| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 
 | /* Simulator for the Texas Instruments PRU processor
   Copyright 2009-2023 Free Software Foundation, Inc.
   Inspired by the Microblaze simulator
   Contributed by Dimitar Dimitrov <dimitar@dinux.eu>
   This file is part of the simulators.
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   You should have received a copy of the GNU General Public License
   along with this program; if not, see <http://www.gnu.org/licenses/>.  */
/* This must come before any other includes.  */
#include "defs.h"
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include "bfd.h"
#include "sim/callback.h"
#include "libiberty.h"
#include "sim/sim.h"
#include "sim-main.h"
#include "sim-assert.h"
#include "sim-options.h"
#include "sim-signal.h"
#include "sim-syscall.h"
#include "pru.h"
/* DMEM zero address is perfectly valid.  But if CRT leaves the first word
   alone, we can use it as a trap to catch NULL pointer access.  */
static bfd_boolean abort_on_dmem_zero_access;
enum {
  OPTION_ERROR_NULL_DEREF = OPTION_START,
};
/* Extract (from PRU endianess) and return an integer in HOST's endianness.  */
static uint32_t
pru_extract_unsigned_integer (const uint8_t *addr, size_t len)
{
  uint32_t retval;
  const uint8_t *p;
  const uint8_t *startaddr = addr;
  const uint8_t *endaddr = startaddr + len;
  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;
  for (p = endaddr; p > startaddr;)
    retval = (retval << 8) | * -- p;
  return retval;
}
/* Store "val" (which is in HOST's endianess) into "addr"
   (using PRU's endianness).  */
static void
pru_store_unsigned_integer (uint8_t *addr, size_t len, uint32_t val)
{
  uint8_t *p;
  uint8_t *startaddr = (uint8_t *)addr;
  uint8_t *endaddr = startaddr + len;
  for (p = startaddr; p < endaddr;)
    {
      *p++ = val & 0xff;
      val >>= 8;
    }
}
/* Extract a field value from CPU register using the given REGSEL selector.
   Byte number maps directly to first values of RSEL, so we can
   safely use "regsel" as a register byte number (0..3).  */
static inline uint32_t
extract_regval (uint32_t val, uint32_t regsel)
{
  ASSERT (RSEL_7_0 == 0);
  ASSERT (RSEL_15_8 == 1);
  ASSERT (RSEL_23_16 == 2);
  ASSERT (RSEL_31_24 == 3);
  switch (regsel)
    {
    case RSEL_7_0:    return (val >> 0) & 0xff;
    case RSEL_15_8:   return (val >> 8) & 0xff;
    case RSEL_23_16:  return (val >> 16) & 0xff;
    case RSEL_31_24:  return (val >> 24) & 0xff;
    case RSEL_15_0:   return (val >> 0) & 0xffff;
    case RSEL_23_8:   return (val >> 8) & 0xffff;
    case RSEL_31_16:  return (val >> 16) & 0xffff;
    case RSEL_31_0:   return val;
    default:	      sim_io_error (NULL, "invalid regsel");
    }
}
/* Write a value into CPU subregister pointed by reg and regsel.  */
static inline void
write_regval (uint32_t val, uint32_t *reg, uint32_t regsel)
{
  uint32_t mask, sh;
  switch (regsel)
    {
    case RSEL_7_0:    mask = (0xffu << 0); sh = 0; break;
    case RSEL_15_8:   mask = (0xffu << 8); sh = 8; break;
    case RSEL_23_16:  mask = (0xffu << 16); sh = 16; break;
    case RSEL_31_24:  mask = (0xffu << 24); sh = 24; break;
    case RSEL_15_0:   mask = (0xffffu << 0); sh = 0; break;
    case RSEL_23_8:   mask = (0xffffu << 8); sh = 8; break;
    case RSEL_31_16:  mask = (0xffffu << 16); sh = 16; break;
    case RSEL_31_0:   mask = 0xffffffffu; sh = 0; break;
    default:	      sim_io_error (NULL, "invalid regsel");
    }
  *reg = (*reg & ~mask) | ((val << sh) & mask);
}
/* Convert the given IMEM word address to a regular byte address used by the
   GNU ELF container.  */
static uint32_t
imem_wordaddr_to_byteaddr (SIM_CPU *cpu, uint16_t wa)
{
  return (((uint32_t) wa << 2) & IMEM_ADDR_MASK) | PC_ADDR_SPACE_MARKER;
}
/* Convert the given ELF text byte address to IMEM word address.  */
static uint16_t
imem_byteaddr_to_wordaddr (SIM_CPU *cpu, uint32_t ba)
{
  return (ba >> 2) & 0xffff;
}
/* Store "nbytes" into DMEM "addr" from CPU register file, starting with
   register "regn", and byte "regb" within it.  */
static inline void
pru_reg2dmem (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes,
	      int regn, int regb)
{
  /* GDB assumes unconditional access to all memories, so enable additional
     checks only in standalone mode.  */
  bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE);
  if (abort_on_dmem_zero_access && addr < 4)
    {
      sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map,
		       nbytes, addr, write_transfer,
		       sim_core_unmapped_signal);
    }
  else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER)
			  || (addr + nbytes > PC_ADDR_SPACE_MARKER)))
    {
      sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map,
		       nbytes, addr, write_transfer,
		       sim_core_unmapped_signal);
    }
  else if ((regn * 4 + regb + nbytes) > (32 * 4))
    {
      sim_io_eprintf (CPU_STATE (cpu),
		      "SBBO/SBCO with invalid store data length\n");
      RAISE_SIGILL (CPU_STATE (cpu));
    }
  else
    {
      TRACE_MEMORY (cpu, "write of %d bytes to %08x", nbytes, addr);
      while (nbytes--)
	{
	  sim_core_write_1 (cpu,
			    PC_byteaddr,
			    write_map,
			    addr++,
			    extract_regval (CPU.regs[regn], regb));
	  if (++regb >= 4)
	    {
	      regb = 0;
	      regn++;
	    }
	}
    }
}
/* Load "nbytes" from DMEM "addr" into CPU register file, starting with
   register "regn", and byte "regb" within it.  */
static inline void
pru_dmem2reg (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes,
	      int regn, int regb)
{
  /* GDB assumes unconditional access to all memories, so enable additional
     checks only in standalone mode.  */
  bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE);
  if (abort_on_dmem_zero_access && addr < 4)
    {
      sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map,
		       nbytes, addr, read_transfer,
		       sim_core_unmapped_signal);
    }
  else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER)
			  || (addr + nbytes > PC_ADDR_SPACE_MARKER)))
    {
      /* This check is necessary because our IMEM "address space"
	 is not really accessible, yet we have mapped it as a generic
	 memory space.  */
      sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map,
		       nbytes, addr, read_transfer,
		       sim_core_unmapped_signal);
    }
  else if ((regn * 4 + regb + nbytes) > (32 * 4))
    {
      sim_io_eprintf (CPU_STATE (cpu),
		      "LBBO/LBCO with invalid load data length\n");
      RAISE_SIGILL (CPU_STATE (cpu));
    }
  else
    {
      unsigned int b;
      TRACE_MEMORY (cpu, "read of %d bytes from %08x", nbytes, addr);
      while (nbytes--)
	{
	  b = sim_core_read_1 (cpu, PC_byteaddr, read_map, addr++);
	  /* Reuse the fact the Register Byte Number maps directly to RSEL.  */
	  ASSERT (RSEL_7_0 == 0);
	  write_regval (b, &CPU.regs[regn], regb);
	  if (++regb >= 4)
	    {
	      regb = 0;
	      regn++;
	    }
	}
    }
}
/* Set reset values of general-purpose registers.  */
static void
set_initial_gprs (SIM_CPU *cpu)
{
  int i;
  /* Set up machine just out of reset.  */
  CPU_PC_SET (cpu, 0);
  PC_ADDR_SPACE_MARKER = IMEM_ADDR_DEFAULT; /* from default linker script? */
  /* Clean out the GPRs.  */
  for (i = 0; i < ARRAY_SIZE (CPU.regs); i++)
    CPU.regs[i] = 0;
  for (i = 0; i < ARRAY_SIZE (CPU.macregs); i++)
    CPU.macregs[i] = 0;
  CPU.loop.looptop = CPU.loop.loopend = 0;
  CPU.loop.loop_in_progress = 0;
  CPU.loop.loop_counter = 0;
  CPU.carry = 0;
  CPU.insts = 0;
  CPU.cycles = 0;
  /* AM335x should provide sane defaults.  */
  CPU.ctable[0] = 0x00020000;
  CPU.ctable[1] = 0x48040000;
  CPU.ctable[2] = 0x4802a000;
  CPU.ctable[3] = 0x00030000;
  CPU.ctable[4] = 0x00026000;
  CPU.ctable[5] = 0x48060000;
  CPU.ctable[6] = 0x48030000;
  CPU.ctable[7] = 0x00028000;
  CPU.ctable[8] = 0x46000000;
  CPU.ctable[9] = 0x4a100000;
  CPU.ctable[10] = 0x48318000;
  CPU.ctable[11] = 0x48022000;
  CPU.ctable[12] = 0x48024000;
  CPU.ctable[13] = 0x48310000;
  CPU.ctable[14] = 0x481cc000;
  CPU.ctable[15] = 0x481d0000;
  CPU.ctable[16] = 0x481a0000;
  CPU.ctable[17] = 0x4819c000;
  CPU.ctable[18] = 0x48300000;
  CPU.ctable[19] = 0x48302000;
  CPU.ctable[20] = 0x48304000;
  CPU.ctable[21] = 0x00032400;
  CPU.ctable[22] = 0x480c8000;
  CPU.ctable[23] = 0x480ca000;
  CPU.ctable[24] = 0x00000000;
  CPU.ctable[25] = 0x00002000;
  CPU.ctable[26] = 0x0002e000;
  CPU.ctable[27] = 0x00032000;
  CPU.ctable[28] = 0x00000000;
  CPU.ctable[29] = 0x49000000;
  CPU.ctable[30] = 0x40000000;
  CPU.ctable[31] = 0x80000000;
}
/* Map regsel selector to subregister field width.  */
static inline unsigned int
regsel_width (uint32_t regsel)
{
  switch (regsel)
    {
    case RSEL_7_0:    return 8;
    case RSEL_15_8:   return 8;
    case RSEL_23_16:  return 8;
    case RSEL_31_24:  return 8;
    case RSEL_15_0:   return 16;
    case RSEL_23_8:   return 16;
    case RSEL_31_16:  return 16;
    case RSEL_31_0:   return 32;
    default:	      sim_io_error (NULL, "invalid regsel");
    }
}
/* Handle XIN instruction addressing the MAC peripheral.  */
static void
pru_sim_xin_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn,
		 unsigned int rdb, unsigned int length)
{
  if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4)
    sim_io_error (sd, "XIN MAC: invalid transfer regn=%u.%u, length=%u\n",
		  rd_regn, rdb, length);
  /* Copy from MAC to PRU regs.  Ranges have been validated above.  */
  while (length--)
    {
      write_regval (CPU.macregs[rd_regn - 25] >> (rdb * 8),
		    &CPU.regs[rd_regn],
		    rdb);
      if (++rdb == 4)
	{
	  rdb = 0;
	  rd_regn++;
	}
    }
}
/* Handle XIN instruction.  */
static void
pru_sim_xin (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba,
	     unsigned int rd_regn, unsigned int rdb, unsigned int length)
{
  if (wba == 0)
    {
      pru_sim_xin_mac (sd, cpu, rd_regn, rdb, length);
    }
  else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1
	   || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER)
    {
      while (length--)
	{
	  unsigned int val;
	  val = extract_regval (CPU.scratchpads[wba][rd_regn], rdb);
	  write_regval (val, &CPU.regs[rd_regn], rdb);
	  if (++rdb == 4)
	    {
	      rdb = 0;
	      rd_regn++;
	    }
	}
    }
  else if (wba == 254 || wba == 255)
    {
      /* FILL/ZERO pseudos implemented via XIN.  */
      unsigned int fillbyte = (wba == 254) ? 0xff : 0x00;
      while (length--)
	{
	  write_regval (fillbyte, &CPU.regs[rd_regn], rdb);
	  if (++rdb == 4)
	    {
	      rdb = 0;
	      rd_regn++;
	    }
	}
    }
  else
    {
      sim_io_error (sd, "XIN: XFR device %d not supported.\n", wba);
    }
}
/* Handle XOUT instruction addressing the MAC peripheral.  */
static void
pru_sim_xout_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn,
		  unsigned int rdb, unsigned int length)
{
  const int modereg_accessed = (rd_regn == 25);
  /* Multiple Accumulate.  */
  if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4)
    sim_io_error (sd, "XOUT MAC: invalid transfer regn=%u.%u, length=%u\n",
		  rd_regn, rdb, length);
  /* Copy from PRU to MAC regs.  Ranges have been validated above.  */
  while (length--)
    {
      write_regval (CPU.regs[rd_regn] >> (rdb * 8),
		    &CPU.macregs[rd_regn - 25],
		    rdb);
      if (++rdb == 4)
	{
	  rdb = 0;
	  rd_regn++;
	}
    }
  if (modereg_accessed
      && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK))
    {
      /* MUL/MAC operands are sampled every XOUT in multiply and
	 accumulate mode.  */
      uint64_t prod, oldsum, sum;
      CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28];
      CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29];
      prod = CPU.macregs[PRU_MACREG_OP_0];
      prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1];
      oldsum = CPU.macregs[PRU_MACREG_ACC_L];
      oldsum += (uint64_t)CPU.macregs[PRU_MACREG_ACC_H] << 32;
      sum = oldsum + prod;
      CPU.macregs[PRU_MACREG_PROD_L] = sum & 0xfffffffful;
      CPU.macregs[PRU_MACREG_PROD_H] = sum >> 32;
      CPU.macregs[PRU_MACREG_ACC_L] = CPU.macregs[PRU_MACREG_PROD_L];
      CPU.macregs[PRU_MACREG_ACC_H] = CPU.macregs[PRU_MACREG_PROD_H];
      if (oldsum > sum)
	CPU.macregs[PRU_MACREG_MODE] |= MAC_R25_ACC_CARRY_MASK;
    }
  if (modereg_accessed
      && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_ACC_CARRY_MASK))
    {
      /* store 1 to clear.  */
      CPU.macregs[PRU_MACREG_MODE] &= ~MAC_R25_ACC_CARRY_MASK;
      CPU.macregs[PRU_MACREG_ACC_L] = 0;
      CPU.macregs[PRU_MACREG_ACC_H] = 0;
    }
}
/* Handle XOUT instruction.  */
static void
pru_sim_xout (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba,
	      unsigned int rd_regn, unsigned int rdb, unsigned int length)
{
  if (wba == 0)
    {
      pru_sim_xout_mac (sd, cpu, rd_regn, rdb, length);
    }
  else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1
	   || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER)
    {
      while (length--)
	{
	  unsigned int val;
	  val = extract_regval (CPU.regs[rd_regn], rdb);
	  write_regval (val, &CPU.scratchpads[wba][rd_regn], rdb);
	  if (++rdb == 4)
	    {
	      rdb = 0;
	      rd_regn++;
	    }
	}
    }
  else
    sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba);
}
/* Handle XCHG instruction.  */
static void
pru_sim_xchg (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba,
	      unsigned int rd_regn, unsigned int rdb, unsigned int length)
{
  if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1
	   || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER)
    {
      while (length--)
	{
	  unsigned int valr, vals;
	  valr = extract_regval (CPU.regs[rd_regn], rdb);
	  vals = extract_regval (CPU.scratchpads[wba][rd_regn], rdb);
	  write_regval (valr, &CPU.scratchpads[wba][rd_regn], rdb);
	  write_regval (vals, &CPU.regs[rd_regn], rdb);
	  if (++rdb == 4)
	    {
	      rdb = 0;
	      rd_regn++;
	    }
	}
    }
  else
    sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba);
}
/* Handle syscall simulation.  Its ABI is specific to the GNU simulator.  */
static void
pru_sim_syscall (SIM_DESC sd, SIM_CPU *cpu)
{
  /* If someday TI confirms that the "reserved" HALT opcode fields
     can be used for extra arguments, then maybe we can embed
     the syscall number there.  Until then, let's use R1.  */
  const uint32_t syscall_num = CPU.regs[1];
  long ret;
  ret = sim_syscall (cpu, syscall_num,
		     CPU.regs[14], CPU.regs[15],
		     CPU.regs[16], CPU.regs[17]);
  CPU.regs[14] = ret;
}
/* Simulate one instruction.  */
static void
sim_step_once (SIM_DESC sd)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  const struct pru_opcode *op;
  uint32_t inst;
  uint32_t _RDVAL, OP2;	/* intermediate values.  */
  int rd_is_modified = 0;	/* RD modified and must be stored back.  */
  /* Fetch the initial instruction that we'll decode.  */
  inst = sim_core_read_4 (cpu, PC_byteaddr, exec_map, PC_byteaddr);
  TRACE_MEMORY (cpu, "read of insn 0x%08x from %08x", inst, PC_byteaddr);
  op = pru_find_opcode (inst);
  if (!op)
    {
      sim_io_eprintf (sd, "Unknown instruction 0x%04x\n", inst);
      RAISE_SIGILL (sd);
    }
  else
    {
      TRACE_DISASM (cpu, PC_byteaddr);
      /* In multiply-only mode, R28/R29 operands are sampled on every clock
	 cycle.  */
      if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0)
	{
	  CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28];
	  CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29];
	}
      switch (op->type)
	{
/* Helper macro to improve clarity of pru.isa.  The empty while is a
   guard against using RD as a left-hand side value.  */
#define RD  do { } while (0); rd_is_modified = 1; _RDVAL
#define INSTRUCTION(NAME, ACTION)		\
	case prui_ ## NAME:			\
		ACTION;				\
	  break;
#include "pru.isa"
#undef INSTRUCTION
#undef RD
	default:
	  RAISE_SIGILL (sd);
	}
      if (rd_is_modified)
	write_regval (_RDVAL, &CPU.regs[RD_REGN], RDSEL);
      /* Don't treat r30 and r31 as regular registers, they are I/O!  */
      CPU.regs[30] = 0;
      CPU.regs[31] = 0;
      /* Handle PC match of loop end.  */
      if (LOOP_IN_PROGRESS && (PC == LOOPEND))
	{
	  SIM_ASSERT (LOOPCNT > 0);
	  if (--LOOPCNT == 0)
	    LOOP_IN_PROGRESS = 0;
	  else
	    PC = LOOPTOP;
	}
      /* In multiply-only mode, MAC does multiplication every cycle.  */
      if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0)
	{
	  uint64_t prod;
	  prod = CPU.macregs[PRU_MACREG_OP_0];
	  prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1];
	  CPU.macregs[PRU_MACREG_PROD_L] = prod & 0xfffffffful;
	  CPU.macregs[PRU_MACREG_PROD_H] = prod >> 32;
	  /* Clear the MAC accumulator when in normal mode.  */
	  CPU.macregs[PRU_MACREG_ACC_L] = 0;
	  CPU.macregs[PRU_MACREG_ACC_H] = 0;
	}
      /* Update cycle counts.  */
      CPU.insts += 1;		  /* One instruction completed ...  */
      CPU.cycles += 1;		  /* ... and it takes a single cycle.  */
      /* Account for memory access latency with a reasonable estimate.
	 No distinction is currently made between SRAM, DRAM and generic
	 L3 slaves.  */
      if (op->type == prui_lbbo || op->type == prui_sbbo
	  || op->type == prui_lbco || op->type == prui_sbco)
	CPU.cycles += 2;
    }
}
/* Implement standard sim_engine_run function.  */
void
sim_engine_run (SIM_DESC sd,
		int next_cpu_nr, /* ignore  */
		int nr_cpus, /* ignore  */
		int siggnal) /* ignore  */
{
  while (1)
    {
      sim_step_once (sd);
      if (sim_events_tick (sd))
	sim_events_process (sd);
    }
}
/* Implement callback for standard CPU_PC_FETCH routine.  */
static sim_cia
pru_pc_get (sim_cpu *cpu)
{
  /* Present PC as byte address.  */
  return imem_wordaddr_to_byteaddr (cpu, cpu->pru_cpu.pc);
}
/* Implement callback for standard CPU_PC_STORE routine.  */
static void
pru_pc_set (sim_cpu *cpu, sim_cia pc)
{
  /* PC given as byte address.  */
  cpu->pru_cpu.pc = imem_byteaddr_to_wordaddr (cpu, pc);
}
/* Implement callback for standard CPU_REG_STORE routine.  */
static int
pru_store_register (SIM_CPU *cpu, int rn, const void *memory, int length)
{
  if (rn < NUM_REGS && rn >= 0)
    {
      if (length == 4)
	{
	  /* Misalignment safe.  */
	  long ival = pru_extract_unsigned_integer (memory, 4);
	  if (rn < 32)
	    CPU.regs[rn] = ival;
	  else
	    pru_pc_set (cpu, ival);
	  return 4;
	}
      else
	return 0;
    }
  else
    return 0;
}
/* Implement callback for standard CPU_REG_FETCH routine.  */
static int
pru_fetch_register (SIM_CPU *cpu, int rn, void *memory, int length)
{
  long ival;
  if (rn < NUM_REGS && rn >= 0)
    {
      if (length == 4)
	{
	  if (rn < 32)
	    ival = CPU.regs[rn];
	  else
	    ival = pru_pc_get (cpu);
	  /* Misalignment-safe.  */
	  pru_store_unsigned_integer (memory, 4, ival);
	  return 4;
	}
      else
	return 0;
    }
  else
    return 0;
}
static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
  sim_cpu_free_all (sd);
  sim_state_free (sd);
}
/* Declare the PRU option handler.  */
static DECLARE_OPTION_HANDLER (pru_option_handler);
/* Implement the PRU option handler.  */
static SIM_RC
pru_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg,
		    int is_command)
{
  switch (opt)
    {
    case OPTION_ERROR_NULL_DEREF:
      abort_on_dmem_zero_access = TRUE;
      return SIM_RC_OK;
    default:
      sim_io_eprintf (sd, "Unknown PRU option %d\n", opt);
      return SIM_RC_FAIL;
    }
}
/* List of PRU-specific options.  */
static const OPTION pru_options[] =
{
  { {"error-null-deref", no_argument, NULL, OPTION_ERROR_NULL_DEREF},
      '\0', NULL, "Trap any access to DMEM address zero",
      pru_option_handler, NULL },
  { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
};
/* Implement standard sim_open function.  */
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb,
	  struct bfd *abfd, char * const *argv)
{
  int i;
  char c;
  SIM_DESC sd = sim_state_alloc (kind, cb);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  /* Set default options before parsing user options.  */
  current_alignment = STRICT_ALIGNMENT;
  current_target_byte_order = BFD_ENDIAN_LITTLE;
  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }
  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }
  sim_add_option_table (sd, NULL, pru_options);
  /* The parser will print an error message for us, so we silently return.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }
  /* Check for/establish a reference program image.  */
  if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }
  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }
  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }
  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);
      CPU_REG_STORE (cpu) = pru_store_register;
      CPU_REG_FETCH (cpu) = pru_fetch_register;
      CPU_PC_FETCH (cpu) = pru_pc_get;
      CPU_PC_STORE (cpu) = pru_pc_set;
      set_initial_gprs (cpu);
    }
  /* Allocate external memory if none specified by user.
     Use address 4 here in case the user wanted address 0 unmapped.  */
  if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
    {
      sim_do_commandf (sd, "memory-region 0x%x,0x%x",
		       0,
		       DMEM_DEFAULT_SIZE);
    }
  if (sim_core_read_buffer (sd, NULL, read_map, &c, IMEM_ADDR_DEFAULT, 1) == 0)
    {
      sim_do_commandf (sd, "memory-region 0x%x,0x%x",
		       IMEM_ADDR_DEFAULT,
		       IMEM_DEFAULT_SIZE);
    }
  return sd;
}
/* Implement standard sim_create_inferior function.  */
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd,
		     char * const *argv, char * const *env)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  host_callback *cb = STATE_CALLBACK (sd);
  SIM_ADDR addr;
  addr = bfd_get_start_address (prog_bfd);
  sim_pc_set (cpu, addr);
  PC_ADDR_SPACE_MARKER = addr & ~IMEM_ADDR_MASK;
  /* Standalone mode (i.e. `run`) will take care of the argv for us in
     sim_open () -> sim_parse_args ().  But in debug mode (i.e. 'target sim'
     with `gdb`), we need to handle it because the user can change the
     argv on the fly via gdb's 'run'.  */
  if (STATE_PROG_ARGV (sd) != argv)
    {
      freeargv (STATE_PROG_ARGV (sd));
      STATE_PROG_ARGV (sd) = dupargv (argv);
    }
  if (STATE_PROG_ENVP (sd) != env)
    {
      freeargv (STATE_PROG_ENVP (sd));
      STATE_PROG_ENVP (sd) = dupargv (env);
    }
  cb->argv = STATE_PROG_ARGV (sd);
  cb->envp = STATE_PROG_ENVP (sd);
  return SIM_RC_OK;
}
 |