1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
|
/* Support routines for building symbol tables in GDB's internal format.
Copyright (C) 1986-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "buildsym-legacy.h"
#include "bfd.h"
#include "gdbsupport/gdb_obstack.h"
#include "gdbsupport/pathstuff.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "complaints.h"
#include "expression.h"
#include "filenames.h"
#include "macrotab.h"
#include "demangle.h"
#include "block.h"
#include "cp-support.h"
#include "dictionary.h"
#include <algorithm>
/* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
questionable--see comment where we call them). */
#include "stabsread.h"
/* List of blocks already made (lexical contexts already closed).
This is used at the end to make the blockvector. */
struct pending_block
{
struct pending_block *next;
struct block *block;
};
buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
const char *name,
const char *comp_dir_,
const char *name_for_id,
enum language language_,
CORE_ADDR last_addr)
: m_objfile (objfile_),
m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
m_comp_dir (comp_dir_ == nullptr ? "" : comp_dir_),
m_language (language_),
m_last_source_start_addr (last_addr)
{
/* Allocate the compunit symtab now. The caller needs it to allocate
non-primary symtabs. It is also needed by get_macro_table. */
m_compunit_symtab = allocate_compunit_symtab (m_objfile, name);
/* Build the subfile for NAME (the main source file) so that we can record
a pointer to it for later.
IMPORTANT: Do not allocate a struct symtab for NAME here.
It can happen that the debug info provides a different path to NAME than
DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
that only works if the main_subfile doesn't have a symtab yet. */
start_subfile (name, name_for_id);
/* Save this so that we don't have to go looking for it at the end
of the subfiles list. */
m_main_subfile = m_current_subfile;
}
buildsym_compunit::~buildsym_compunit ()
{
struct subfile *subfile, *nextsub;
if (m_pending_macros != nullptr)
free_macro_table (m_pending_macros);
for (subfile = m_subfiles;
subfile != NULL;
subfile = nextsub)
{
nextsub = subfile->next;
delete subfile;
}
struct pending *next, *next1;
for (next = m_file_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
for (next = m_global_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
}
struct macro_table *
buildsym_compunit::get_macro_table ()
{
if (m_pending_macros == nullptr)
m_pending_macros = new_macro_table (&m_objfile->per_bfd->storage_obstack,
&m_objfile->per_bfd->string_cache,
m_compunit_symtab);
return m_pending_macros;
}
/* Maintain the lists of symbols and blocks. */
/* Add a symbol to one of the lists of symbols. */
void
add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
{
struct pending *link;
/* If this is an alias for another symbol, don't add it. */
if (symbol->linkage_name () && symbol->linkage_name ()[0] == '#')
return;
/* We keep PENDINGSIZE symbols in each link of the list. If we
don't have a link with room in it, add a new link. */
if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
{
link = XNEW (struct pending);
link->next = *listhead;
*listhead = link;
link->nsyms = 0;
}
(*listhead)->symbol[(*listhead)->nsyms++] = symbol;
}
/* Find a symbol named NAME on a LIST. NAME need not be
'\0'-terminated; LENGTH is the length of the name. */
struct symbol *
find_symbol_in_list (struct pending *list, char *name, int length)
{
int j;
const char *pp;
while (list != NULL)
{
for (j = list->nsyms; --j >= 0;)
{
pp = list->symbol[j]->linkage_name ();
if (*pp == *name && strncmp (pp, name, length) == 0
&& pp[length] == '\0')
{
return (list->symbol[j]);
}
}
list = list->next;
}
return (NULL);
}
/* Record BLOCK on the list of all blocks in the file. Put it after
OPBLOCK, or at the beginning if opblock is NULL. This puts the
block in the list after all its subblocks. */
void
buildsym_compunit::record_pending_block (struct block *block,
struct pending_block *opblock)
{
struct pending_block *pblock;
pblock = XOBNEW (&m_pending_block_obstack, struct pending_block);
pblock->block = block;
if (opblock)
{
pblock->next = opblock->next;
opblock->next = pblock;
}
else
{
pblock->next = m_pending_blocks;
m_pending_blocks = pblock;
}
}
/* Take one of the lists of symbols and make a block from it. Keep
the order the symbols have in the list (reversed from the input
file). Put the block on the list of pending blocks. */
struct block *
buildsym_compunit::finish_block_internal
(struct symbol *symbol,
struct pending **listhead,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end,
int is_global, int expandable)
{
struct gdbarch *gdbarch = m_objfile->arch ();
struct pending *next, *next1;
struct block *block;
struct pending_block *pblock;
struct pending_block *opblock;
if (is_global)
block = new (&m_objfile->objfile_obstack) global_block;
else
block = new (&m_objfile->objfile_obstack) struct block;
if (symbol)
{
block->set_multidict
(mdict_create_linear (&m_objfile->objfile_obstack, *listhead));
}
else
{
if (expandable)
{
block->set_multidict
(mdict_create_hashed_expandable (m_language));
mdict_add_pending (block->multidict (), *listhead);
}
else
{
block->set_multidict
(mdict_create_hashed (&m_objfile->objfile_obstack, *listhead));
}
}
block->set_start (start);
block->set_end (end);
/* Put the block in as the value of the symbol that names it. */
if (symbol)
{
struct type *ftype = symbol->type ();
symbol->set_value_block (block);
symbol->set_section_index (SECT_OFF_TEXT (m_objfile));
block->set_function (symbol);
if (ftype->num_fields () <= 0)
{
/* No parameter type information is recorded with the
function's type. Set that from the type of the
parameter symbols. */
int nparams = 0, iparams;
/* Here we want to directly access the dictionary, because
we haven't fully initialized the block yet. */
for (struct symbol *sym : block->multidict_symbols ())
{
if (sym->is_argument ())
nparams++;
}
if (nparams > 0)
{
ftype->alloc_fields (nparams);
iparams = 0;
/* Here we want to directly access the dictionary, because
we haven't fully initialized the block yet. */
for (struct symbol *sym : block->multidict_symbols ())
{
if (iparams == nparams)
break;
if (sym->is_argument ())
{
ftype->field (iparams).set_type (sym->type ());
ftype->field (iparams).set_is_artificial (false);
iparams++;
}
}
}
}
}
else
block->set_function (nullptr);
if (static_link != NULL)
objfile_register_static_link (m_objfile, block, static_link);
/* Now free the links of the list, and empty the list. */
for (next = *listhead; next; next = next1)
{
next1 = next->next;
xfree (next);
}
*listhead = NULL;
/* Check to be sure that the blocks have an end address that is
greater than starting address. */
if (block->end () < block->start ())
{
if (symbol)
{
complaint (_("block end address less than block "
"start address in %s (patched it)"),
symbol->print_name ());
}
else
{
complaint (_("block end address %s less than block "
"start address %s (patched it)"),
paddress (gdbarch, block->end ()),
paddress (gdbarch, block->start ()));
}
/* Better than nothing. */
block->set_end (block->start ());
}
/* Install this block as the superblock of all blocks made since the
start of this scope that don't have superblocks yet. */
opblock = NULL;
for (pblock = m_pending_blocks;
pblock && pblock != old_blocks;
pblock = pblock->next)
{
if (pblock->block->superblock () == NULL)
{
/* Check to be sure the blocks are nested as we receive
them. If the compiler/assembler/linker work, this just
burns a small amount of time.
Skip blocks which correspond to a function; they're not
physically nested inside this other blocks, only
lexically nested. */
if (pblock->block->function () == NULL
&& (pblock->block->start () < block->start ()
|| pblock->block->end () > block->end ()))
{
if (symbol)
{
complaint (_("inner block not inside outer block in %s"),
symbol->print_name ());
}
else
{
complaint (_("inner block (%s-%s) not "
"inside outer block (%s-%s)"),
paddress (gdbarch, pblock->block->start ()),
paddress (gdbarch, pblock->block->end ()),
paddress (gdbarch, block->start ()),
paddress (gdbarch, block->end ()));
}
if (pblock->block->start () < block->start ())
pblock->block->set_start (block->start ());
if (pblock->block->end () > block->end ())
pblock->block->set_end (block->end ());
}
pblock->block->set_superblock (block);
}
opblock = pblock;
}
block->set_using ((is_global
? m_global_using_directives
: m_local_using_directives),
&m_objfile->objfile_obstack);
if (is_global)
m_global_using_directives = NULL;
else
m_local_using_directives = NULL;
record_pending_block (block, opblock);
return block;
}
struct block *
buildsym_compunit::finish_block (struct symbol *symbol,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end)
{
return finish_block_internal (symbol, &m_local_symbols,
old_blocks, static_link, start, end, 0, 0);
}
/* Record that the range of addresses from START to END_INCLUSIVE
(inclusive, like it says) belongs to BLOCK. BLOCK's start and end
addresses must be set already. You must apply this function to all
BLOCK's children before applying it to BLOCK.
If a call to this function complicates the picture beyond that
already provided by BLOCK_START and BLOCK_END, then we create an
address map for the block. */
void
buildsym_compunit::record_block_range (struct block *block,
CORE_ADDR start,
CORE_ADDR end_inclusive)
{
/* If this is any different from the range recorded in the block's
own BLOCK_START and BLOCK_END, then note that the address map has
become interesting. Note that even if this block doesn't have
any "interesting" ranges, some later block might, so we still
need to record this block in the addrmap. */
if (start != block->start ()
|| end_inclusive + 1 != block->end ())
m_pending_addrmap_interesting = true;
m_pending_addrmap.set_empty (start, end_inclusive, block);
}
struct blockvector *
buildsym_compunit::make_blockvector ()
{
struct pending_block *next;
struct blockvector *blockvector;
int i;
/* Count the length of the list of blocks. */
for (next = m_pending_blocks, i = 0; next; next = next->next, i++)
{
}
blockvector = (struct blockvector *)
obstack_alloc (&m_objfile->objfile_obstack,
(sizeof (struct blockvector)
+ (i - 1) * sizeof (struct block *)));
/* Copy the blocks into the blockvector. This is done in reverse
order, which happens to put the blocks into the proper order
(ascending starting address). finish_block has hair to insert
each block into the list after its subblocks in order to make
sure this is true. */
blockvector->set_num_blocks (i);
for (next = m_pending_blocks; next; next = next->next)
blockvector->set_block (--i, next->block);
free_pending_blocks ();
/* If we needed an address map for this symtab, record it in the
blockvector. */
if (m_pending_addrmap_interesting)
blockvector->set_map
(new (&m_objfile->objfile_obstack) addrmap_fixed
(&m_objfile->objfile_obstack, &m_pending_addrmap));
else
blockvector->set_map (nullptr);
/* Some compilers output blocks in the wrong order, but we depend on
their being in the right order so we can binary search. Check the
order and moan about it.
Note: Remember that the first two blocks are the global and static
blocks. We could special case that fact and begin checking at block 2.
To avoid making that assumption we do not. */
if (blockvector->num_blocks () > 1)
{
for (i = 1; i < blockvector->num_blocks (); i++)
{
if (blockvector->block (i - 1)->start ()
> blockvector->block (i)->start ())
{
CORE_ADDR start
= blockvector->block (i)->start ();
complaint (_("block at %s out of order"),
hex_string ((LONGEST) start));
}
}
}
return (blockvector);
}
/* See buildsym.h. */
void
buildsym_compunit::start_subfile (const char *name, const char *name_for_id)
{
/* See if this subfile is already registered. */
symtab_create_debug_printf ("name = %s, name_for_id = %s", name, name_for_id);
for (subfile *subfile = m_subfiles; subfile; subfile = subfile->next)
if (FILENAME_CMP (subfile->name_for_id.c_str (), name_for_id) == 0)
{
symtab_create_debug_printf ("found existing symtab with name_for_id %s",
subfile->name_for_id.c_str ());
m_current_subfile = subfile;
return;
}
/* This subfile is not known. Add an entry for it. */
subfile_up subfile (new struct subfile);
subfile->name = name;
subfile->name_for_id = name_for_id;
m_current_subfile = subfile.get ();
/* Default the source language to whatever can be deduced from the
filename. If nothing can be deduced (such as for a C/C++ include
file with a ".h" extension), then inherit whatever language the
previous subfile had. This kludgery is necessary because there
is no standard way in some object formats to record the source
language. Also, when symtabs are allocated we try to deduce a
language then as well, but it is too late for us to use that
information while reading symbols, since symtabs aren't allocated
until after all the symbols have been processed for a given
source file. */
subfile->language = deduce_language_from_filename (subfile->name.c_str ());
if (subfile->language == language_unknown && m_subfiles != nullptr)
subfile->language = m_subfiles->language;
/* If the filename of this subfile ends in .C, then change the
language of any pending subfiles from C to C++. We also accept
any other C++ suffixes accepted by deduce_language_from_filename. */
/* Likewise for f2c. */
if (!subfile->name.empty ())
{
struct subfile *s;
language sublang = deduce_language_from_filename (subfile->name.c_str ());
if (sublang == language_cplus || sublang == language_fortran)
for (s = m_subfiles; s != NULL; s = s->next)
if (s->language == language_c)
s->language = sublang;
}
/* And patch up this file if necessary. */
if (subfile->language == language_c
&& m_subfiles != nullptr
&& (m_subfiles->language == language_cplus
|| m_subfiles->language == language_fortran))
subfile->language = m_subfiles->language;
/* Link this subfile at the front of the subfile list. */
subfile->next = m_subfiles;
m_subfiles = subfile.release ();
}
/* For stabs readers, the first N_SO symbol is assumed to be the
source file name, and the subfile struct is initialized using that
assumption. If another N_SO symbol is later seen, immediately
following the first one, then the first one is assumed to be the
directory name and the second one is really the source file name.
So we have to patch up the subfile struct by moving the old name
value to dirname and remembering the new name. Some sanity
checking is performed to ensure that the state of the subfile
struct is reasonable and that the old name we are assuming to be a
directory name actually is (by checking for a trailing '/'). */
void
buildsym_compunit::patch_subfile_names (struct subfile *subfile,
const char *name)
{
if (subfile != NULL
&& m_comp_dir.empty ()
&& !subfile->name.empty ()
&& IS_DIR_SEPARATOR (subfile->name.back ()))
{
m_comp_dir = std::move (subfile->name);
subfile->name = name;
subfile->name_for_id = name;
set_last_source_file (name);
/* Default the source language to whatever can be deduced from
the filename. If nothing can be deduced (such as for a C/C++
include file with a ".h" extension), then inherit whatever
language the previous subfile had. This kludgery is
necessary because there is no standard way in some object
formats to record the source language. Also, when symtabs
are allocated we try to deduce a language then as well, but
it is too late for us to use that information while reading
symbols, since symtabs aren't allocated until after all the
symbols have been processed for a given source file. */
subfile->language
= deduce_language_from_filename (subfile->name.c_str ());
if (subfile->language == language_unknown
&& subfile->next != NULL)
{
subfile->language = subfile->next->language;
}
}
}
/* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
switching source files (different subfiles, as we call them) within
one object file, but using a stack rather than in an arbitrary
order. */
void
buildsym_compunit::push_subfile ()
{
gdb_assert (m_current_subfile != NULL);
gdb_assert (!m_current_subfile->name.empty ());
m_subfile_stack.push_back (m_current_subfile->name.c_str ());
}
const char *
buildsym_compunit::pop_subfile ()
{
gdb_assert (!m_subfile_stack.empty ());
const char *name = m_subfile_stack.back ();
m_subfile_stack.pop_back ();
return name;
}
/* Add a linetable entry for line number LINE and address PC to the
line vector for SUBFILE. */
void
buildsym_compunit::record_line (struct subfile *subfile, int line,
unrelocated_addr pc, linetable_entry_flags flags)
{
m_have_line_numbers = true;
/* Normally, we treat lines as unsorted. But the end of sequence
marker is special. We sort line markers at the same PC by line
number, so end of sequence markers (which have line == 0) appear
first. This is right if the marker ends the previous function,
and there is no padding before the next function. But it is
wrong if the previous line was empty and we are now marking a
switch to a different subfile. We must leave the end of sequence
marker at the end of this group of lines, not sort the empty line
to after the marker. The easiest way to accomplish this is to
delete any empty lines from our table, if they are followed by
end of sequence markers. All we lose is the ability to set
breakpoints at some lines which contain no instructions
anyway. */
if (line == 0)
{
std::optional<int> last_line;
while (!subfile->line_vector_entries.empty ())
{
linetable_entry *last = &subfile->line_vector_entries.back ();
last_line = last->line;
if (last->unrelocated_pc () != pc)
break;
subfile->line_vector_entries.pop_back ();
}
/* Ignore an end-of-sequence marker marking an empty sequence. */
if (!last_line.has_value () || *last_line == 0)
return;
}
linetable_entry &e = subfile->line_vector_entries.emplace_back ();
e.line = line;
e.is_stmt = (flags & LEF_IS_STMT) != 0;
e.set_unrelocated_pc (pc);
e.prologue_end = (flags & LEF_PROLOGUE_END) != 0;
e.epilogue_begin = (flags & LEF_EPILOGUE_BEGIN) != 0;
}
/* Subroutine of end_compunit_symtab to simplify it. Look for a subfile that
matches the main source file's basename. If there is only one, and
if the main source file doesn't have any symbol or line number
information, then copy this file's symtab and line_vector to the
main source file's subfile and discard the other subfile. This can
happen because of a compiler bug or from the user playing games
with #line or from things like a distributed build system that
manipulates the debug info. This can also happen from an innocent
symlink in the paths, we don't canonicalize paths here. */
void
buildsym_compunit::watch_main_source_file_lossage ()
{
struct subfile *mainsub, *subfile;
/* Get the main source file. */
mainsub = m_main_subfile;
/* If the main source file doesn't have any line number or symbol
info, look for an alias in another subfile. */
if (mainsub->line_vector_entries.empty ()
&& mainsub->symtab == NULL)
{
const char *mainbase = lbasename (mainsub->name.c_str ());
int nr_matches = 0;
struct subfile *prevsub;
struct subfile *mainsub_alias = NULL;
struct subfile *prev_mainsub_alias = NULL;
prevsub = NULL;
for (subfile = m_subfiles;
subfile != NULL;
subfile = subfile->next)
{
if (subfile == mainsub)
continue;
if (filename_cmp (lbasename (subfile->name.c_str ()), mainbase) == 0)
{
++nr_matches;
mainsub_alias = subfile;
prev_mainsub_alias = prevsub;
}
prevsub = subfile;
}
if (nr_matches == 1)
{
gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
/* Found a match for the main source file.
Copy its line_vector and symtab to the main subfile
and then discard it. */
symtab_create_debug_printf ("using subfile %s as the main subfile",
mainsub_alias->name.c_str ());
mainsub->line_vector_entries
= std::move (mainsub_alias->line_vector_entries);
mainsub->symtab = mainsub_alias->symtab;
if (prev_mainsub_alias == NULL)
m_subfiles = mainsub_alias->next;
else
prev_mainsub_alias->next = mainsub_alias->next;
delete mainsub_alias;
}
}
}
/* Implementation of the first part of end_compunit_symtab. It allows modifying
STATIC_BLOCK before it gets finalized by
end_compunit_symtab_from_static_block. If the returned value is NULL there
is no blockvector created for this symtab (you still must call
end_compunit_symtab_from_static_block).
END_ADDR is the same as for end_compunit_symtab: the address of the end of
the file's text.
If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
expandable.
If REQUIRED is non-zero, then a symtab is created even if it does
not contain any symbols. */
struct block *
buildsym_compunit::end_compunit_symtab_get_static_block (CORE_ADDR end_addr,
int expandable,
int required)
{
/* Finish the lexical context of the last function in the file; pop
the context stack. */
if (!m_context_stack.empty ())
{
struct context_stack cstk = pop_context ();
/* Make a block for the local symbols within. */
finish_block (cstk.name, cstk.old_blocks, NULL,
cstk.start_addr, end_addr);
if (!m_context_stack.empty ())
{
/* This is said to happen with SCO. The old coffread.c
code simply emptied the context stack, so we do the
same. FIXME: Find out why it is happening. This is not
believed to happen in most cases (even for coffread.c);
it used to be an abort(). */
complaint (_("Context stack not empty in end_compunit_symtab"));
m_context_stack.clear ();
}
}
/* Executables may have out of order pending blocks; sort the
pending blocks. */
if (m_pending_blocks != nullptr)
{
struct pending_block *pb;
std::vector<block *> barray;
for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
barray.push_back (pb->block);
/* Sort blocks by start address in descending order. Blocks with the
same start address must remain in the original order to preserve
inline function caller/callee relationships. */
std::stable_sort (barray.begin (), barray.end (),
[] (const block *a, const block *b)
{
return a->start () > b->start ();
});
int i = 0;
for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
pb->block = barray[i++];
}
/* Cleanup any undefined types that have been left hanging around
(this needs to be done before the finish_blocks so that
file_symbols is still good).
Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
specific, but harmless for other symbol readers, since on gdb
startup or when finished reading stabs, the state is set so these
are no-ops. FIXME: Is this handled right in case of QUIT? Can
we make this cleaner? */
cleanup_undefined_stabs_types (m_objfile);
finish_global_stabs (m_objfile);
if (!required
&& m_pending_blocks == NULL
&& m_file_symbols == NULL
&& m_global_symbols == NULL
&& !m_have_line_numbers
&& m_pending_macros == NULL
&& m_global_using_directives == NULL)
{
/* Ignore symtabs that have no functions with real debugging info. */
return NULL;
}
else
{
/* Define the STATIC_BLOCK. */
return finish_block_internal (NULL, get_file_symbols (), NULL, NULL,
m_last_source_start_addr,
end_addr, 0, expandable);
}
}
/* Subroutine of end_compunit_symtab_from_static_block to simplify it.
Handle the "have blockvector" case.
See end_compunit_symtab_from_static_block for a description of the
arguments. */
struct compunit_symtab *
buildsym_compunit::end_compunit_symtab_with_blockvector
(struct block *static_block, int expandable)
{
struct compunit_symtab *cu = m_compunit_symtab;
struct blockvector *blockvector;
struct subfile *subfile;
CORE_ADDR end_addr;
gdb_assert (static_block != NULL);
gdb_assert (m_subfiles != NULL);
end_addr = static_block->end ();
/* Create the GLOBAL_BLOCK and build the blockvector. */
finish_block_internal (NULL, get_global_symbols (), NULL, NULL,
m_last_source_start_addr, end_addr,
1, expandable);
blockvector = make_blockvector ();
/* Read the line table if it has to be read separately.
This is only used by xcoffread.c. */
if (m_objfile->sf->sym_read_linetable != NULL)
m_objfile->sf->sym_read_linetable (m_objfile);
/* Handle the case where the debug info specifies a different path
for the main source file. It can cause us to lose track of its
line number information. */
watch_main_source_file_lossage ();
/* Now create the symtab objects proper, if not already done,
one for each subfile. */
for (subfile = m_subfiles;
subfile != NULL;
subfile = subfile->next)
{
if (!subfile->line_vector_entries.empty ())
{
/* Like the pending blocks, the line table may be scrambled
in reordered executables. Sort it. It is important to
preserve the order of lines at the same address, as this
maintains the inline function caller/callee
relationships, this is why std::stable_sort is used. */
std::stable_sort (subfile->line_vector_entries.begin (),
subfile->line_vector_entries.end ());
}
/* Allocate a symbol table if necessary. */
if (subfile->symtab == NULL)
subfile->symtab = allocate_symtab (cu, subfile->name.c_str (),
subfile->name_for_id.c_str ());
struct symtab *symtab = subfile->symtab;
/* Fill in its components. */
if (!subfile->line_vector_entries.empty ())
{
/* Reallocate the line table on the objfile obstack. */
size_t n_entries = subfile->line_vector_entries.size ();
size_t entry_array_size = n_entries * sizeof (struct linetable_entry);
int linetablesize = sizeof (struct linetable) + entry_array_size;
struct linetable *new_table
= XOBNEWVAR (&m_objfile->objfile_obstack, struct linetable,
linetablesize);
new_table->nitems = n_entries;
memcpy (new_table->item,
subfile->line_vector_entries.data (), entry_array_size);
symtab->set_linetable (new_table);
}
else
symtab->set_linetable (nullptr);
/* Use whatever language we have been using for this
subfile, not the one that was deduced in allocate_symtab
from the filename. We already did our own deducing when
we created the subfile, and we may have altered our
opinion of what language it is from things we found in
the symbols. */
symtab->set_language (subfile->language);
}
/* Make sure the filetab of main_subfile is the primary filetab of the CU. */
cu->set_primary_filetab (m_main_subfile->symtab);
/* Fill out the compunit symtab. */
if (!m_comp_dir.empty ())
{
/* Reallocate the dirname on the symbol obstack. */
cu->set_dirname (obstack_strdup (&m_objfile->objfile_obstack,
m_comp_dir.c_str ()));
}
/* Save the debug format string (if any) in the symtab. */
cu->set_debugformat (m_debugformat);
/* Similarly for the producer. */
cu->set_producer (m_producer);
cu->set_blockvector (blockvector);
blockvector->global_block ()->set_compunit (cu);
cu->set_macro_table (release_macros ());
/* Default any symbols without a specified symtab to the primary symtab. */
{
int block_i;
/* The main source file's symtab. */
struct symtab *symtab = cu->primary_filetab ();
for (block_i = 0; block_i < blockvector->num_blocks (); block_i++)
{
struct block *block = blockvector->block (block_i);
/* Inlined functions may have symbols not in the global or
static symbol lists. */
if (block->function () != nullptr
&& block->function ()->symtab () == nullptr)
block->function ()->set_symtab (symtab);
/* Note that we only want to fix up symbols from the local
blocks, not blocks coming from included symtabs. That is
why we use an mdict iterator here and not a block
iterator. */
for (struct symbol *sym : block->multidict_symbols ())
if (sym->symtab () == NULL)
sym->set_symtab (symtab);
}
}
add_compunit_symtab_to_objfile (cu);
return cu;
}
/* Implementation of the second part of end_compunit_symtab. Pass STATIC_BLOCK
as value returned by end_compunit_symtab_get_static_block.
If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
expandable. */
struct compunit_symtab *
buildsym_compunit::end_compunit_symtab_from_static_block
(struct block *static_block, int expandable)
{
struct compunit_symtab *cu;
if (static_block == NULL)
{
/* Handle the "no blockvector" case.
When this happens there is nothing to record, so there's nothing
to do: memory will be freed up later.
Note: We won't be adding a compunit to the objfile's list of
compunits, so there's nothing to unchain. However, since each symtab
is added to the objfile's obstack we can't free that space.
We could do better, but this is believed to be a sufficiently rare
event. */
cu = NULL;
}
else
cu = end_compunit_symtab_with_blockvector (static_block, expandable);
return cu;
}
/* Finish the symbol definitions for one main source file, close off
all the lexical contexts for that file (creating struct block's for
them), then make the struct symtab for that file and put it in the
list of all such.
END_ADDR is the address of the end of the file's text.
Note that it is possible for end_compunit_symtab() to return NULL. In
particular, for the DWARF case at least, it will return NULL when
it finds a compilation unit that has exactly one DIE, a
TAG_compile_unit DIE. This can happen when we link in an object
file that was compiled from an empty source file. Returning NULL
is probably not the correct thing to do, because then gdb will
never know about this empty file (FIXME).
If you need to modify STATIC_BLOCK before it is finalized you should
call end_compunit_symtab_get_static_block and
end_compunit_symtab_from_static_block yourself. */
struct compunit_symtab *
buildsym_compunit::end_compunit_symtab (CORE_ADDR end_addr)
{
struct block *static_block;
static_block = end_compunit_symtab_get_static_block (end_addr, 0, 0);
return end_compunit_symtab_from_static_block (static_block, 0);
}
/* Same as end_compunit_symtab except create a symtab that can be later added
to. */
struct compunit_symtab *
buildsym_compunit::end_expandable_symtab (CORE_ADDR end_addr)
{
struct block *static_block;
static_block = end_compunit_symtab_get_static_block (end_addr, 1, 0);
return end_compunit_symtab_from_static_block (static_block, 1);
}
/* Subroutine of augment_type_symtab to simplify it.
Attach the main source file's symtab to all symbols in PENDING_LIST that
don't have one. */
static void
set_missing_symtab (struct pending *pending_list,
struct compunit_symtab *cu)
{
struct pending *pending;
int i;
for (pending = pending_list; pending != NULL; pending = pending->next)
{
for (i = 0; i < pending->nsyms; ++i)
{
if (pending->symbol[i]->symtab () == NULL)
pending->symbol[i]->set_symtab (cu->primary_filetab ());
}
}
}
/* Same as end_compunit_symtab, but for the case where we're adding more symbols
to an existing symtab that is known to contain only type information.
This is the case for DWARF4 Type Units. */
void
buildsym_compunit::augment_type_symtab ()
{
struct compunit_symtab *cust = m_compunit_symtab;
struct blockvector *blockvector = cust->blockvector ();
if (!m_context_stack.empty ())
complaint (_("Context stack not empty in augment_type_symtab"));
if (m_pending_blocks != NULL)
complaint (_("Blocks in a type symtab"));
if (m_pending_macros != NULL)
complaint (_("Macro in a type symtab"));
if (m_have_line_numbers)
complaint (_("Line numbers recorded in a type symtab"));
if (m_file_symbols != NULL)
{
struct block *block = blockvector->static_block ();
/* First mark any symbols without a specified symtab as belonging
to the primary symtab. */
set_missing_symtab (m_file_symbols, cust);
mdict_add_pending (block->multidict (), m_file_symbols);
}
if (m_global_symbols != NULL)
{
struct block *block = blockvector->global_block ();
/* First mark any symbols without a specified symtab as belonging
to the primary symtab. */
set_missing_symtab (m_global_symbols, cust);
mdict_add_pending (block->multidict (), m_global_symbols);
}
}
/* Push a context block. Args are an identifying nesting level
(checkable when you pop it), and the starting PC address of this
context. */
struct context_stack *
buildsym_compunit::push_context (int desc, CORE_ADDR valu)
{
struct context_stack *newobj = &m_context_stack.emplace_back ();
newobj->depth = desc;
newobj->locals = m_local_symbols;
newobj->old_blocks = m_pending_blocks;
newobj->start_addr = valu;
newobj->local_using_directives = m_local_using_directives;
newobj->name = NULL;
m_local_symbols = NULL;
m_local_using_directives = NULL;
return newobj;
}
/* Pop a context block. Returns the address of the context block just
popped. */
struct context_stack
buildsym_compunit::pop_context ()
{
gdb_assert (!m_context_stack.empty ());
struct context_stack result = m_context_stack.back ();
m_context_stack.pop_back ();
return result;
}
|