1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
|
/* varobj support for Ada.
Copyright (C) 2012-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "ada-lang.h"
#include "varobj.h"
#include "language.h"
#include "valprint.h"
/* Implementation principle used in this unit:
For our purposes, the meat of the varobj object is made of two
elements: The varobj's (struct) value, and the varobj's (struct)
type. In most situations, the varobj has a non-NULL value, and
the type becomes redundant, as it can be directly derived from
the value. In the initial implementation of this unit, most
routines would only take a value, and return a value.
But there are many situations where it is possible for a varobj
to have a NULL value. For instance, if the varobj becomes out of
scope. Or better yet, when the varobj is the child of another
NULL pointer varobj. In that situation, we must rely on the type
instead of the value to create the child varobj.
That's why most functions below work with a (value, type) pair.
The value may or may not be NULL. But the type is always expected
to be set. When the value is NULL, then we work with the type
alone, and keep the value NULL. But when the value is not NULL,
then we work using the value, because it provides more information.
But we still always set the type as well, even if that type could
easily be derived from the value. The reason behind this is that
it allows the code to use the type without having to worry about
it being set or not. It makes the code clearer. */
static int ada_varobj_get_number_of_children (struct value *parent_value,
struct type *parent_type);
/* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
If there is a value (*VALUE_PTR not NULL), then perform the decoding
using it, and compute the associated type from the resulting value.
Otherwise, compute a static approximation of *TYPE_PTR, leaving
*VALUE_PTR unchanged.
The results are written in place. */
static void
ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
{
if (*value_ptr)
*value_ptr = ada_get_decoded_value (*value_ptr);
if (*value_ptr != nullptr)
*type_ptr = ada_check_typedef ((*value_ptr)->type ());
else
*type_ptr = ada_get_decoded_type (*type_ptr);
}
/* Return a string containing an image of the given scalar value.
VAL is the numeric value, while TYPE is the value's type.
This is useful for plain integers, of course, but even more
so for enumerated types. */
static std::string
ada_varobj_scalar_image (struct type *type, LONGEST val)
{
string_file buf;
ada_print_scalar (type, val, &buf);
return buf.release ();
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
corresponding to the field number FIELDNO. */
static void
ada_varobj_struct_elt (struct value *parent_value,
struct type *parent_type,
int fieldno,
struct value **child_value,
struct type **child_type)
{
struct value *value = NULL;
struct type *type = NULL;
if (parent_value)
{
value = value_field (parent_value, fieldno);
type = value->type ();
}
else
type = parent_type->field (fieldno).type ();
if (child_value)
*child_value = value;
if (child_type)
*child_type = type;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
to the dereferenced value. */
static void
ada_varobj_ind (struct value *parent_value,
struct type *parent_type,
struct value **child_value,
struct type **child_type)
{
struct value *value = NULL;
struct type *type = NULL;
if (ada_is_array_descriptor_type (parent_type))
{
/* This can only happen when PARENT_VALUE is NULL. Otherwise,
ada_get_decoded_value would have transformed our parent_type
into a simple array pointer type. */
gdb_assert (parent_value == NULL);
gdb_assert (parent_type->code () == TYPE_CODE_TYPEDEF);
/* Decode parent_type by the equivalent pointer to (decoded)
array. */
while (parent_type->code () == TYPE_CODE_TYPEDEF)
parent_type = parent_type->target_type ();
parent_type = ada_coerce_to_simple_array_type (parent_type);
parent_type = lookup_pointer_type (parent_type);
}
/* If parent_value is a null pointer, then only perform static
dereferencing. We cannot dereference null pointers. */
if (parent_value && value_as_address (parent_value) == 0)
parent_value = NULL;
if (parent_value)
{
value = ada_value_ind (parent_value);
type = value->type ();
}
else
type = parent_type->target_type ();
if (child_value)
*child_value = value;
if (child_type)
*child_type = type;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
pair corresponding to the element at ELT_INDEX. */
static void
ada_varobj_simple_array_elt (struct value *parent_value,
struct type *parent_type,
int elt_index,
struct value **child_value,
struct type **child_type)
{
struct value *value = NULL;
struct type *type = NULL;
if (parent_value)
{
struct value *index_value =
value_from_longest (parent_type->index_type (), elt_index);
value = ada_value_subscript (parent_value, 1, &index_value);
type = value->type ();
}
else
type = parent_type->target_type ();
if (child_value)
*child_value = value;
if (child_type)
*child_type = type;
}
/* Given the decoded value and decoded type of a variable object,
adjust the value and type to those necessary for getting children
of the variable object.
The replacement is performed in place. */
static void
ada_varobj_adjust_for_child_access (struct value **value,
struct type **type)
{
/* Pointers to struct/union types are special: Instead of having
one child (the struct), their children are the components of
the struct/union type. We handle this situation by dereferencing
the (value, type) couple. */
if ((*type)->code () == TYPE_CODE_PTR
&& ((*type)->target_type ()->code () == TYPE_CODE_STRUCT
|| (*type)->target_type ()->code () == TYPE_CODE_UNION)
&& *value != nullptr
&& value_as_address (*value) != 0
&& !ada_is_array_descriptor_type ((*type)->target_type ())
&& !ada_is_constrained_packed_array_type ((*type)->target_type ()))
ada_varobj_ind (*value, *type, value, type);
/* If this is a tagged type, we need to transform it a bit in order
to be able to fetch its full view. As always with tagged types,
we can only do that if we have a value. */
if (*value != NULL && ada_is_tagged_type (*type, 1))
{
*value = ada_tag_value_at_base_address (*value);
*type = (*value)->type ();
}
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
(any type of array, "simple" or not), return the number of children
that this array contains. */
static int
ada_varobj_get_array_number_of_children (struct value *parent_value,
struct type *parent_type)
{
LONGEST lo, hi;
if (parent_value == NULL
&& is_dynamic_type (parent_type->index_type ()))
{
/* This happens when listing the children of an object
which does not exist in memory (Eg: when requesting
the children of a null pointer, which is allowed by
varobj). The array index type being dynamic, we cannot
determine how many elements this array has. Just assume
it has none. */
return 0;
}
if (!get_array_bounds (parent_type, &lo, &hi))
{
/* Could not get the array bounds. Pretend this is an empty array. */
warning (_("unable to get bounds of array, assuming null array"));
return 0;
}
/* Ada allows the upper bound to be less than the lower bound,
in order to specify empty arrays... */
if (hi < lo)
return 0;
return hi - lo + 1;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
union, return the number of children this struct contains. */
static int
ada_varobj_get_struct_number_of_children (struct value *parent_value,
struct type *parent_type)
{
int n_children = 0;
int i;
gdb_assert (parent_type->code () == TYPE_CODE_STRUCT
|| parent_type->code () == TYPE_CODE_UNION);
for (i = 0; i < parent_type->num_fields (); i++)
{
if (ada_is_ignored_field (parent_type, i))
continue;
if (ada_is_wrapper_field (parent_type, i))
{
struct value *elt_value;
struct type *elt_type;
ada_varobj_struct_elt (parent_value, parent_type, i,
&elt_value, &elt_type);
if (ada_is_tagged_type (elt_type, 0))
{
/* We must not use ada_varobj_get_number_of_children
to determine is element's number of children, because
this function first calls ada_varobj_decode_var,
which "fixes" the element. For tagged types, this
includes reading the object's tag to determine its
real type, which happens to be the parent_type, and
leads to an infinite loop (because the element gets
fixed back into the parent). */
n_children += ada_varobj_get_struct_number_of_children
(elt_value, elt_type);
}
else
n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
}
else if (ada_is_variant_part (parent_type, i))
{
/* In normal situations, the variant part of the record should
have been "fixed". Or, in other words, it should have been
replaced by the branch of the variant part that is relevant
for our value. But there are still situations where this
can happen, however (Eg. when our parent is a NULL pointer).
We do not support showing this part of the record for now,
so just pretend this field does not exist. */
}
else
n_children++;
}
return n_children;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
a pointer, return the number of children this pointer has. */
static int
ada_varobj_get_ptr_number_of_children (struct value *parent_value,
struct type *parent_type)
{
struct type *child_type = parent_type->target_type ();
/* Pointer to functions and to void do not have a child, since
you cannot print what they point to. */
if (child_type->code () == TYPE_CODE_FUNC
|| child_type->code () == TYPE_CODE_VOID)
return 0;
/* Only show children for non-null pointers. */
if (parent_value == nullptr || value_as_address (parent_value) == 0)
return 0;
/* All other types have 1 child. */
return 1;
}
/* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
pair. */
static int
ada_varobj_get_number_of_children (struct value *parent_value,
struct type *parent_type)
{
ada_varobj_decode_var (&parent_value, &parent_type);
ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
/* A typedef to an array descriptor in fact represents a pointer
to an unconstrained array. These types always have one child
(the unconstrained array). */
if (ada_is_access_to_unconstrained_array (parent_type))
return 1;
if (parent_type->code () == TYPE_CODE_ARRAY)
return ada_varobj_get_array_number_of_children (parent_value,
parent_type);
if (parent_type->code () == TYPE_CODE_STRUCT
|| parent_type->code () == TYPE_CODE_UNION)
return ada_varobj_get_struct_number_of_children (parent_value,
parent_type);
if (parent_type->code () == TYPE_CODE_PTR)
return ada_varobj_get_ptr_number_of_children (parent_value,
parent_type);
/* All other types have no child. */
return 0;
}
/* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
whose index is CHILD_INDEX:
- If CHILD_NAME is not NULL, then a copy of the child's name
is saved in *CHILD_NAME. This copy must be deallocated
with xfree after use.
- If CHILD_VALUE is not NULL, then save the child's value
in *CHILD_VALUE. Same thing for the child's type with
CHILD_TYPE if not NULL.
- If CHILD_PATH_EXPR is not NULL, then compute the child's
path expression. The resulting string must be deallocated
after use with xfree.
Computing the child's path expression requires the PARENT_PATH_EXPR
to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
CHILD_PATH_EXPR is NULL.
PARENT_NAME is the name of the parent, and should never be NULL. */
static void ada_varobj_describe_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr);
/* Same as ada_varobj_describe_child, but limited to struct/union
objects. */
static void
ada_varobj_describe_struct_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
int fieldno;
int childno = 0;
gdb_assert (parent_type->code () == TYPE_CODE_STRUCT
|| parent_type->code () == TYPE_CODE_UNION);
for (fieldno = 0; fieldno < parent_type->num_fields (); fieldno++)
{
if (ada_is_ignored_field (parent_type, fieldno))
continue;
if (ada_is_wrapper_field (parent_type, fieldno))
{
struct value *elt_value;
struct type *elt_type;
int elt_n_children;
ada_varobj_struct_elt (parent_value, parent_type, fieldno,
&elt_value, &elt_type);
if (ada_is_tagged_type (elt_type, 0))
{
/* Same as in ada_varobj_get_struct_number_of_children:
For tagged types, we must be careful to not call
ada_varobj_get_number_of_children, to prevent our
element from being fixed back into the parent. */
elt_n_children = ada_varobj_get_struct_number_of_children
(elt_value, elt_type);
}
else
elt_n_children =
ada_varobj_get_number_of_children (elt_value, elt_type);
/* Is the child we're looking for one of the children
of this wrapper field? */
if (child_index - childno < elt_n_children)
{
if (ada_is_tagged_type (elt_type, 0))
{
/* Same as in ada_varobj_get_struct_number_of_children:
For tagged types, we must be careful to not call
ada_varobj_describe_child, to prevent our element
from being fixed back into the parent. */
ada_varobj_describe_struct_child
(elt_value, elt_type, parent_name, parent_path_expr,
child_index - childno, child_name, child_value,
child_type, child_path_expr);
}
else
ada_varobj_describe_child (elt_value, elt_type,
parent_name, parent_path_expr,
child_index - childno,
child_name, child_value,
child_type, child_path_expr);
return;
}
/* The child we're looking for is beyond this wrapper
field, so skip all its children. */
childno += elt_n_children;
continue;
}
else if (ada_is_variant_part (parent_type, fieldno))
{
/* In normal situations, the variant part of the record should
have been "fixed". Or, in other words, it should have been
replaced by the branch of the variant part that is relevant
for our value. But there are still situations where this
can happen, however (Eg. when our parent is a NULL pointer).
We do not support showing this part of the record for now,
so just pretend this field does not exist. */
continue;
}
if (childno == child_index)
{
if (child_name)
{
/* The name of the child is none other than the field's
name, except that we need to strip suffixes from it.
For instance, fields with alignment constraints will
have an __XVA suffix added to them. */
const char *field_name = parent_type->field (fieldno).name ();
int child_name_len = ada_name_prefix_len (field_name);
*child_name = string_printf ("%.*s", child_name_len, field_name);
}
if (child_value && parent_value)
ada_varobj_struct_elt (parent_value, parent_type, fieldno,
child_value, NULL);
if (child_type)
ada_varobj_struct_elt (parent_value, parent_type, fieldno,
NULL, child_type);
if (child_path_expr)
{
/* The name of the child is none other than the field's
name, except that we need to strip suffixes from it.
For instance, fields with alignment constraints will
have an __XVA suffix added to them. */
const char *field_name = parent_type->field (fieldno).name ();
int child_name_len = ada_name_prefix_len (field_name);
*child_path_expr =
string_printf ("(%s).%.*s", parent_path_expr,
child_name_len, field_name);
}
return;
}
childno++;
}
/* Something went wrong. Either we miscounted the number of
children, or CHILD_INDEX was too high. But we should never
reach here. We don't have enough information to recover
nicely, so just raise an assertion failure. */
gdb_assert_not_reached ("unexpected code path");
}
/* Same as ada_varobj_describe_child, but limited to pointer objects.
Note that CHILD_INDEX is unused in this situation, but still provided
for consistency of interface with other routines describing an object's
child. */
static void
ada_varobj_describe_ptr_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
if (child_name)
*child_name = string_printf ("%s.all", parent_name);
if (child_value && parent_value)
ada_varobj_ind (parent_value, parent_type, child_value, NULL);
if (child_type)
ada_varobj_ind (parent_value, parent_type, NULL, child_type);
if (child_path_expr)
*child_path_expr = string_printf ("(%s).all", parent_path_expr);
}
/* Same as ada_varobj_describe_child, limited to simple array objects
(TYPE_CODE_ARRAY only).
Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
This is done by ada_varobj_describe_child before calling us. */
static void
ada_varobj_describe_simple_array_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
struct type *index_type;
int real_index;
gdb_assert (parent_type->code () == TYPE_CODE_ARRAY);
index_type = parent_type->index_type ();
real_index = child_index + ada_discrete_type_low_bound (index_type);
if (child_name)
*child_name = ada_varobj_scalar_image (index_type, real_index);
if (child_value && parent_value)
ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
child_value, NULL);
if (child_type)
ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
NULL, child_type);
if (child_path_expr)
{
std::string index_img = ada_varobj_scalar_image (index_type, real_index);
/* Enumeration litterals by themselves are potentially ambiguous.
For instance, consider the following package spec:
package Pck is
type Color is (Red, Green, Blue, White);
type Blood_Cells is (White, Red);
end Pck;
In this case, the litteral "red" for instance, or even
the fully-qualified litteral "pck.red" cannot be resolved
by itself. Type qualification is needed to determine which
enumeration litterals should be used.
The following variable will be used to contain the name
of the array index type when such type qualification is
needed. */
const char *index_type_name = NULL;
std::string decoded;
/* If the index type is a range type, find the base type. */
while (index_type->code () == TYPE_CODE_RANGE)
index_type = index_type->target_type ();
if (index_type->code () == TYPE_CODE_ENUM
|| index_type->code () == TYPE_CODE_BOOL)
{
index_type_name = ada_type_name (index_type);
if (index_type_name)
{
decoded = ada_decode (index_type_name);
index_type_name = decoded.c_str ();
}
}
if (index_type_name != NULL)
*child_path_expr =
string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
ada_name_prefix_len (index_type_name),
index_type_name, index_img.c_str ());
else
*child_path_expr =
string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
}
}
/* See description at declaration above. */
static void
ada_varobj_describe_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
/* We cannot compute the child's path expression without
the parent's path expression. This is a pre-condition
for calling this function. */
if (child_path_expr)
gdb_assert (parent_path_expr != NULL);
ada_varobj_decode_var (&parent_value, &parent_type);
ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
if (child_name)
*child_name = std::string ();
if (child_value)
*child_value = NULL;
if (child_type)
*child_type = NULL;
if (child_path_expr)
*child_path_expr = std::string ();
if (ada_is_access_to_unconstrained_array (parent_type))
{
ada_varobj_describe_ptr_child (parent_value, parent_type,
parent_name, parent_path_expr,
child_index, child_name,
child_value, child_type,
child_path_expr);
return;
}
if (parent_type->code () == TYPE_CODE_ARRAY)
{
ada_varobj_describe_simple_array_child
(parent_value, parent_type, parent_name, parent_path_expr,
child_index, child_name, child_value, child_type,
child_path_expr);
return;
}
if (parent_type->code () == TYPE_CODE_STRUCT
|| parent_type->code () == TYPE_CODE_UNION)
{
ada_varobj_describe_struct_child (parent_value, parent_type,
parent_name, parent_path_expr,
child_index, child_name,
child_value, child_type,
child_path_expr);
return;
}
if (parent_type->code () == TYPE_CODE_PTR)
{
ada_varobj_describe_ptr_child (parent_value, parent_type,
parent_name, parent_path_expr,
child_index, child_name,
child_value, child_type,
child_path_expr);
return;
}
/* It should never happen. But rather than crash, report dummy names
and return a NULL child_value. */
if (child_name)
*child_name = "???";
}
/* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
static std::string
ada_varobj_get_name_of_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name, int child_index)
{
std::string child_name;
ada_varobj_describe_child (parent_value, parent_type, parent_name,
NULL, child_index, &child_name, NULL,
NULL, NULL);
return child_name;
}
/* Return the path expression of the child number CHILD_INDEX of
the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
of the parent, and PARENT_PATH_EXPR is the parent's path expression.
Both must be non-NULL. */
static std::string
ada_varobj_get_path_expr_of_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index)
{
std::string child_path_expr;
ada_varobj_describe_child (parent_value, parent_type, parent_name,
parent_path_expr, child_index, NULL,
NULL, NULL, &child_path_expr);
return child_path_expr;
}
/* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
static struct value *
ada_varobj_get_value_of_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name, int child_index)
{
struct value *child_value;
ada_varobj_describe_child (parent_value, parent_type, parent_name,
NULL, child_index, NULL, &child_value,
NULL, NULL);
return child_value;
}
/* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
PARENT_TYPE) pair. */
static struct type *
ada_varobj_get_type_of_child (struct value *parent_value,
struct type *parent_type,
int child_index)
{
struct type *child_type;
ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
child_index, NULL, NULL, &child_type, NULL);
return child_type;
}
/* Return a string that contains the image of the given VALUE, using
the print options OPTS as the options for formatting the result.
The resulting string must be deallocated after use with xfree. */
static std::string
ada_varobj_get_value_image (struct value *value,
struct value_print_options *opts)
{
string_file buffer;
common_val_print (value, &buffer, 0, opts, current_language);
return buffer.release ();
}
/* Assuming that the (VALUE, TYPE) pair designates an array varobj,
return a string that is suitable for use in the "value" field of
the varobj output. Most of the time, this is the number of elements
in the array inside square brackets, but there are situations where
it's useful to add more info.
OPTS are the print options used when formatting the result.
The result should be deallocated after use using xfree. */
static std::string
ada_varobj_get_value_of_array_variable (struct value *value,
struct type *type,
struct value_print_options *opts)
{
const int numchild = ada_varobj_get_array_number_of_children (value, type);
/* If we have a string, provide its contents in the "value" field.
Otherwise, the only other way to inspect the contents of the string
is by looking at the value of each element, as in any other array,
which is not very convenient... */
if (value
&& ada_is_string_type (type)
&& (opts->format == 0 || opts->format == 's'))
{
std::string str = ada_varobj_get_value_image (value, opts);
return string_printf ("[%d] %s", numchild, str.c_str ());
}
else
return string_printf ("[%d]", numchild);
}
/* Return a string representation of the (VALUE, TYPE) pair, using
the given print options OPTS as our formatting options. */
static std::string
ada_varobj_get_value_of_variable (struct value *value,
struct type *type,
struct value_print_options *opts)
{
ada_varobj_decode_var (&value, &type);
switch (type->code ())
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return "{...}";
case TYPE_CODE_ARRAY:
return ada_varobj_get_value_of_array_variable (value, type, opts);
default:
if (!value)
return "";
else
return ada_varobj_get_value_image (value, opts);
}
}
/* Ada specific callbacks for VAROBJs. */
static int
ada_number_of_children (const struct varobj *var)
{
return ada_varobj_get_number_of_children (var->value.get (), var->type);
}
static std::string
ada_name_of_variable (const struct varobj *parent)
{
return c_varobj_ops.name_of_variable (parent);
}
static std::string
ada_name_of_child (const struct varobj *parent, int index)
{
return ada_varobj_get_name_of_child (parent->value.get (), parent->type,
parent->name.c_str (), index);
}
static std::string
ada_path_expr_of_child (const struct varobj *child)
{
const struct varobj *parent = child->parent;
const char *parent_path_expr = varobj_get_path_expr (parent);
return ada_varobj_get_path_expr_of_child (parent->value.get (),
parent->type,
parent->name.c_str (),
parent_path_expr,
child->index);
}
static struct value *
ada_value_of_child (const struct varobj *parent, int index)
{
return ada_varobj_get_value_of_child (parent->value.get (), parent->type,
parent->name.c_str (), index);
}
static struct type *
ada_type_of_child (const struct varobj *parent, int index)
{
return ada_varobj_get_type_of_child (parent->value.get (), parent->type,
index);
}
static std::string
ada_value_of_variable (const struct varobj *var,
enum varobj_display_formats format)
{
struct value_print_options opts;
varobj_formatted_print_options (&opts, format);
return ada_varobj_get_value_of_variable (var->value.get (), var->type,
&opts);
}
/* Implement the "value_is_changeable_p" routine for Ada. */
static bool
ada_value_is_changeable_p (const struct varobj *var)
{
struct type *type = (var->value != nullptr
? var->value->type () : var->type);
if (type->code () == TYPE_CODE_REF)
type = type->target_type ();
if (ada_is_access_to_unconstrained_array (type))
{
/* This is in reality a pointer to an unconstrained array.
its value is changeable. */
return true;
}
if (ada_is_string_type (type))
{
/* We display the contents of the string in the array's
"value" field. The contents can change, so consider
that the array is changeable. */
return true;
}
return varobj_default_value_is_changeable_p (var);
}
/* Implement the "value_has_mutated" routine for Ada. */
static bool
ada_value_has_mutated (const struct varobj *var, struct value *new_val,
struct type *new_type)
{
int from = -1;
int to = -1;
/* If the number of fields have changed, then for sure the type
has mutated. */
if (ada_varobj_get_number_of_children (new_val, new_type)
!= var->num_children)
return true;
/* If the number of fields have remained the same, then we need
to check the name of each field. If they remain the same,
then chances are the type hasn't mutated. This is technically
an incomplete test, as the child's type might have changed
despite the fact that the name remains the same. But we'll
handle this situation by saying that the child has mutated,
not this value.
If only part (or none!) of the children have been fetched,
then only check the ones we fetched. It does not matter
to the frontend whether a child that it has not fetched yet
has mutated or not. So just assume it hasn't. */
varobj_restrict_range (var->children, &from, &to);
for (int i = from; i < to; i++)
if (ada_varobj_get_name_of_child (new_val, new_type,
var->name.c_str (), i)
!= var->children[i]->name)
return true;
return false;
}
/* varobj operations for ada. */
const struct lang_varobj_ops ada_varobj_ops =
{
ada_number_of_children,
ada_name_of_variable,
ada_name_of_child,
ada_path_expr_of_child,
ada_value_of_child,
ada_type_of_child,
ada_value_of_variable,
ada_value_is_changeable_p,
ada_value_has_mutated,
varobj_default_is_path_expr_parent
};
|