1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
# Copyright 2022-2023 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>. */
# Single step through a simple (empty) function that was compiled
# without DWARF debug information.
#
# At each instruction check that the frame-id, and frame base address,
# are calculated correctly.
#
# Additionally, check we can correctly unwind to the previous frame,
# and that the previous stack-pointer value, and frame base address
# value, can be calculated correctly.
standard_testfile .c -foo.c
if {[prepare_for_testing_full "failed to prepare" \
[list ${testfile} debug \
$srcfile {debug} $srcfile2 {nodebug}]]} {
return -1
}
if {![runto_main]} {
return 0
}
# Return a two element list, the first element is the stack-pointer
# value (from the $sp register), and the second element is the frame
# base address (from the 'info frame' output).
proc get_sp_and_fba { testname } {
with_test_prefix "get \$sp and frame base $testname" {
set sp [get_hexadecimal_valueof "\$sp" "*UNKNOWN*"]
set fba ""
gdb_test_multiple "info frame" "" {
-re -wrap ".*Stack level ${::decimal}, frame at ($::hex):.*" {
set fba $expect_out(1,string)
}
}
return [list $sp $fba]
}
}
# Return the frame-id of the current frame, collected using the 'maint
# print frame-id' command.
proc get_fid { } {
set fid ""
gdb_test_multiple "maint print frame-id" "" {
-re -wrap ".*frame-id for frame #${::decimal}: (.*)" {
set fid $expect_out(1,string)
}
}
return $fid
}
# Record the current stack-pointer, and the frame base address.
lassign [get_sp_and_fba "in main"] main_sp main_fba
set main_fid [get_fid]
# Now enter the foo function.
gdb_breakpoint "*foo"
gdb_continue_to_breakpoint "enter foo"
# Figure out the range of addresses covered by this function.
set last_addr_in_foo ""
# The disassembly of foo on PowerPC looks like:
# Dump of assembler code for function foo:
# => 0x00000000100006dc <+0>: std r31,-8(r1)
# 0x00000000100006e0 <+4>: stdu r1,-48(r1)
# 0x00000000100006e4 <+8>: mr r31,r1
# 0x00000000100006e8 <+12>: nop
# 0x00000000100006ec <+16>: addi r1,r31,48
# 0x00000000100006f0 <+20>: ld r31,-8(r1)
# 0x00000000100006f4 <+24>: blr
# 0x00000000100006f8 <+28>: .long 0x0
# 0x00000000100006fc <+32>: .long 0x0
# 0x0000000010000700 <+36>: .long 0x1000180
# End of assembler dump.
#
# The last instruction in function foo is blr. Need to ignore the .long
# entries following the blr instruction.
gdb_test_multiple "disassemble foo" "" {
-re "^disassemble foo\r\n" {
exp_continue
}
-re "^Dump of assembler code for function foo:\r\n" {
exp_continue
}
-re "^...($hex) \[<>+0-9:\s\t\]*\.long\[\s\t\]*\[^\r\n\]*\r\n" {
exp_continue
}
-re "^...($hex) \[^\r\n\]+\r\n" {
set last_addr_in_foo $expect_out(1,string)
exp_continue
}
-wrap -re "^End of assembler dump\\." {
gdb_assert { ![string equal $last_addr_in_foo ""] } \
"found some addresses in foo"
pass $gdb_test_name
}
}
# Record the current stack-pointer, and the frame base address.
lassign [get_sp_and_fba "in foo"] foo_sp foo_fba
set foo_fid [get_fid]
for { set i_count 1 } { true } { incr i_count } {
with_test_prefix "instruction ${i_count}" {
# The current stack-pointer value can legitimately change
# throughout the lifetime of a function, so we don't check the
# current stack-pointer value. But the frame base address
# should not change, so we do check for that.
lassign [get_sp_and_fba "for foo"] sp_value fba_value
gdb_assert { $fba_value == $foo_fba }
# The frame-id should never change within a function, so check
# that now.
set fid [get_fid]
gdb_assert { [string equal $fid $foo_fid] } \
"check frame-id matches"
# Check that the previous frame is 'main'.
gdb_test "bt 2" "\r\n#1\\s+\[^\r\n\]+ in main \\(\\) .*"
# Move up the stack (to main).
gdb_test "up" \
"\r\n#1\\s+\[^\r\n\]+ in main \\(\\) .*"
# Check we can unwind the stack-pointer and the frame base
# address correctly.
lassign [get_sp_and_fba "for main"] sp_value fba_value
gdb_assert { $sp_value == $main_sp }
gdb_assert { $fba_value == $main_fba }
# Check we have a consistent value for main's frame-id.
set fid [get_fid]
gdb_assert { [string equal $fid $main_fid] }
# Move back to the inner most frame.
gdb_test "frame 0" ".*"
set pc [get_hexadecimal_valueof "\$pc" "*UNKNOWN*"]
if { $pc == $last_addr_in_foo } {
break
}
if { $i_count > 100 } {
# We expect a handful of instructions, if we reach 100,
# something is going wrong. Avoid an infinite loop.
fail "exceeded max number of instructions"
break
}
gdb_test "stepi" ".*"
}
}
|