame1->bottom :
read_sp ())
&& frame1->pc <= FRAME_FP (frame1))
{
/* Dummy frame. All but the window regs are in there somewhere.
The window registers are saved on the stack, just like in a
normal frame. */
if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
- (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
addr = (frame1->prev->bottom
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_I0);
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
addr = (frame1->prev->bottom
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_L0);
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
- (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
#ifdef FP0_REGNUM
else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
addr = frame1->frame + (regnum - FP0_REGNUM) * 4
- (FP_REGISTER_BYTES);
#ifdef GDB_TARGET_IS_SPARC64
else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
- (FP_REGISTER_BYTES);
#endif
#endif /* FP0_REGNUM */
else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
- (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
}
else if (frame1->flat)
{
if (regnum == RP_REGNUM)
addr = frame1->pc_addr;
else if (regnum == I7_REGNUM)
addr = frame1->fp_addr;
else
{
CORE_ADDR func_start;
struct frame_saved_regs regs;
memset (®s, 0, sizeof (regs));
find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
examine_prologue (func_start, 0, frame1, ®s);
addr = regs.regs[regnum];
}
}
else
{
/* Normal frame. Local and In registers are saved on stack. */
if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
addr = (frame1->prev->bottom
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_I0);
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
addr = (frame1->prev->bottom
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_L0);
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
{
/* Outs become ins. */
get_saved_register (raw_buffer, optimized, addrp, frame1,
(regnum - O0_REGNUM + I0_REGNUM), lval);
return;
}
}
if (addr != 0)
break;
frame1 = frame1->next;
}
if (addr != 0)
{
if (lval != NULL)
*lval = lval_memory;
if (regnum == SP_REGNUM)
{
if (raw_buffer != NULL)
{
/* Put it back in target format. */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
}
if (addrp != NULL)
*addrp = 0;
return;
}
if (raw_buffer != NULL)
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
}
else
{
if (lval != NULL)
*lval = lval_register;
addr = REGISTER_BYTE (regnum);
if (raw_buffer != NULL)
read_register_gen (regnum, raw_buffer);
}
if (addrp != NULL)
*addrp = addr;
}
/* Push an empty stack frame, and record in it the current PC, regs, etc.
We save the non-windowed registers and the ins. The locals and outs
are new; they don't need to be saved. The i's and l's of
the last frame were already saved on the stack. */
/* Definitely see tm-sparc.h for more doc of the frame format here. */
#ifdef GDB_TARGET_IS_SPARC64
#define DUMMY_REG_SAVE_OFFSET (128 + 16)
#else
#define DUMMY_REG_SAVE_OFFSET 0x60
#endif
/* See tm-sparc.h for how this is calculated. */
#ifdef FP0_REGNUM
#define DUMMY_STACK_REG_BUF_SIZE \
(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
#else
#define DUMMY_STACK_REG_BUF_SIZE \
(((8+8+8) * SPARC_INTREG_SIZE) )
#endif /* FP0_REGNUM */
#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
void
sparc_push_dummy_frame ()
{
CORE_ADDR sp, old_sp;
char register_temp[DUMMY_STACK_SIZE];
old_sp = sp = read_sp ();
#ifdef GDB_TARGET_IS_SPARC64
/* PC, NPC, CCR, FSR, FPRS, Y, ASI */
read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0],
REGISTER_RAW_SIZE (PC_REGNUM) * 7);
read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), ®ister_temp[8],
REGISTER_RAW_SIZE (PSTATE_REGNUM));
/* FIXME: not sure what needs to be saved here. */
#else
/* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0],
REGISTER_RAW_SIZE (Y_REGNUM) * 8);
#endif
read_register_bytes (REGISTER_BYTE (O0_REGNUM),
®ister_temp[8 * SPARC_INTREG_SIZE],
SPARC_INTREG_SIZE * 8);
read_register_bytes (REGISTER_BYTE (G0_REGNUM),
®ister_temp[16 * SPARC_INTREG_SIZE],
SPARC_INTREG_SIZE * 8);
#ifdef FP0_REGNUM
read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
®ister_temp[24 * SPARC_INTREG_SIZE],
FP_REGISTER_BYTES);
#endif /* FP0_REGNUM */
sp -= DUMMY_STACK_SIZE;
write_sp (sp);
write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0],
DUMMY_STACK_REG_BUF_SIZE);
if (strcmp (target_shortname, "sim") != 0)
{
write_fp (old_sp);
/* Set return address register for the call dummy to the current PC. */
write_register (I7_REGNUM, read_pc () - 8);
}
else
{
/* The call dummy will write this value to FP before executing
the 'save'. This ensures that register window flushes work
correctly in the simulator. */
write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
/* The call dummy will write this value to FP after executing
the 'save'. */
write_register (G0_REGNUM + 2, old_sp);
/* The call dummy will write this value to the return address (%i7) after
executing the 'save'. */
write_register (G0_REGNUM + 3, read_pc () - 8);
/* Set the FP that the call dummy will be using after the 'save'.
This makes backtraces from an inferior function call work properly. */
write_register (FP_REGNUM, old_sp);
}
}
/* sparc_frame_find_saved_regs (). This function is here only because
pop_frame uses it. Note there is an interesting corner case which
I think few ports of GDB get right--if you are popping a frame
which does not save some register that *is* saved by a more inner
frame (such a frame will never be a dummy frame because dummy
frames save all registers). Rewriting pop_frame to use
get_saved_register would solve this problem and also get rid of the
ugly duplication between sparc_frame_find_saved_regs and
get_saved_register.
Stores, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame.
Note that on register window machines, we are currently making the
assumption that window registers are being saved somewhere in the
frame in which they are being used. If they are stored in an
inferior frame, find_saved_register will break.
On the Sun 4, the only time all registers are saved is when
a dummy frame is involved. Otherwise, the only saved registers
are the LOCAL and IN registers which are saved as a result
of the "save/restore" opcodes. This condition is determined
by address rather than by value.
The "pc" is not stored in a frame on the SPARC. (What is stored
is a return address minus 8.) sparc_pop_frame knows how to
deal with that. Other routines might or might not.
See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
about how this works. */
static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *,
struct frame_saved_regs *));
static void
sparc_frame_find_saved_regs (fi, saved_regs_addr)
struct frame_info *fi;
struct frame_saved_regs *saved_regs_addr;
{
register int regnum;
CORE_ADDR frame_addr = FRAME_FP (fi);
if (!fi)
internal_error ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
if (fi->pc >= (fi->bottom ? fi->bottom :
read_sp ())
&& fi->pc <= FRAME_FP (fi))
{
/* Dummy frame. All but the window regs are in there somewhere. */
for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
saved_regs_addr->regs[regnum] =
frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
- DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
saved_regs_addr->regs[regnum] =
frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
- DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
#ifdef FP0_REGNUM
for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
saved_regs_addr->regs[regnum] =
frame_addr + (regnum - FP0_REGNUM) * 4
- DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
#ifdef GDB_TARGET_IS_SPARC64
for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++)
saved_regs_addr->regs[regnum] =
frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4
- DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
#endif
#endif /* FP0_REGNUM */
#ifdef GDB_TARGET_IS_SPARC64
for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
{
saved_regs_addr->regs[regnum] =
frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
- DUMMY_STACK_REG_BUF_SIZE;
}
saved_regs_addr->regs[PSTATE_REGNUM] =
frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
#else
for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
saved_regs_addr->regs[regnum] =
frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
- DUMMY_STACK_REG_BUF_SIZE;
#endif
frame_addr = fi->bottom ?
fi->bottom : read_sp ();
}
else if (fi->flat)
{
CORE_ADDR func_start;
find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
examine_prologue (func_start, 0, fi, saved_regs_addr);
/* Flat register window frame. */
saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr;
saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr;
}
else
{
/* Normal frame. Just Local and In registers */
frame_addr = fi->bottom ?
fi->bottom : read_sp ();
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
saved_regs_addr->regs[regnum] =
(frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_L0);
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
saved_regs_addr->regs[regnum] =
(frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_I0);
}
if (fi->next)
{
if (fi->flat)
{
saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr;
}
else
{
/* Pull off either the next frame pointer or the stack pointer */
CORE_ADDR next_next_frame_addr =
(fi->next->bottom ?
fi->next->bottom :
read_sp ());
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
saved_regs_addr->regs[regnum] =
(next_next_frame_addr
+ (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
+ FRAME_SAVED_I0);
}
}
/* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
/* FIXME -- should this adjust for the sparc64 offset? */
saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
}
/* Discard from the stack the innermost frame, restoring all saved registers.
Note that the values stored in fsr by get_frame_saved_regs are *in
the context of the called frame*. What this means is that the i
regs of fsr must be restored into the o regs of the (calling) frame that
we pop into. We don't care about the output regs of the calling frame,
since unless it's a dummy frame, it won't have any output regs in it.
We never have to bother with %l (local) regs, since the called routine's
locals get tossed, and the calling routine's locals are already saved
on its stack. */
/* Definitely see tm-sparc.h for more doc of the frame format here. */
void
sparc_pop_frame ()
{
register struct frame_info *frame = get_current_frame ();
register CORE_ADDR pc;
struct frame_saved_regs fsr;
char raw_buffer[REGISTER_BYTES];
int regnum;
sparc_frame_find_saved_regs (frame, &fsr);
#ifdef FP0_REGNUM
if (fsr.regs[FP0_REGNUM])
{
read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
raw_buffer, FP_REGISTER_BYTES);
}
#ifndef GDB_TARGET_IS_SPARC64
if (fsr.regs[FPS_REGNUM])
{
read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
}
if (fsr.regs[CPS_REGNUM])
{
read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
}
#endif
#endif /* FP0_REGNUM */
if (fsr.regs[G1_REGNUM])
{
read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
7 * SPARC_INTREG_SIZE);
}
if (frame->flat)
{
/* Each register might or might not have been saved, need to test
individually. */
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
if (fsr.regs[regnum])
write_register (regnum, read_memory_integer (fsr.regs[regnum],
SPARC_INTREG_SIZE));
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
if (fsr.regs[regnum])
write_register (regnum, read_memory_integer (fsr.regs[regnum],
SPARC_INTREG_SIZE));
/* Handle all outs except stack pointer (o0-o5; o7). */
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
if (fsr.regs[regnum])
write_register (regnum, read_memory_integer (fsr.regs[regnum],
SPARC_INTREG_SIZE));
if (fsr.regs[O0_REGNUM + 7])
write_register (O0_REGNUM + 7,
read_memory_integer (fsr.regs[O0_REGNUM + 7],
SPARC_INTREG_SIZE));
write_sp (frame->frame);
}
else if (fsr.regs[I0_REGNUM])
{
CORE_ADDR sp;
char reg_temp[REGISTER_BYTES];
read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
/* Get the ins and locals which we are about to restore. Just
moving the stack pointer is all that is really needed, except
store_inferior_registers is then going to write the ins and
locals from the registers array, so we need to muck with the
registers array. */
sp = fsr.regs[SP_REGNUM];
#ifdef GDB_TARGET_IS_SPARC64
if (sp & 1)
sp += 2047;
#endif
read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
/* Restore the out registers.
Among other things this writes the new stack pointer. */
write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
SPARC_INTREG_SIZE * 8);
write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
SPARC_INTREG_SIZE * 16);
}
#ifndef GDB_TARGET_IS_SPARC64
if (fsr.regs[PS_REGNUM])
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
#endif
if (fsr.regs[Y_REGNUM])
write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM)));
if (fsr.regs[PC_REGNUM])
{
/* Explicitly specified PC (and maybe NPC) -- just restore them. */
write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM],
REGISTER_RAW_SIZE (PC_REGNUM)));
if (fsr.regs[NPC_REGNUM])
write_register (NPC_REGNUM,
read_memory_integer (fsr.regs[NPC_REGNUM],
REGISTER_RAW_SIZE (NPC_REGNUM)));
}
else if (frame->flat)
{
if (frame->pc_addr)
pc = PC_ADJUST ((CORE_ADDR)
read_memory_integer (frame->pc_addr,
REGISTER_RAW_SIZE (PC_REGNUM)));
else
{
/* I think this happens only in the innermost frame, if so then
it is a complicated way of saying
"pc = read_register (O7_REGNUM);". */
char buf[MAX_REGISTER_RAW_SIZE];
get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
pc = PC_ADJUST (extract_address
(buf, REGISTER_RAW_SIZE (O7_REGNUM)));
}
write_register (PC_REGNUM, pc);
write_register (NPC_REGNUM, pc + 4);
}
else if (fsr.regs[I7_REGNUM])
{
/* Return address in %i7 -- adjust it, then restore PC and NPC from it */
pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM],
SPARC_INTREG_SIZE));
write_register (PC_REGNUM, pc);
write_register (NPC_REGNUM, pc + 4);
}
flush_cached_frames ();
}
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
encodes the structure size being returned. If we detect such
a fake insn, step past it. */
CORE_ADDR
sparc_pc_adjust (pc)
CORE_ADDR pc;
{
unsigned long insn;
char buf[4];
int err;
err = target_read_memory (pc + 8, buf, 4);
insn = extract_unsigned_integer (buf, 4);
if ((err == 0) && (insn & 0xffc00000) == 0)
return pc + 12;
else
return pc + 8;
}
/* If pc is in a shared library trampoline, return its target.
The SunOs 4.x linker rewrites the jump table entries for PIC
compiled modules in the main executable to bypass the dynamic linker
with jumps of the form
sethi %hi(addr),%g1
jmp %g1+%lo(addr)
and removes the corresponding jump table relocation entry in the
dynamic relocations.
find_solib_trampoline_target relies on the presence of the jump
table relocation entry, so we have to detect these jump instructions
by hand. */
CORE_ADDR
sunos4_skip_trampoline_code (pc)
CORE_ADDR pc;
{
unsigned long insn1;
char buf[4];
int err;
err = target_read_memory (pc, buf, 4);
insn1 = extract_unsigned_integer (buf, 4);
if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
{
unsigned long insn2;
err = target_read_memory (pc + 4, buf, 4);
insn2 = extract_unsigned_integer (buf, 4);
if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
{
CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
int delta = insn2 & 0x1fff;
/* Sign extend the displacement. */
if (delta & 0x1000)
delta |= ~0x1fff;
return target_pc + delta;
}
}
return find_solib_trampoline_target (pc);
}
#ifdef USE_PROC_FS /* Target dependent support for /proc */
/* *INDENT-OFF* */
/* The /proc interface divides the target machine's register set up into
two different sets, the general register set (gregset) and the floating
point register set (fpregset). For each set, there is an ioctl to get
the current register set and another ioctl to set the current values.
The actual structure passed through the ioctl interface is, of course,
naturally machine dependent, and is different for each set of registers.
For the sparc for example, the general register set is typically defined
by:
typedef int gregset_t[38];
#define R_G0 0
...
#define R_TBR 37
and the floating point set by:
typedef struct prfpregset {
union {
u_long pr_regs[32];
double pr_dregs[16];
} pr_fr;
void * pr_filler;
u_long pr_fsr;
u_char pr_qcnt;
u_char pr_q_entrysize;
u_char pr_en;
u_long pr_q[64];
} prfpregset_t;
These routines provide the packing and unpacking of gregset_t and
fpregset_t formatted data.
*/
/* *INDENT-ON* */
/* Given a pointer to a general register set in /proc format (gregset_t *),
unpack the register contents and supply them as gdb's idea of the current
register values. */
void
supply_gregset (gregsetp)
prgregset_t *gregsetp;
{
register int regi;
register prgreg_t *regp = (prgreg_t *) gregsetp;
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
{0};
/* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
{
supply_register (regi, (char *) (regp + regi));
}
/* These require a bit more care. */
supply_register (PS_REGNUM, (char *) (regp + R_PS));
supply_register (PC_REGNUM, (char *) (regp + R_PC));
supply_register (NPC_REGNUM, (char *) (regp + R_nPC));
supply_register (Y_REGNUM, (char *) (regp + R_Y));
/* Fill inaccessible registers with zero. */
supply_register (WIM_REGNUM, zerobuf);
supply_register (TBR_REGNUM, zerobuf);
supply_register (CPS_REGNUM, zerobuf);
}
void
fill_gregset (gregsetp, regno)
prgregset_t *gregsetp;
int regno;
{
int regi;
register prgreg_t *regp = (prgreg_t *) gregsetp;
for (regi = 0; regi <= R_I7; regi++)
{
if ((regno == -1) || (regno == regi))
{
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
}
}
if ((regno == -1) || (regno == PS_REGNUM))
{
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
}
if ((regno == -1) || (regno == PC_REGNUM))
{
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
}
if ((regno == -1) || (regno == NPC_REGNUM))
{
*(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
}
if ((regno == -1) || (regno == Y_REGNUM))
{
*(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
}
}
#if defined (FP0_REGNUM)
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), unpack the register contents and supply them as gdb's
idea of the current floating point register values. */
void
supply_fpregset (fpregsetp)
prfpregset_t *fpregsetp;
{
register int regi;
char *from;
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
{
from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
supply_register (regi, from);
}
supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), update the register specified by REGNO from gdb's idea
of the current floating point register set. If REGNO is -1, update
them all. */
/* ??? This will probably need some changes for sparc64. */
void
fill_fpregset (fpregsetp, regno)
prfpregset_t *fpregsetp;
int regno;
{
int regi;
char *to;
char *from;
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
{
if ((regno == -1) || (regno == regi))
{
from = (char *) ®isters[REGISTER_BYTE (regi)];
to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
memcpy (to, from, REGISTER_RAW_SIZE (regi));
}
}
if ((regno == -1) || (regno == FPS_REGNUM))
{
fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
}
}
#endif /* defined (FP0_REGNUM) */
#endif /* USE_PROC_FS */
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land. We expect that we have just entered
longjmp and haven't yet setup the stack frame, so the args are still in the
output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
This routine returns true on success */
int
get_longjmp_target (pc)
CORE_ADDR *pc;
{
CORE_ADDR jb_addr;
#define LONGJMP_TARGET_SIZE 4
char buf[LONGJMP_TARGET_SIZE];
jb_addr = read_register (O0_REGNUM);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
LONGJMP_TARGET_SIZE))
return 0;
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
return 1;
}
#endif /* GET_LONGJMP_TARGET */
#ifdef STATIC_TRANSFORM_NAME
/* SunPRO (3.0 at least), encodes the static variables. This is not
related to C++ mangling, it is done for C too. */
char *
sunpro_static_transform_name (name)
char *name;
{
char *p;
if (name[0] == '$')
{
/* For file-local statics there will be a dollar sign, a bunch
of junk (the contents of which match a string given in the
N_OPT), a period and the name. For function-local statics
there will be a bunch of junk (which seems to change the
second character from 'A' to 'B'), a period, the name of the
function, and the name. So just skip everything before the
last period. */
p = strrchr (name, '.');
if (p != NULL)
name = p + 1;
}
return name;
}
#endif /* STATIC_TRANSFORM_NAME */
/* Utilities for printing registers.
Page numbers refer to the SPARC Architecture Manual. */
static void dump_ccreg PARAMS ((char *, int));
static void
dump_ccreg (reg, val)
char *reg;
int val;
{
/* page 41 */
printf_unfiltered ("%s:%s,%s,%s,%s", reg,
val & 8 ? "N" : "NN",
val & 4 ? "Z" : "NZ",
val & 2 ? "O" : "NO",
val & 1 ? "C" : "NC"
);
}
static char *
decode_asi (val)
int val;
{
/* page 72 */
switch (val)
{
case 4:
return "ASI_NUCLEUS";
case 0x0c:
return "ASI_NUCLEUS_LITTLE";
case 0x10:
return "ASI_AS_IF_USER_PRIMARY";
case 0x11:
return "ASI_AS_IF_USER_SECONDARY";
case 0x18:
return "ASI_AS_IF_USER_PRIMARY_LITTLE";
case 0x19:
return "ASI_AS_IF_USER_SECONDARY_LITTLE";
case 0x80:
return "ASI_PRIMARY";
case 0x81:
return "ASI_SECONDARY";
case 0x82:
return "ASI_PRIMARY_NOFAULT";
case 0x83:
return "ASI_SECONDARY_NOFAULT";
case 0x88:
return "ASI_PRIMARY_LITTLE";
case 0x89:
return "ASI_SECONDARY_LITTLE";
case 0x8a:
return "ASI_PRIMARY_NOFAULT_LITTLE";
case 0x8b:
return "ASI_SECONDARY_NOFAULT_LITTLE";
default:
return NULL;
}
}
/* PRINT_REGISTER_HOOK routine.
Pretty print various registers. */
/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
void
sparc_print_register_hook (regno)
int regno;
{
ULONGEST val;
/* Handle double/quad versions of lower 32 fp regs. */
if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
&& (regno & 1) == 0)
{
char value[16];
if (!read_relative_register_raw_bytes (regno, value)
&& !read_relative_register_raw_bytes (regno + 1, value + 4))
{
printf_unfiltered ("\t");
print_floating (value, builtin_type_double, gdb_stdout);
}
#if 0 /* FIXME: gdb doesn't handle long doubles */
if ((regno & 3) == 0)
{
if (!read_relative_register_raw_bytes (regno + 2, value + 8)
&& !read_relative_register_raw_bytes (regno + 3, value + 12))
{
printf_unfiltered ("\t");
print_floating (value, builtin_type_long_double, gdb_stdout);
}
}
#endif
return;
}
#if 0 /* FIXME: gdb doesn't handle long doubles */
/* Print upper fp regs as long double if appropriate. */
if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
/* We test for even numbered regs and not a multiple of 4 because
the upper fp regs are recorded as doubles. */
&& (regno & 1) == 0)
{
char value[16];
if (!read_relative_register_raw_bytes (regno, value)
&& !read_relative_register_raw_bytes (regno + 1, value + 8))
{
printf_unfiltered ("\t");
print_floating (value, builtin_type_long_double, gdb_stdout);
}
return;
}
#endif
/* FIXME: Some of these are priviledged registers.
Not sure how they should be handled. */
#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
val = read_register (regno);
/* pages 40 - 60 */
switch (regno)
{
#ifdef GDB_TARGET_IS_SPARC64
case CCR_REGNUM:
printf_unfiltered ("\t");
dump_ccreg ("xcc", val >> 4);
printf_unfiltered (", ");
dump_ccreg ("icc", val & 15);
break;
case FPRS_REGNUM:
printf ("\tfef:%d, du:%d, dl:%d",
BITS (2, 1), BITS (1, 1), BITS (0, 1));
break;
case FSR_REGNUM:
{
static char *fcc[4] =
{"=", "<", ">", "?"};
static char *rd[4] =
{"N", "0", "+", "-"};
/* Long, yes, but I'd rather leave it as is and use a wide screen. */
printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
fcc[BITS (10, 3)], fcc[BITS (32, 3)],
fcc[BITS (34, 3)], fcc[BITS (36, 3)],
rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31));
break;
}
case ASI_REGNUM:
{
char *asi = decode_asi (val);
if (asi != NULL)
printf ("\t%s", asi);
break;
}
case VER_REGNUM:
printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
BITS (48, 0xffff), BITS (32, 0xffff),
BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
break;
case PSTATE_REGNUM:
{
static char *mm[4] =
{"tso", "pso", "rso", "?"};
printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1),
BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1),
BITS (0, 1));
break;
}
case TSTATE_REGNUM:
/* FIXME: print all 4? */
break;
case TT_REGNUM:
/* FIXME: print all 4? */
break;
case TPC_REGNUM:
/* FIXME: print all 4? */
break;
case TNPC_REGNUM:
/* FIXME: print all 4? */
break;
case WSTATE_REGNUM:
printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
break;
case CWP_REGNUM:
printf ("\t%d", BITS (0, 31));
break;
case CANSAVE_REGNUM:
printf ("\t%-2d before spill", BITS (0, 31));
break;
case CANRESTORE_REGNUM:
printf ("\t%-2d before fill", BITS (0, 31));
break;
case CLEANWIN_REGNUM:
printf ("\t%-2d before clean", BITS (0, 31));
break;
case OTHERWIN_REGNUM:
printf ("\t%d", BITS (0, 31));
break;
#else
case PS_REGNUM:
printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
BITS (0, 31));
break;
case FPS_REGNUM:
{
static char *fcc[4] =
{"=", "<", ">", "?"};
static char *rd[4] =
{"N", "0", "+", "-"};
/* Long, yes, but I'd rather leave it as is and use a wide screen. */
printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
"fcc:%s, aexc:%d, cexc:%d",
rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
BITS (0, 31));
break;
}
#endif /* GDB_TARGET_IS_SPARC64 */
}
#undef BITS
}
int
gdb_print_insn_sparc (memaddr, info)
bfd_vma memaddr;
disassemble_info *info;
{
/* It's necessary to override mach again because print_insn messes it up. */
info->mach = TARGET_ARCHITECTURE->mach;
return print_insn_sparc (memaddr, info);
}
/* The SPARC passes the arguments on the stack; arguments smaller
than an int are promoted to an int. */
CORE_ADDR
sparc_push_arguments (nargs, args, sp, struct_return, struct_addr)
int nargs;
value_ptr *args;
CORE_ADDR sp;
int struct_return;
CORE_ADDR struct_addr;
{
int i;
int accumulate_size = 0;
struct sparc_arg
{
char *contents;
int len;
int offset;
};
struct sparc_arg *sparc_args =
(struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
struct sparc_arg *m_arg;
/* Promote arguments if necessary, and calculate their stack offsets
and sizes. */
for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
{
value_ptr arg = args[i];
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
/* Cast argument to long if necessary as the compiler does it too. */
switch (TYPE_CODE (arg_type))
{
case TYPE_CODE_INT:
case TYPE_CODE_BOOL:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_ENUM:
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
{
arg_type = builtin_type_long;
arg = value_cast (arg_type, arg);
}
break;
default:
break;
}
m_arg->len = TYPE_LENGTH (arg_type);
m_arg->offset = accumulate_size;
accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
m_arg->contents = VALUE_CONTENTS (arg);
}
/* Make room for the arguments on the stack. */
accumulate_size += CALL_DUMMY_STACK_ADJUST;
sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
/* `Push' arguments on the stack. */
for (i = nargs; m_arg--, --i >= 0;)
write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
return sp;
}
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
void
sparc_extract_return_value (type, regbuf, valbuf)
struct type *type;
char *regbuf;
char *valbuf;
{
int typelen = TYPE_LENGTH (type);
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
else
memcpy (valbuf,
®buf[O0_REGNUM * regsize +
(typelen >= regsize
|| TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
: regsize - typelen)],
typelen);
}
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. On SPARCs with FPUs,
float values are returned in %f0 (and %f1). In all other cases,
values are returned in register %o0. */
void
sparc_store_return_value (type, valbuf)
struct type *type;
char *valbuf;
{
int regno;
char buffer[MAX_REGISTER_RAW_SIZE];
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
/* Floating-point values are returned in the register pair */
/* formed by %f0 and %f1 (doubles are, anyway). */
regno = FP0_REGNUM;
else
/* Other values are returned in register %o0. */
regno = O0_REGNUM;
/* Add leading zeros to the value. */
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
{
bzero (buffer, REGISTER_RAW_SIZE (regno));
memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
TYPE_LENGTH (type));
write_register_bytes (REGISTER_BYTE (regno), buffer,
REGISTER_RAW_SIZE (regno));
}
else
write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
}
/* Insert the function address into a call dummy instruction sequence
stored at DUMMY.
For structs and unions, if the function was compiled with Sun cc,
it expects 'unimp' after the call. But gcc doesn't use that
(twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
can assume it is operating on a pristine CALL_DUMMY, not one that
has already been customized for a different function). */
void
sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
char *dummy;
CORE_ADDR pc;
CORE_ADDR fun;
struct type *value_type;
int using_gcc;
{
int i;
/* Store the relative adddress of the target function into the
'call' instruction. */
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
(0x40000000
| (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
& 0x3fffffff)));
/* Comply with strange Sun cc calling convention for struct-returning
functions. */
if (!using_gcc
&& (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|| TYPE_CODE (value_type) == TYPE_CODE_UNION))
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
TYPE_LENGTH (value_type) & 0x1fff);
#ifndef GDB_TARGET_IS_SPARC64
/* If this is not a simulator target, change the first four instructions
of the call dummy to NOPs. Those instructions include a 'save'
instruction and are designed to work around problems with register
window flushing in the simulator. */
if (strcmp (target_shortname, "sim") != 0)
{
for (i = 0; i < 4; i++)
store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
}
#endif
/* If this is a bi-endian target, GDB has written the call dummy
in little-endian order. We must byte-swap it back to big-endian. */
if (bi_endian)
{
for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
{
char tmp = dummy[i];
dummy[i] = dummy[i + 3];
dummy[i + 3] = tmp;
tmp = dummy[i + 1];
dummy[i + 1] = dummy[i + 2];
dummy[i + 2] = tmp;
}
}
}
/* Set target byte order based on machine type. */
static int
sparc_target_architecture_hook (ap)
const bfd_arch_info_type *ap;
{
int i, j;
if (ap->mach == bfd_mach_sparc_sparclite_le)
{
if (TARGET_BYTE_ORDER_SELECTABLE_P)
{
target_byte_order = LITTLE_ENDIAN;
bi_endian = 1;
}
else
{
warning ("This GDB does not support little endian sparclite.");
}
}
else
bi_endian = 0;
return 1;
}
void
_initialize_sparc_tdep ()
{
tm_print_insn = gdb_print_insn_sparc;
tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
target_architecture_hook = sparc_target_architecture_hook;
}
#ifdef GDB_TARGET_IS_SPARC64
/* Compensate for stack bias. Note that we currently don't handle mixed
32/64 bit code. */
CORE_ADDR
sparc64_read_sp ()
{
CORE_ADDR sp = read_register (SP_REGNUM);
if (sp & 1)
sp += 2047;
return sp;
}
CORE_ADDR
sparc64_read_fp ()
{
CORE_ADDR fp = read_register (FP_REGNUM);
if (fp & 1)
fp += 2047;
return fp;
}
void
sparc64_write_sp (val)
CORE_ADDR val;
{
CORE_ADDR oldsp = read_register (SP_REGNUM);
if (oldsp & 1)
write_register (SP_REGNUM, val - 2047);
else
write_register (SP_REGNUM, val);
}
void
sparc64_write_fp (val)
CORE_ADDR val;
{
CORE_ADDR oldfp = read_register (FP_REGNUM);
if (oldfp & 1)
write_register (FP_REGNUM, val - 2047);
else
write_register (FP_REGNUM, val);
}
/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are
also copied onto the stack in the correct places. */
CORE_ADDR
sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
int nargs;
value_ptr *args;
CORE_ADDR sp;
unsigned char struct_return;
CORE_ADDR struct_retaddr;
{
int x;
int regnum = 0;
CORE_ADDR tempsp;
sp = (sp & ~(((unsigned long) TYPE_LENGTH (builtin_type_long)) - 1UL));
/* Figure out how much space we'll need. */
for (x = nargs - 1; x >= 0; x--)
{
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
value_ptr copyarg = args[x];
int copylen = len;
/* This code is, of course, no longer correct. */
if (copylen < TYPE_LENGTH (builtin_type_long))
{
copyarg = value_cast (builtin_type_long, copyarg);
copylen = TYPE_LENGTH (builtin_type_long);
}
sp -= copylen;
}
/* Round down. */
sp = sp & ~7;
tempsp = sp;
/* Now write the arguments onto the stack, while writing FP arguments
into the FP registers. */
for (x = 0; x < nargs; x++)
{
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
value_ptr copyarg = args[x];
int copylen = len;
/* This code is, of course, no longer correct. */
if (copylen < TYPE_LENGTH (builtin_type_long))
{
copyarg = value_cast (builtin_type_long, copyarg);
copylen = TYPE_LENGTH (builtin_type_long);
}
write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
tempsp += copylen;
if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32)
{
/* This gets copied into a FP register. */
int nextreg = regnum + 2;
char *data = VALUE_CONTENTS (args[x]);
/* Floats go into the lower half of a FP register pair; quads
use 2 pairs. */
if (len == 16)
nextreg += 2;
else if (len == 4)
regnum++;
write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum),
data,
len);
regnum = nextreg;
}
}
return sp;
}
/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
returned in f0-f3). */
void
sparc64_extract_return_value (type, regbuf, valbuf, bitoffset)
struct type *type;
char *regbuf;
char *valbuf;
int bitoffset;
{
int typelen = TYPE_LENGTH (type);
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
{
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
return;
}
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|| (TYPE_LENGTH (type) > 32))
{
memcpy (valbuf,
®buf[O0_REGNUM * regsize +
(typelen >= regsize ? 0 : regsize - typelen)],
typelen);
return;
}
else
{
char *o0 = ®buf[O0_REGNUM * regsize];
char *f0 = ®buf[FP0_REGNUM * regsize];
int x;
for (x = 0; x < TYPE_NFIELDS (type); x++)
{
struct field *f = &TYPE_FIELDS (type)[x];
/* FIXME: We may need to handle static fields here. */
int whichreg = (f->loc.bitpos + bitoffset) / 32;
int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
int where = (f->loc.bitpos + bitoffset) / 8;
int size = TYPE_LENGTH (f->type);
int typecode = TYPE_CODE (f->type);
if (typecode == TYPE_CODE_STRUCT)
{
sparc64_extract_return_value (f->type,
regbuf,
valbuf,
bitoffset + f->loc.bitpos);
}
else if (typecode == TYPE_CODE_FLT)
{
memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
}
else
{
memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
}
}
}
}
#endif
|