1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
/* Disassembly display.
Copyright (C) 1998-2020 Free Software Foundation, Inc.
Contributed by Hewlett-Packard Company.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "arch-utils.h"
#include "symtab.h"
#include "breakpoint.h"
#include "frame.h"
#include "value.h"
#include "source.h"
#include "disasm.h"
#include "tui/tui.h"
#include "tui/tui-command.h"
#include "tui/tui-data.h"
#include "tui/tui-win.h"
#include "tui/tui-layout.h"
#include "tui/tui-winsource.h"
#include "tui/tui-stack.h"
#include "tui/tui-file.h"
#include "tui/tui-disasm.h"
#include "tui/tui-source.h"
#include "progspace.h"
#include "objfiles.h"
#include "cli/cli-style.h"
#include "gdb_curses.h"
struct tui_asm_line
{
CORE_ADDR addr;
std::string addr_string;
size_t addr_size;
std::string insn;
};
/* Helper function to find the number of characters in STR, skipping
any ANSI escape sequences. */
static size_t
len_without_escapes (const std::string &str)
{
size_t len = 0;
const char *ptr = str.c_str ();
char c;
while ((c = *ptr++) != '\0')
{
if (c == '\033')
{
ui_file_style style;
size_t n_read;
if (style.parse (ptr, &n_read))
ptr += n_read;
else
{
/* Shouldn't happen, but just skip the ESC if it somehow
does. */
++ptr;
}
}
else
++len;
}
return len;
}
/* Function to disassemble up to COUNT instructions starting from address
PC into the ASM_LINES vector (which will be emptied of any previous
contents). Return the address of the COUNT'th instruction after pc.
When ADDR_SIZE is non-null then place the maximum size of an address and
label into the value pointed to by ADDR_SIZE, and set the addr_size
field on each item in ASM_LINES, otherwise the addr_size fields within
ASM_LINES are undefined.
It is worth noting that ASM_LINES might not have COUNT entries when this
function returns. If the disassembly is truncated for some other
reason, for example, we hit invalid memory, then ASM_LINES can have
fewer entries than requested. */
static CORE_ADDR
tui_disassemble (struct gdbarch *gdbarch,
std::vector<tui_asm_line> &asm_lines,
CORE_ADDR pc, int count,
size_t *addr_size = nullptr)
{
bool term_out = source_styling && gdb_stdout->can_emit_style_escape ();
string_file gdb_dis_out (term_out);
/* Must start with an empty list. */
asm_lines.clear ();
/* Now construct each line. */
for (int i = 0; i < count; ++i)
{
tui_asm_line tal;
CORE_ADDR orig_pc = pc;
try
{
pc = pc + gdb_print_insn (gdbarch, pc, &gdb_dis_out, NULL);
}
catch (const gdb_exception_error &except)
{
/* If PC points to an invalid address then we'll catch a
MEMORY_ERROR here, this should stop the disassembly, but
otherwise is fine. */
if (except.error != MEMORY_ERROR)
throw;
return pc;
}
/* Capture the disassembled instruction. */
tal.insn = std::move (gdb_dis_out.string ());
gdb_dis_out.clear ();
/* And capture the address the instruction is at. */
tal.addr = orig_pc;
print_address (gdbarch, orig_pc, &gdb_dis_out);
tal.addr_string = std::move (gdb_dis_out.string ());
gdb_dis_out.clear ();
if (addr_size != nullptr)
{
size_t new_size;
if (term_out)
new_size = len_without_escapes (tal.addr_string);
else
new_size = tal.addr_string.size ();
*addr_size = std::max (*addr_size, new_size);
tal.addr_size = new_size;
}
asm_lines.push_back (std::move (tal));
}
return pc;
}
/* Look backward from ADDR for an address from which we can start
disassembling, this needs to be something we can be reasonably
confident will fall on an instruction boundary. We use msymbol
addresses, or the start of a section. */
static CORE_ADDR
tui_find_backward_disassembly_start_address (CORE_ADDR addr)
{
struct bound_minimal_symbol msym, msym_prev;
msym = lookup_minimal_symbol_by_pc_section (addr - 1, nullptr,
lookup_msym_prefer::TEXT,
&msym_prev);
if (msym.minsym != nullptr)
return BMSYMBOL_VALUE_ADDRESS (msym);
else if (msym_prev.minsym != nullptr)
return BMSYMBOL_VALUE_ADDRESS (msym_prev);
/* Find the section that ADDR is in, and look for the start of the
section. */
struct obj_section *section = find_pc_section (addr);
if (section != NULL)
return obj_section_addr (section);
return addr;
}
/* Find the disassembly address that corresponds to FROM lines above
or below the PC. Variable sized instructions are taken into
account by the algorithm. */
static CORE_ADDR
tui_find_disassembly_address (struct gdbarch *gdbarch, CORE_ADDR pc, int from)
{
CORE_ADDR new_low;
int max_lines;
max_lines = (from > 0) ? from : - from;
if (max_lines == 0)
return pc;
std::vector<tui_asm_line> asm_lines;
new_low = pc;
if (from > 0)
{
/* Always disassemble 1 extra instruction here, then if the last
instruction fails to disassemble we will take the address of the
previous instruction that did disassemble as the result. */
tui_disassemble (gdbarch, asm_lines, pc, max_lines + 1);
new_low = asm_lines.back ().addr;
}
else
{
/* In order to disassemble backwards we need to find a suitable
address to start disassembling from and then work forward until we
re-find the address we're currently at. We can then figure out
which address will be at the top of the TUI window after our
backward scroll. During our backward disassemble we need to be
able to distinguish between the case where the last address we
_can_ disassemble is ADDR, and the case where the disassembly
just happens to stop at ADDR, for this reason we increase
MAX_LINES by one. */
max_lines++;
/* When we disassemble a series of instructions this will hold the
address of the last instruction disassembled. */
CORE_ADDR last_addr;
/* And this will hold the address of the next instruction that would
have been disassembled. */
CORE_ADDR next_addr;
/* As we search backward if we find an address that looks like a
promising starting point then we record it in this structure. If
the next address we try is not a suitable starting point then we
will fall back to the address held here. */
gdb::optional<CORE_ADDR> possible_new_low;
/* The previous value of NEW_LOW so we know if the new value is
different or not. */
CORE_ADDR prev_low;
do
{
/* Find an address from which we can start disassembling. */
prev_low = new_low;
new_low = tui_find_backward_disassembly_start_address (new_low);
/* Disassemble forward. */
next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines);
last_addr = asm_lines.back ().addr;
/* If disassembling from the current value of NEW_LOW reached PC
(or went past it) then this would do as a starting point if we
can't find anything better, so remember it. */
if (last_addr >= pc && new_low != prev_low
&& asm_lines.size () >= max_lines)
possible_new_low.emplace (new_low);
/* Continue searching until we find a value of NEW_LOW from which
disassembling MAX_LINES instructions doesn't reach PC. We
know this means we can find the required number of previous
instructions then. */
}
while ((last_addr > pc
|| (last_addr == pc && asm_lines.size () < max_lines))
&& new_low != prev_low);
/* If we failed to disassemble the required number of lines then the
following walk forward is not going to work, it assumes that
ASM_LINES contains exactly MAX_LINES entries. Instead we should
consider falling back to a previous possible start address in
POSSIBLE_NEW_LOW. */
if (asm_lines.size () < max_lines)
{
if (!possible_new_low.has_value ())
return new_low;
/* Take the best possible match we have. */
new_low = *possible_new_low;
next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines);
last_addr = asm_lines.back ().addr;
gdb_assert (asm_lines.size () >= max_lines);
}
/* Scan forward disassembling one instruction at a time until
the last visible instruction of the window matches the pc.
We keep the disassembled instructions in the 'lines' window
and shift it downward (increasing its addresses). */
int pos = max_lines - 1;
if (last_addr < pc)
do
{
pos++;
if (pos >= max_lines)
pos = 0;
CORE_ADDR old_next_addr = next_addr;
std::vector<tui_asm_line> single_asm_line;
next_addr = tui_disassemble (gdbarch, single_asm_line,
next_addr, 1);
/* If there are some problems while disassembling exit. */
if (next_addr <= old_next_addr)
return pc;
gdb_assert (single_asm_line.size () == 1);
asm_lines[pos] = single_asm_line[0];
} while (next_addr <= pc);
pos++;
if (pos >= max_lines)
pos = 0;
new_low = asm_lines[pos].addr;
/* When scrolling backward the addresses should move backward, or at
the very least stay the same if we are at the first address that
can be disassembled. */
gdb_assert (new_low <= pc);
}
return new_low;
}
/* Function to set the disassembly window's content. */
bool
tui_disasm_window::set_contents (struct gdbarch *arch,
const struct symtab_and_line &sal)
{
int i;
int offset = m_horizontal_offset;
int max_lines, line_width;
CORE_ADDR cur_pc;
struct tui_locator_window *locator = tui_locator_win_info_ptr ();
int tab_len = tui_tab_width;
int insn_pos;
CORE_ADDR pc = sal.pc;
if (pc == 0)
return false;
m_gdbarch = arch;
m_start_line_or_addr.loa = LOA_ADDRESS;
m_start_line_or_addr.u.addr = pc;
cur_pc = locator->addr;
/* Window size, excluding highlight box. */
max_lines = height - 2;
line_width = width - TUI_EXECINFO_SIZE - 2;
/* Get temporary table that will hold all strings (addr & insn). */
std::vector<tui_asm_line> asm_lines;
size_t addr_size = 0;
tui_disassemble (m_gdbarch, asm_lines, pc, max_lines, &addr_size);
/* Align instructions to the same column. */
insn_pos = (1 + (addr_size / tab_len)) * tab_len;
/* Now construct each line. */
m_content.resize (max_lines);
for (i = 0; i < max_lines; i++)
{
tui_source_element *src = &m_content[i];
std::string line;
CORE_ADDR addr;
if (i < asm_lines.size ())
{
line
= (asm_lines[i].addr_string
+ n_spaces (insn_pos - asm_lines[i].addr_size)
+ asm_lines[i].insn);
addr = asm_lines[i].addr;
}
else
{
line = "";
addr = 0;
}
const char *ptr = line.c_str ();
src->line = tui_copy_source_line (&ptr, -1, offset, line_width, 0);
src->line_or_addr.loa = LOA_ADDRESS;
src->line_or_addr.u.addr = addr;
src->is_exec_point = (addr == cur_pc && line.size () > 0);
}
return true;
}
void
tui_get_begin_asm_address (struct gdbarch **gdbarch_p, CORE_ADDR *addr_p)
{
struct tui_locator_window *locator;
struct gdbarch *gdbarch = get_current_arch ();
CORE_ADDR addr = 0;
locator = tui_locator_win_info_ptr ();
if (locator->addr == 0)
{
if (have_full_symbols () || have_partial_symbols ())
{
set_default_source_symtab_and_line ();
struct symtab_and_line sal = get_current_source_symtab_and_line ();
if (sal.symtab != nullptr)
find_line_pc (sal.symtab, sal.line, &addr);
}
if (addr == 0)
{
struct bound_minimal_symbol main_symbol
= lookup_minimal_symbol (main_name (), nullptr, nullptr);
if (main_symbol.minsym != nullptr)
addr = BMSYMBOL_VALUE_ADDRESS (main_symbol);
}
}
else /* The target is executing. */
{
gdbarch = locator->gdbarch;
addr = locator->addr;
}
*gdbarch_p = gdbarch;
*addr_p = addr;
}
/* Determine what the low address will be to display in the TUI's
disassembly window. This may or may not be the same as the low
address input. */
CORE_ADDR
tui_get_low_disassembly_address (struct gdbarch *gdbarch,
CORE_ADDR low, CORE_ADDR pc)
{
int pos;
/* Determine where to start the disassembly so that the pc is about
in the middle of the viewport. */
if (TUI_DISASM_WIN != NULL)
pos = TUI_DISASM_WIN->height;
else if (TUI_CMD_WIN == NULL)
pos = tui_term_height () / 2 - 2;
else
pos = tui_term_height () - TUI_CMD_WIN->height - 2;
pos = (pos - 2) / 2;
pc = tui_find_disassembly_address (gdbarch, pc, -pos);
if (pc < low)
pc = low;
return pc;
}
/* Scroll the disassembly forward or backward vertically. */
void
tui_disasm_window::do_scroll_vertical (int num_to_scroll)
{
if (!m_content.empty ())
{
CORE_ADDR pc;
pc = m_start_line_or_addr.u.addr;
symtab_and_line sal {};
sal.pspace = current_program_space;
sal.pc = tui_find_disassembly_address (m_gdbarch, pc, num_to_scroll);
update_source_window_as_is (m_gdbarch, sal);
}
}
bool
tui_disasm_window::location_matches_p (struct bp_location *loc, int line_no)
{
return (m_content[line_no].line_or_addr.loa == LOA_ADDRESS
&& m_content[line_no].line_or_addr.u.addr == loc->address);
}
bool
tui_disasm_window::addr_is_displayed (CORE_ADDR addr) const
{
if (m_content.size () < SCROLL_THRESHOLD)
return false;
for (size_t i = 0; i < m_content.size () - SCROLL_THRESHOLD; ++i)
{
if (m_content[i].line_or_addr.loa == LOA_ADDRESS
&& m_content[i].line_or_addr.u.addr == addr)
return true;
}
return false;
}
void
tui_disasm_window::maybe_update (struct frame_info *fi, symtab_and_line sal)
{
CORE_ADDR low;
struct gdbarch *frame_arch = get_frame_arch (fi);
if (find_pc_partial_function (sal.pc, NULL, &low, NULL) == 0)
{
/* There is no symbol available for current PC. There is no
safe way how to "disassemble backwards". */
low = sal.pc;
}
else
low = tui_get_low_disassembly_address (frame_arch, low, sal.pc);
struct tui_line_or_address a;
a.loa = LOA_ADDRESS;
a.u.addr = low;
if (!addr_is_displayed (sal.pc))
{
sal.pc = low;
update_source_window (frame_arch, sal);
}
else
{
a.u.addr = sal.pc;
set_is_exec_point_at (a);
}
}
void
tui_disasm_window::display_start_addr (struct gdbarch **gdbarch_p,
CORE_ADDR *addr_p)
{
*gdbarch_p = m_gdbarch;
*addr_p = m_start_line_or_addr.u.addr;
}
|